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THE RANDOMIZATION MODEL FOR INCOMPLETE
BLOCK DESIGNS

By J. ROBINSON
University of Connecticut and University of Sydney

1. Introduction. The randomization scheme for incomplete block designs
consists of assigning treatments to a plan of blocks and plots and allocating
the block positions and the positions of plots within blocks randomly to the
experimental units. It is the purpose of this paper to consider the asymptotic
properties of estimates of treatment contrasts and of certain permutation tests
under the randomization models appropriate to these designs. Similar results
have been obtained for the randomized block design by Wald and Wolfowitz
(1944) and for the completely randomized design by Silvey (1954).

In Section 2, two theorems are derived, giving the limiting distribution of
linear forms in the universe of restricted permutations obtained by the ran-
domization procedure for incomplete block designs. These theoremsare applied
in Section 3, to show that the permutation distributions of certain test statistics
~ have the same limiting form as their limiting distributions under the usual
normal theory models. In Section 4, combined estimation of treatment con-
trasts, using both intra-block and inter-block information, is considered and
the limiting distribution of a combined test statistic is obtained.

2. Two combinatorial limit theorems. Letc,,;, a,(i,j)(i=1, - ,nj=1, ...,
k) be 2kn real numbers defined for every positive integer n. Let (I,,, - - -, 1,,)
be the random variable taking each permutation of (1, - - -, n) with equal proba-
bility and let (J;;, - -+, J;,), (i=1, --.,n) ben independent random variables
each taking each permutation of (1, - - -, k) with equal probability independently
of (I,;, -- -, 1,,). We consider the asymptotic distribution of certain random
variables of the form

(1) L, =3t Z?:l Crii @ (L, Jii) s

as n tends to infinity.
Write I, = (1,,, - -+, 1,,). We can show immediately that

(2) E(Ln , In) — k Z'?Zl cni‘an(lni’ .)
and then that

3) E(L,) = nke,._.a,(-, +)
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and that

@ ML, L) = ) S [ e — Y]

- X [E5 (L /) — @l ]

) E[V(L,,fln)]:m—'jl—) Fa D (€ — €00

» X T Dl j) — a0, )F

© VAL = KT e — e Bl ) — o F

and hence

V(L) = E[V(L, |L)] + VIEL,|L,)]

) =;1(T‘_T) Py T (e — ) Dty Xhala,(i /) — a,(i, )

T = ) Dla ) — a(es T

We use the notation that the arithmetic mean over a subscript is denoted by
replacing the subscript with a dot.
Suppose the a,(i, j) satisfy

® (B [0 )) = a i OFF _
{Z?ﬂ };:1 [an(i’ ]) - an(i’ ')]2}2

or all a (i, j) — a,(i, +) are zero; and

(9) 1[an(i )_"an( ')2]52 :0(1), S:3,4’ e
(L lau o) = a, (e )P
orall a,(i, +) — a,(+, +) are zero.
Further, suppose the c,;; satisfy

! n S (e — € )T
m =1 [Z]~ (cnw c'm ) ] _ 0(1) ,

1 n k 2j|
" ¢ (¢c...—cC. .
[n(k 1 = =i (Cai "

oralle,;; — c,;. are zero; and

1
- n =1 (cnz - Cn”)s
n

(10)

(11) /2‘_—.0(1), S:3,4’...,

[ St — )]

orall ¢,;,, — c,.. are zero.
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We may replace the conditions (9) and (11) by a condition like that proposed
by Hoeffding (1951),

(12) lim . n(r/2)—-1 Zgzl (cni~ _ cnu)r ZZIL=1 [an(i’ ‘) - an(i’ ‘)]r
" {Z;{t:l (cni' - cn“)z ‘?=1 [an(i’ .) - an(" .)]2}”2
r = 3, 4, L

- b

orall (¢,;, —¢,.)oralla,i, ) — a,-, -) are zero. The conditions (8) and
(10) may be replaced by the condition

