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ON A CLASS OF SUBSET SELECTION PROCEDURES'

BY SHANTI S. GUPTA AND S. PANCHAPAKESAN

Purdue University and Southern Illinois University

A class of procedures is considered for the subset selection problem
when the populations are from a stochastically increasing family {F;}. A
theorem concerning the monotonicity of an integral associated with {F;}
which generalizes an earlier result of Lehmann is obtained. This leads to
a sufficient condition for the monotonicity of the probability of a correct
selection for the procedure considered. It is shown that this condition is
relevant to another sufficient condition for the supremum of the expected
subset size to occur when the distributions are identical. The main results
are applied to the specific cases where (i) 2 is a location parameter (ii) 2 is
a scale parameter and (iii) the case where the density f1(x) is a convex mix-
ture of a sequence of known density functions. The earlier known results
are shown to follow from the general theory.

1. Introduction and summary. Let r,, 7,, - - -, 7, be k independent populations.
Let A be an interval on the real line. Associated with =, (i=1,2, ---, k) is
a real-valued random variable X; with an absolutely continuous distribution
F; = F,,, 2;€ A, and density function f; = f;.. Itisassumed that the functional
form of F, is known, but not the value of 2;. Let 4;; < 4 = +++ = 4y be
the ordered A’s. The correct pairing of the ordered and the unordered 4’s is not
known. It is also assumed that F, is differentiable in 2 and that {F}}, 2€ A, is
a stochastically increasing (SI) family of distributions, that is to say, for 2 < 2',
F, and F,, are distinct and F,(x) = F,(x) for all x. Let x,, x,, - - -, X, be obser-
vations on X, X,, - .., X,, respectively. Based on these observations, the goal
is to select a nonempty subset of the k populations with the guarantee that the
probability of a correct selection, i.e. selection of a subset which includes the
population associated with 4, (4;,;), called the best population, is at least a pre-
determined number P* (k=' < P* < 1). If there are more populations than one
with 2; = A, (4 = 4), then we assume that one of them is tagged as the best
population. Letting P(CS|R) denote the probability of a correct selection using
the procedure R, the probability requirement can be written as
(1.1) infy, P(CS|R) = P*,
where Q is the space of all k-tuples (F,, F,, - - -, F,). This requirement (1.1) will
be referred to as the P*-condition.

It should be pointed out that the emphasis is not so much on the generalization

of the class of procedures but on the results dealing with the infimum of the
probability of a correct selection and the supremum of the expected size of the
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selected subset. The results of this paper are more general and present a unified
view of the subset selection procedures.

The main results of this paper are given in Theorems 2.1 and 2.2. Theorem 2.1
represents a generalization of an earlier result of Lehmann [6]. Theorem 2.2
establishes the monotone behavior of an integral arising in a class of subset selec-
tion procedures. The motivation for discussing the somewhat more general class
of rules is explained in the paragraph following (2.6).

2. The class of procedures R,. Let h =k, ,, ce[l, o0), de[0, o) be a class
of real-valued functions defined on the real line satisfying the following set of
conditions (A): For every x belonging to the support of F, (i) A, 4(x) = x, (ii)
h, o(x) = x, (iii) h, 4(x) is continuous in ¢ and d and (iv) lim,_, A, 4(X) = oo, ¢
fixed and/or lim,_,, A, ,(X) = oo, dfixed, x == 0. Then the procedure R, is defined
as follows. R,: Include the population r; in the selected subset iff
(2.1) h(x;) = max,_, ., x, .

This procedure is a slight extension of the class 4, of rules proposed and investi-
gated by Gupta [2]. Letting X ,, denote the random variable of the set X,
X,, - -+, X, which is associated with 4;,, and F;,; = F, , denote the corresponding
cdf, we obtain
(2.2) P(CS|R)=Ph(X,;)=X,,r=1,2,...,k—1)

= V{IL7= Fn ()} fua(*) dx 5
where f;,, (r = 1,2, .-, k) denotes the density corresponding to F;,, and the
integral is taken over the support of the distributions which is assumed to be the
same for all F;, Ae A. Because {F,} is assumed to be an SI family,

(2.3) P(CS|Ry) = § Fiii' (A(X)) fra(x) dx .
Define

(2.4) d(A e, d, t + 1) = § FY(h(x)) fo(x) dx .
Then

(2.5) inf, P(CS|R,) = inf,., ¢(2;¢,d, k) .

