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UNBIASED COIN TOSSING WITH DISCRETE
RANDOM VARIABLES!

By MEYER Dwass
Northwestern University

Hoeffding and Simons (4nn. Math. Statist. (1970) 341-352) show how to
convert a sequence of i.i.d. indicator random variables with parameter p
into such a sequence with parameter p = }. In the present paper an exten-
sion is made to generating sequences of i.i.d. indicator random variables
with parameter p = } from arbitrary sequences of i.i.d. discrete random
variables. Also considered is the gefierating of sequences of i.i.d. r-valued,
equiprobable random variables. Some optimality criteria are established.

1. Introduction. In an interesting recent paper, [1], Hoeffding and Simons
show various ways of converting a sequence of i.i.d. Bernoulli variables with
unknown parameter p, (0 < p < 1), into a sequence of i.i.d. Bernoulli variables
with parameter p = 1. Our purpose is to extend some of the calculations in [1]
to the case where an arbitrary sequence of nondegenerate, i.i.d. discrete random
variables plays the role of the original Bernoulli sequence. In particular, we
consider counterparts of the even procedures introduced in [1] as well as type r

procedures for r prime.

2. Paths. We suppose henceforth that X, X,, --. is a sequence of non-
degenerate i.i.d. random variables with possible values a,, a,, - - -. For our pur-
poses it will involve no loss of generality to suppose that the possible values are
1,2, .... There may be finitely many or infinitely many possible values. We
are motivated by [1] to define a type 2 procedure as follows;

DEFINITION. A 2-valued procedure (N, Z) is a stopping time N and an indica-
tor random variable

Z=ZX, -, X,
such that
PZ=0=PZ=1)=1%

An r-valued procedure is similarly defined, except that the random variable Z
assumes r distinct values with equal probabilities. Until Section 6 we will
consider 2-valued procedures only, and we refer to them simply as procedures.
Suppose that n; counts the number of times that the value j appears among
the n values X, ---, X,. Then n, + n, + --.= n, there being only a finite
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number of nonzero »,;’s in this sum. Denote

n!
mln! ...
¢(0;0,0,.--)=1.

=c(n n,ny, - --)

The multinomial coefficient c(n; n,, n,, - - -) counts the number of distinct as-
signments of values of n, 1’s, n, 2’s, - - - to the n random variables X, - - -, X,.
Any such assignment is called a path with end-point (n; n,, n,, - --). For a given
procedure (N, Z) and a given path end-point (n; n,, n,, - - -), it may be that some
of the ¢(n; n,, n,, - - -) paths will lead to the process being stopped just at that
point, that is, N = n. Let E denote the set of end-points (n; n,, n,, - - -) which
are the end-points of at least one path which has just been stopped at the nth
step. Let s(n; ny, ny, - - -) be the number of such just-stopped paths with the
indicated end-point. Define s(n; n,, n,, - - -)=0 if the end-point is not in E. From
now on, we consider only procedures satisfying the following assumption:

AssuMPTION. It is assumed henceforth that any path with end-point in E has
either just been stopped at time » or has already been stopped at an earlier time
point. In other words, all previously unstopped paths which reach a point in E
have to stop at time n.

3. Even procedures. Following the definition for Bernoulli random variables
in [1] we define even procedures as follows:

DeriniTION. The procedure (N, Z) is said to be even if

(@) s(n; ny, ny, - - ) is always an even integer and

(b) Z equals 1 for half of these s(n; n,, n,, - --) just-stopped paths and Z
equals O for the remaining half.

The following characterizes even procedures:

LeEMMA 3.1. The stopping time N permits an even procedure (N, Z) if and only if

c(n; ny, ny, - - +) is an even integer whenever the path end-point (n; n,, n,, - - -) isin E.
Proor. The following relation holds whenever (n; n,, n,, - --) is in E.

(1) e(msny,ny, )= 3 s(m;my, my, ---)c(n — M0y — My, By — My, - - -)

where the summation is over all end-points (m; m,, m,, - - -) satisfying

I<m<nm0=<m=<n,0=m=mn, - -

Since s(m; m,, m,, - --) is always even, if we assume the procedure is even, it
follows that c(n; n,, n,, - - -) is even. The converse can be proved by an induc-
tion in » based on writing the right side of (1) as

Y ismenot + S5 Ry, By )

If (n; ny, ny, - -+)is in E, then by the induction hypothesis each of the terms in
Yicmsn_1 IS even. Remember that for the converse we are assuming that
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c(n; ny, my, - - +) is even for end-points in E. Hence, we conclude that s(x; n,,
n, ---) is even. It remains to check that the assertion holds for some initial
value of n. Let n’ be the smallest value of n for which the end-point is in E.
For any such end-point, we have that

s(n'; nl’ n29 . ') = c(n’; nl’ nz, b ’)
which completes the proof.