(13) lim, . n Pade Dt S
{Z?:1 dnz Z?:lfni}z

or all d,; or all f,, are zero; where

d,, = 2hi(cj — )

n

and
Jui = D51 lan(i j) — a, (i, )T

THEOREM 1. If the sets of numbers a,(i, j) and c,;; satisfy the conditions (12)
and (13) then

(14) Lo — Ln_E(Ln)

' V(L))
where L, is defined by (1), has a limiting normal distribution with mean zero and
variance 1, unless L is a constant.
Proor. First, assume that neither E[V(L, |I,)] nor V[E(L,|1,)] is zero.

Let
L * — Ln _ E(Ln'In)
" [V(L,|L)]*
D32 &
DL V(YL L

where
Yni = I,;=1 (cnij - cni~)[an(1ni’ Jij) - an(lni’ .)] .

Givenl,, the Y, are independently distributed, so from the Liapounov version
of the central limit theorem, if

15 R(L,) =
(15) )= S B Ly

then
(16) [P[L,* < x|1,] — ®(x)] >0 forany x,

where ®(x) is the distribution function of a standardized normal variate.
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Now by the Cauchy inequality Y2, < dyifur,; SO

ni =
2 2
Z?=1 dnt nl,;

i E(Y5 | 1,) S{E[V(Lnlln)] }2 ,
RTINS S |
n(k — l) 1= nt t=1Jnt

The second factor on the right tends to zero in probability since it is nonnega-
tive and its expected value tends to zero from (13). V(L,|1,)/E[V(L, |I,)]tends
to 1 in probability, since this ratio has expectation 1 and condition (13) implies
that its variance tends to 0. So R(I,) — 0 in probability.

That is, given ¢ > 0, » > 0, there exists an n(e, 5) such that for n > n(e, )

PR(IL) <e} > 1 —7.
So from the result (16), given d > 0 we can find an n(d) such that for
n > max (n(0), n(e, 1))
IP[L,* < x|L] = ®(x)] <9
with probability greater than 1 — . That is P[L,* < x|I,] — ®(x) in
probability.

Hoeffding (1951) has shown that condition (12) is sufficient for the asymptotic
normality of

L *% — E(Ln|1n) — E(Ln) .
’ {(VIE(L, L)}

Now

o Lom (B (T

The factor {V(L, |1,)/E[V(L,|1,)]}! tends to one in probability and the sum of
squares of the two constant factors is one. This, together with the asymptotic
normality of the conditional distribution of L, * and of the distribution of L _**,
implies that L ° has a standard normal limit distribution.

If one of E[V(L,|1,)] and V[E(L,|1,)] is zero then, from (17), it follows
that L,° has a standard normal limit distribution, since one term would tend
to 0 in probability. If both are zero then L, is a constant.

REMARK. Condition (12), which is sufficient for the asymptotic normality
of L,**, could be replaced by a necessary and sufficient condition of Lindeberg
type as proposed by Hajek (1961).

Consider the s linear forms

(18) Ly = St Shoeia i Jy) m=1,.-s,

nig “n

each of which satisfy the conditions of Theorem 1 and which are also
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orthogonal, in the sense that

(19) 2o D (el — a)(em) — ey =0, m=#=m,
and
(20) (el — e (e —ar)y =0, m = m .

Then we may prove a theorem concerning their joint distribution.

THEOREM 2. If each of the s linear forms given in (18) satisfies the conditions
of Theorem | and if they satisfy the conditions (19) and (20), then the joint limiting
distribution of

— E(L

(21) L, = Lo — Blus) me=1,.. s,
V(L]

is multivariate normal with means zero and variance covariance matrix 1, unless

some L, are constant.