Because of the set of conditions (A) imposed on 4, we have for any 1€ A,
W) gedi)z

(2.6) (i) @A 1,0,k) =

x| =

(iii) lim,_. ¢(4¢,d, k) =1, ¢ fixed, and/or
lim,,, ¢(A;¢,d, k) =1, dfixed.

In general, the above conditions are not enough to ensure the existence of
constants ¢ and d so that the P*-condition is satisfied. If the condition (2.18)
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(to be obtained later) is satisfied then ¢(2; ¢, d, k) is non-decreasing in 2 and
inf,. , ¢(4; ¢, d, k) = ¢(2; ¢, d, k). Then, we can evaluate the constants ¢ and
d so that P*-condition is satisfied, provided the set of conditions (A) hold for 2,
in case 4,¢ A. Under these conditions, there can be obviously several choices
of cand d satisfying the P*-condition. Some additional condition can be imposed
to determine the choice of a pair (¢, d). For example, if {F,} is the family of
noncentral chi-square distributions all with the same number of degrees of free-
dom, where 4 denotes the noncentrality parameter, then one could use A(x) =
cx 4+ dand choose a pair (c, d) satisfying the P*-condition for which the expected
number of populations included in the subset is minimum when 2,,= ... =
Ay = 0 < Ay = A%, .

Sufficient condition for the monotonicity of ¢(2; c, d, k). We now provea theorem
which leads to a sufficient condition for the monotonicity of ¢(%; ¢, d, k).

THEOREM 2.1. Let {F,}, A€ A, be a family of absolutely continuous distributions
on the real line and ((x, 4) be a real-valued function possessing continuous first partial
derivatives ¢, and ¢,, respectively. Then E,{(X, A) is non-decreasing in A provided
that

2.7) S ) — .5, ) LE@ 2 0.

Further E, (X, 1) is strictly increasing in A if (2.7) holds with strict inequality on a
set of positive Lebesgue measure.

Proor. Let us consider 4,, 4, € A such that 2, < 2, and define

(2.8) A4y 2) = § T10o, res 9%, 2,) dF () , i=1,2
and
(2.9) B(4,, 4) = XP . A(As 4Ay)

where F, = in, i=1,2. Wenotethat when A, = 4, = 2, B(4, 2) = 2E,{(X, 2).
Integrating A,(4,, 4,) by parts and using it in (2.9), it is easily seen that

(2.10) B(4,, 4) = a term independent of 2,
+ §{¢(x, 1) fi(x) — Fi(x)¢,(x, 2;)} dx .
Hence,
2.11) 9 B, ) = § {¢1 (%, A)fo(%) — - Fyx)o(x, ,22)} dx
PP ! 9 :

and this is nonnegative if, for 1, < 4,,
(2.12) D5 Wi, ) — 0 By (04,5, %) 2 0 forall x.
1

Now, we consider the configuration 2, = 4, = 4. It can be easily verified that

d
a2,

d — oy
(2.13) 7 B(4, ) = 2., B(2,, 2y) 3=

29=2
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and

b

0 0 0
2.14 —B(4,, ) = —B(4,, ) = — B(4,, 4
2.14) 35 Bl 1) = 5B ) = - B 1)

Aydy

where 4, < 4, indicates that after differentiation 4, and 4, are interchanged in
the final expression. Thus

d 0
2.15 Z_B(2,2) =2_—B(4;, 2
( ) d2 % 4) 04, (4 4) Hy=1y=1
Hence B(4, 2) is non-decreasing if (2.12) holds. For the theorem, it is easy to
see that it suffices if (2.12) holds when 4, = 2, = 1 in a manner consistent with
(2.12); in other words, if (2.7) holds. The strict inequality part is now obvious.