4. The best even procedure. Consider a procedure (N’, Z') defined as follows:
Let (n; ny, n,, - - -) be the end-point of the path determined by the » random

variables X, --., X,. Let N’ be the first index » such that c¢(n; n,, n,, ---) isa
positive even integer. Clearly N’ is" a stopping time. Since c(n; ny, n,, - - ) is
even for every stopped path, it follows from Lemma 3.1 that s(n; n, n,, - - .) is

even. The random variable Z’ can be arbitrarily defined to be 1 for any half
of these s(n; n,, n,, - - -) paths. Notice that the assumption at the end of Section
2 is satisfied.

The procedure (N’, Z') is best among even procedures in the sense that if
(N, Z) is any other even procedure, it follows immediately from the definition
of N’ and from Lemma 3.1, that with probability 1, N’ < N.

5. The generating function for N’. In [1] it was shown that when the X’s are
Bernoulli random variables with parameter p, then

2) Lo PN > myt =TI [1 + (P + (901 -
An extension to arbitrary discrete X;’s will be proved along very similar lines.
The counterpart of (2) is the following:

THEOREM 5.1. Suppose that P(X, = i) =p;, i=1,2, .... Then
2inco PIN' > myr = T, [1 + (Zn?llpiZk)t2k] :
The proof is based on the following lemma about multinomial coefficients:

LemMMA 5.2. Suppose that m is of the form 2%, k =1,2, .... Then c(m; m,,
my, - - ) is even whenever there are at least two nonzero m;’s among m,, my, - - -.

Proor. The proof is by induction on k. The result holds for £ = 1, since
¢(2;1,1,0, ---) = 2. By considering the coefficient of ¢#™1z,2 - .. in (t, + ¢, +
co )t + t, + - - -)* we know that

(3) Z C(2k; il’ iz’ b )c(zk, j1> jz> ¢ ) = c(2k+l; m]’ mz’ M )
where the summation is over all nonnegative indices, i,, j,, &, j,, - - - such that
i, + j, =my, iy + j, =m,, ---. By hypothesis, the terms on the left side of (3)

are all even with the exception of those products which equal one; for example,
terms of the form ¢(2%; 2%, 0, - - -)c(2%; 0, 2%, - ..). But for any such term, there
is always a “complementary” term. For instance, the term “complementary”
to the one just cited above is ¢(2%; 0, 2%, .. .)¢(2%; 2%, 0, --+). So the contribu-
tion from these terms is also even. Hence, ¢(2¢*'; m, m,, - - .) is even.
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Proor oF THEOREM 5.1. The proof now follows that in [1] exactly. First we
have that by Lemma 5.2,

(4) P(N' > 2% =p* +p + -+, k=1,2, -
Next we have that if 0 < n < 2%, then

®) P(N' > 2% 4+ n) = P(N' > 2¥)P(N" > n) .

(It follows from Lemma 5.2 that N’ > 2% 4 n implies that X, = - .. = Xy, from

which (5) follows directly.) Thus, (4) and (5) allow an explicit evaluation of
P(N’ > r) for all r. The generating function argument leading to Theorem 5.1
is now completely routine. (See [1].) -

REMARKS. It is clear that if we have a k-faced die we are better off in using
the full structure of the die rather than dichotomizing the outcomes into two
sets of face types and thus generating Bernoulli trials. For example, with an
“honest” 6-faced die, the expected value of the best even procedure described
above is

EN' = [ [1 + @)1 =24.

When the die is dichotomized, the best even procedure (whose stopping time is
denoted N, in [1]) has expected value

EN, = TTro[1 + (3)* ] = 3.4

6. Type r procedures. Let r be a positive integer. We define an r-valued
procedure to be of type r if s(n; n,, n,, - - -) is always a multiple of r. Thus, the
above-discussed even procedures are of type 2. We suppose that the assumption
at the end of Section 2 still prevails.

Lemma 3.1 holds for any r. That is,

LEMMA 6.1. The stopping time N permits a type r procedure (N, Z) if and only
if ¢(n; ny, n,, - - ) is a multiple of r whenever (n; n,, n,, - - -) is in E.

Proor. The proof is the same as that of Lemma 3.1.

We can now describe the best type r procedure, (N, Z”), just as in Section
4, by letting N” be the first index n such that c(n; n), n,, ---) isa multiple of r,
where (n; n,, n,, ---) is the end-point of the path determined by X, ---, X,.
However, an explicit expression similar to Theorem 5.1 seems to be available
only when r is a prime number. The relevant background fact which plays the
role of Lemma 5.2 is the following.

LEMMA 6.2. Suppose that r is a prime number and m is of the form r*, k =1, 2,
Then c(m; m,, m,, - - -) is a multiple of r whenever there are at least two non-
Zero m;’s among my, m,, - - -.

Proor. Itiseasy to check that c(r; m,, m,, - - -) must be a multiple of r when
there are two or more nonzero m;’s among m,, m,, - - -. Thus the assertion holds
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for k =1. Aninduction proof now follows along the same lines as for Lemma
5.2.

REFERENCE

[1] HoEefFDING, W. and Simons, G. (1970). Unbiased coin tossing with a biased coin. Ann.
Math. Statist. 41 341-352.