Proor. Consider the random variable >33, _, «, L%,.. To show that this ran-
dom variable has an asymptotically normal distribution, we need to show that
2t ayeim and a, (i, j) satisfy the conditions (12) and (13). Now

mCnij
-1 [ 25 am(cif{‘} — )T
= 21 2o D Z:n o1 O X (1) — ) (e — )
= Do @y 20y Do (e — )

Also

L X [T an(e) — )Y
é Z?:l [Zj:l(z -1 &y 2){Zm l(ch - (7(” 2}]2
= (Dt @) Doy i [ 252 (6 — ) .

We may consider each a,, to be nonzero. Then unless
T (em — ey =0 or Xp, Nhalaij) — a i, OF =0,

z[z [ £ auteiry — el [ £ {2 1e0.0) — a0 [}

[BE] L5 wnteiry — ) [ £ 2 o) = a0 [}

2] 2 (e — e ] 2{2[ a,(i.J) — a (i, P}

sw(Led) £ {,,, Z 3 e — ey § B0~ a o}

Since each «,? > 0, each term of this summation tends to zero. Thus
Do @, ciml and a,(i, j) satisfy the condition (13). Similarly, it may be shown
that they satisfy condition (12).
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Hence, every random variable of the form 3¢ _; «, L%, is asymptotically
normally distributed with mean zero and variance a,* + --- 4 @, and the
theorem follows by exactly the argument used in Fraser ((1957), page 242),
unless some of the exceptional conditions hold when some L,,, are constant.

3. Permutation tests for incomplete block designs. Let @ be the incidence
matrix of the treatments, where

= (D, -, D))

and the (i, j)th element of ®," (m = 1, ..., b) is 1 if treatment / is applied to
the jth plot of block m. Then

®'d =R =diag(r,, ---, r,)
and
N=&d, x1,,

where 1, is a k-vector with each element 1. N is the incidence matrix of the
design. Let
L= ((bk)_éRélv’ L, -, 1)
be an orthogonal matrix such that
L'RNNR-L = D = diag (05, py» -+ *» 0_y) -
Suppose
Po=+"+=ppa=k and p,_, = =p, ,=0.

We wish to consider a test of a null hypothesis that all treatments have the

same effect. Let
Y = o Yo Yo 200 Vo) ‘
be a vector of observations and let Y be a random vector taking, with equal
probability, each of the possible values
(yiljll’ Cr o Vi Vigigr yibfblc) ’

where (i, - - -, i,) is a permutation of (1, - - -, byand (ji;, -+, ji)s 5 (oo =+ +»
J»e) are permutations of (1, ..., k). Let V= @'Y be a vector of treatment
totals, let B = (I, x 1,)Y be a vector of block totals, let T = NBand let Q =

V — T/k. We will assume that the elements of y satisfy conditions (8) and (9).
Consider the linear forms

1/R-Q = l/R—é<q>' _ %N X 1k'>Y, i=a, v —1.

We may notice that
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l;R-é(cp' ~Inx 1,,’)(@ L O 1,,) R, — li'R—i<R - iNN')R—élj,
k k ! k
=0, i+7j,
=1 — pyk, i=J.
Further, if we choose the r,, - - -, r, to satisfy the condition
lim,_ . r/b >0, for i=1,...,v,
then the elements of the vectors
li’R_é<®,_'llc—lek,>9 i:a,"’,/l)—l,
satisfy the conditions (10) and (11). So, if we write
1
Sr— LS S ()
b(k _ 1) Zt—l Jj=1 (yz] yw)

then the v — a linear forms
I'R:Q
S(U— pifk)t’
satisfy the conditions of Theorem 2 and so they are asymptotically distributed
as independent normal variates with zero means and unit variances.
Hence
iR
S*(1 — pi/k)
has limiting chi-square distribution with v — « degrees of freedom. This sta-
tistic is readily seen to be b(k — 1) times the ratio of the treatment sum of
squares adjusted for blocks and the sum of this sum of squares and the error
sum of squares in the usual analysis of variance.
Also, consider the linear forms

L'ROT = I’'R¥(N x 1,)Y, i=1,.--,v—7.