REMARK 2.1. If ¢(x, 2) = ¢(x) for all A€ A, then (2.7) reduces to
0 d
—Fy(x)— <0.
37 2(%) dxgb(x) =

This is satisfied if {F,} is an SI family of distributions and ¢(x) is non-decreasing
in x and hence E,¢(x) is non-decreasing in 2, which is a result of Lehmann ([6]
page 112). A generalization of Lehmann’s result has been stated earlier by
Mahamunulu [7] and Alam and Rizvi [1] for the case of independent random
variables with distribution functions F; (i =1, ..., k), where ¢(x,, - - -, x,) is
non-decreasing in each argument.

REMARK 2.2. In the proof of Theorem 2.1 we have assumed that all the dis-
tributions F, have the same support. If (a,, b)) and (a,, b,) are the supports of
F, and F, , where a; = a(4;) and b; = b(%;), i = 1, 2, then (2.10) is

(2.16)  B(4, &) = $(by, &) + a3 (>, ) fo(x) dx — (a1 Fu() 4, (%, 4,) dx -

Hence, we have
0 db, 5
(2.17) _873(21, ) = ¢.(by, ,2:,)__ + o2 ¢y (%, 4,) fo(x) dx
1

— §5 - R, &) dx — —1¢ (bys 4,) -

92,

2§, (%, Afa(x) dx — St le(x)¢ (%, 4,) dx .

“ 94,
From this point we can proceed as before and show that the statement of the

theorem is still true.

REMARK 2.3. If we assume that ¢(x, ) = 0, then, for any positive integer ¢,
we can let ¢(x, 2) = ¢*(x, 2) play the role of ¢(x, 1) of Theorem 2.1. It follows
immediately that E,¢*(x, 2) is non-decreasing in 2 if (2.7) holds.

We now state the theorem which gives a sufficient condition for the mono-
tonicity of ¢(x; ¢, d, k).
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THEOREM 2.2. For the procedure R, defined by (2.1), ¢(Z; ¢, d, k) is non-decreasing
in 2 provided that for all 2 € A and all x,

2.18) £ 5 Filh) — HOOf(h(=) - Fix) 2 0.

where I'(x) = dh(x)/dx. Further ¢(4; c, d, k) is strictly increasing in A if strict ine-
quality holds in (2.18) on a set of positive Lebesgue measure.

Proor. The proof is immediate by letting ¢(x, 1) = F;(h(x)) in Theorem 2.1
and using Remark 2.3.

Some remarks on the properties of R,. Suppose, in the set-up of Theorem 2.1,

we consider 2, A,i =1, - .., ksubject to the condition that 2, < 4, < ... <2,
and define R

(2.19) A, = ARy -5 A) = § T1Eoy, i O(%, 2,) dF (%), i=1,...k,
and

(2.20) B(Ay, -+, A) = 2k ARy -5 A .

If we assume that ¢(x, 1) = 0, we can integrate 4, by parts, use it in (2.20) and
show by differentiating w.r.t. 4, that B(4,, - - -, 4,) is non-decreasing in 4, when
2y ++ -, A, are kept fixed, provided that (2.12) holds. As a next step we can show
that B(4,, - - -, 4,) is non-decreasing in 2 for the configuration 2, = ... = 1, =
A2 < - =4, 1 Em <k, when 4,,,, -+, 4, are kept fixed, provided
that (2.12) holds. This shows that, subject to the restriction 4, < 4, < ... £ 4,
the supremum of B(4,, - - -, 4,) is attained when 4, = ... = 4,.

Now the expected subset size, E(S), is given by E(S)=p, +p, + -+« + P,
where p, is the probability that =, is included in the selected subset using the
procedure R,. By letting ¢(x, 4;;)) = F;;(h(x)), we see that p, = 4, and E(S) =
B(2yy, -5 Ayy)- Hence, we find that the sup E(S) is attained when the distri-
butions are identical, if

(2:21) DB, ()}, — K)o By (9 ((0) 2 0
for 4, <4, andall x.

The above result has been proved by Gupta and Panchapakesan [4]. It is also
to be noted that (2.21) with A(x) = x 4+ d, d = 0, is essentially the assumption
made by Sobel [9] in order that the sup E(S) be attained by using his rule when
the distributions are identical.

It should be pointed out that condition (2.21) implies condition (2.18) of
Theorem 2.2. However, there exist cases where (2.18) holds but (2.21) does
not. This is, for example, the case when we consider the location parameter of
the Cauchy distribution with A(x) = x + d. It should be made clear that the
results given here in Theorem 2.2 and the inequality (2.21) connect, for the first
time, the behavior of the probability of a correct selection and the expected
subset size,
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3. Some special cases. In this section, we apply the general results of Section 2
to selection problems concerning parameters of location, scale and convex mix-
tures of distributions. These three broad categories cover most of the selection
procedures for various distributions discussed earlier.

(a) Location parameter case. In this case, Fi(x) = F(x — 1), —o0o < 41 < o©
and we see that (2.21) reduces to

(3.1) K () f2,(0) f2,(A(%)) — fo,(¥)f3,(A(x)) = O .

Since h(x) = x, (3.1) is satisfied if #/(x) = 1 and f;(x) has a monotone likelihood
ratio (MLR) in x. In problems discussed earlier, the usual choice has been A(x) =
x + d, d = 0. For this choice, it can be seen that ¢(4; c, d, k) is independent
of 2 so that the construction of the constants d is accomplished by solving
$(0; 1,d, k) = P*.

(b) Scale parameter case. Here we have F(x) = F(x/2), x 20, 2= 0 and
(2.21) becomes

(3-2) XH (%) [, (%), (h(x)) — h(X)f, (A())f3,(%) = O .

If xi'(x) = h(x) = 0 and f;(x) has MLR in x, then (3.2) is satisfied. A(x) = cx,
¢ = 1, has been the usual choice for the procedures studied under this case, in
which case ¢(4; ¢, d, k) is independent of 4. The constants ¢ are constructed to
satisfy ¢(1; ¢, 0, k) = P*.

(c) Convex mixtures. Now we apply the general results of (2.18) and (2.21)
to the case where f(x) is a convex mixture of densities g,(x). This will include
applications to noncentral y*, noncentral Fand multiple correlation coefficient R*
(both conditional and unconditional cases). These applications lead to stronger
or more stringent conditions for the convex mixtures case in general; in particular
for the case of R* (unconditional case) the result is proved that the sup E(S)
takes place when the distributions are identical.

(3:3) Ju®) = 250 w(4, J)g;(x)

where g,(x), j =0, 1, - . . is a sequence of density functions and w(4, j) are non-

negative weights such that >;2.  w(4, j) = 1. We consider weights given by

(3.4) w2, j) = %2 ADHZ0, 220
A(2))!

and

(3.5) a;py = (m 4 lja;, j=0,1,...; ILm=0.

Using (3.4) and successive applications of (3.5), we have
(3.6) AA) = a(1 — A=t
provided that 2 < 1/I.
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This special case is of interest. If we set m =1, ] =0 and g, = 1, we get
w(4, j) = e *27[j!. Thus the densities g,(x) are weighted by Poisson weights.
Familiar examples of f;(x) in this case are the densities of noncentral chi-square
and noncentral F variables with noncentrality parameter 1. Again, if we set
I =1 and a, = 1, we get densities g;(x) with negative binomial weights. The
distribution of R?, where R is the multiple correlation coefficient, in the so-called
unconditional case is an example of the above. Subset selection procedures
in these cases have been discussed by Gupta and Studden [5] and Gupta and
Panchapakesan [3] with A(x) = c¢x, ¢ = 1. The above authors have obtained
sufficient conditions for the monotonicity of ¢(4; ¢, d, k) in 2 for those specific
cases. We show below that the sufficient conditions obtained by the above au-
thors are stronger than (2.18) and could be derived starting with the sufficient
condition (2.18). In fact we will obtain corresponding sufficient conditions in
these special cases starting with (2.21) under which the supremum of E(S) is
attained when the distributions are identical.