Again, we may notice that
I'R-INN'R-, = 0, i#j,
= 0> i=j,

and that the elements of the vectors I’R™¥(N x 1,) satisfy the conditions (10)
and (11). So, if we write

k
U= s Bl (e 2

then the v — 7 linear forms
I'R™!T

Ukt =l
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satisfy the conditions of Theorem 2 and so they are asymptotically distributed
as independent normal variates with zero means and unit variances. Hence

5oy (VRO

Uk,
has limiting chi-square distribution with v — y degrees of freedom. This sta-
tistic is & — 1 times the ratio of the treatment component of the block sum

of squares ignoring treatments and the total block sum of squares ignoring
treatments.

4. Estimation from the randomization model assuming additivity. Let
2= (Zys vty Zae s Zok)

be a vector of plot errors and let Z be a random vector taking, with equal
probability, all the possible values

(o Zaggeo > Zigae) >
where (i, - - -, i,) isa permutation of (1, - -+, b)and (fiy, - -+, ji)s +++» (oo =+ *»
Jui) are permutations of (1, - - -, k). If Y is the vector of possible observations

and if we assume that the treatment effects are additive, then an appropriate
model for the design is

Y==®t4 Z.

Consider the contrasts I R™Q, i = a, - .-, v — 1. These have expectations
I/'Rit(1 — p,/k) and variances ¢*(1 — p,;/k), i = a, ---, v — 1, where

1
0 = o Y D5 (F — )"

" bk — 1)

Also, the contrasts 1/R™!T, have expectations p,1/R¥t and variances ko *p;,
i=1,...,v — r, where

k
g2 = o (z —z).

Thus a combined estimate of 1/R?t is

wl/R—Q 4 (w'/k)I/R-4T

, 1= 1, VU — 1 5
(I — pifkyw + w'o,/k
where
w=1/c and w = 1/o?,
and the variance of this estimate is
1 i=1, , v — 1

(I — piflyw + w'o,fk’
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The error sum of squares

i=1 1(.})%3 yt) - Z (l ,R—‘%Q)z/(l _lom/k)
has expectation

bk — 1) — (v —

a) < & o
be — 1y ot Tia @ — a2

so the error mean square has expectation ¢2. The block sum of squares adjusted
for treatments

ki yi + ZnZa L'RTQYP/(1 — p,/k) — VRV
has expectation

bk — v —k
b1 1 i1 (2, z.) + kbi(k 0() L. ?:1 (Zij —z.),

so the mean square of blocks adjusted for treatments has expectation

bk—v ., v—ka ,
kb—a) ' k(b —a)

+

Thus an estimate of w is given by
%= 1/E
and an estimate of w’ is given by

W — bk — v
k(b — a)B — (v — ka)E’

where Band E are the block mean square adjusted for treatments and the error
mean square, respectively. It may be noted that these are the same formulae
as are obtained in the usual way from the infinite model.

The error mean square may be shown to be equal to

(bk — b — v + ay {Z§=1 £ (2 — 22

_ ;;la[ R <<1>' liN X l,/)ZT/(l _ pm/k)} .

The second term divided by o? is asymptotically distributed as a chi-square
variate with v — a degrees of freedom so as b tends to infinity the error mean
square divided by ¢* tends to 1 in probability. Similarly we may show that
the block mean square adjusted for treatments divided by

bk—v ., v—ka ,
k(b — a) k(b — a)

tendsto 1 in probability. Hence the combined estimates using estimated weights
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have the same asymptotic distribution as the combined estimates when the
weights are known.
If we write
_ WL/R™Q + (W/k)L,’'R™T
(L= pufkpp + Wp, [k

then the asymptotic distribution of

Znta (1 — oufk)P 4 Wo,[k]
is that of a chi-square variate with v — 1 degrees of freedom, under the null
hypothesis. This is the combined test of significance proposed by Rao (1947).
I wish to thank a referee who pointed out errors in an earlier proof of
Theorem 1 and suggested the shorter and more general proof presented here.

m
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