Now, by defining

(3.7 ri(x) = A(2) fu(x)
(3-8) R;(x) = A(A)F(x)
and
. 0 _ 0
(3.9 0;(%) = A(l)ﬁRz(x) Rz(x)ﬁA(l),

it can be seen that (2.21) reduces to
(3.10) 0,,(H=)r, () — H()Q;,(3)rs,(h(x) = 0 .
Using (3.6) and (3.8) in (3.9), we get after some simplifications

J
(3.11) 0:(x) = a1 — )" z;;o%amwx) :

where AG,(x) = G, (%) — G;(x).
Using (3.11) in (3.10) and cancelling out a,(1 — 2/)~*~™/" we get

(3.12) ( Z;f;o%jajHAGj(h(x))) < z;;:°=o% a gj(x)) |
- h’(x)(Zﬁo%ajﬂAGj(x)) (ij;o%ajgj(h(x))) >0.

Since (3.12) should hold for 2, < 4,, we set 4, = b4,(b = 1) in (3.12) and simplify
it to obtain

o A s (I
(3-13) i=oi—!Za=o <;>aaai—a T(x)=0,
where
(3.14) T(x) = b=r(m + la)g,_,()AG,(h(x)

— H(x)b*(m + (i — )9 (h(¥))AG;_.(%) -
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Thus what we have shown at this stage is that for the case of f;(x) given by
(3.3) with weight functions specified by (3.4) and (3.5), the condition (2.21) is
equivalent to (3.13).

We see that we can obtain more stringent sufficient condition by saying that
the coeflicient of 2° for every i in (3.13) is nonnegative. Thus, (3.13) is implied
by the condition that, for every integer i > 0,

(3.13) Dam0 ()@, To(%) 2 0.

Now, grouping the terms corresponding to @ and i — a in the summation of
(3.15), we see that (3.15) in its turn is implied by the condition that, for @ = 0,
1, - -+, [{/2] ([s] denotes the largest integer <s), T,(x) + T;_.(x) = 0, i.e.

(3.16)  b(m + 1a)[g;_o(¥)AG(h(x)) — K (x)g;_o(A(¥))AG (¥)]
+ b*(m + I(i — @)[9u(x)AG;_o(h(x)) — F' (X)9.(H(X))AG;_.(x)] = O .
For b = 1 (that is, 2, = 2,), (3.16) gives the sufficient condition for ¢(%; ¢, d, k)
to be non-decreasing, which will yield the conditions obtained by Gupta and
Studden [5] and Gupta and Panchapakesan [3] by making the proper choices of
the constants appropriate to the relevant weight functions.
We now illustrate the application of (3.16) by considering the procedure for
selecting from multivariate normal distributions in terms of R* investigated by
Gupta and Panchapakesan [3]. In this case A(x) = ¢x, ¢ = 1 and (3.16) becomes

(3-17) bi=%(m + g + a)[g;_o(¥)AG (cx) — cg;_.(cx)AG (%)]
+ b%(m + g + i — a)[g(¥)AG;_,(ex) — cg;_o(cX)AG,_(¥)] =0,
where
F(q +m+]) +5-1 m—1
9;(%) = R —— Lox (1 — ), 0<x=<1, ¢>0, m>0.
’ T(g + j)T(m)
It can be seen by integration by parts that
AG(x) = — L@+ m+]) X
L(g +j+ DT(m) (1 4 x)o+m+d

Using this result in (3.17) and taking out the common factors (which are all
positive), we see, after some simplifications, that (3.17) holds if

(3.18) [<c+ e Cx)“][q+m i il 1 Y )
1 + ex 1 4+ ex q+a g+i—a =

Notingthatc = l,a <i—aand (9+m+a)/(g+ a) = (g +m+i—a)/(q+i— )
we see that (3.18) holds. This shows that sup E(S) takes place when all the dis-
tributions are identical and it now follows that sup E(S) = k.

Concluding remarks. The problem of selecting a nonempty subset containing
the population associated with A;,; can be handled in an analogous manner.
However, the properties to be satisfied by the function A(x) will need some obvi-
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ous modifications in order to have the desirable properties of the expression for
the probability of a correct selection. Further, in both the cases of 2;,;and 4;,;,
there is the general question of determining a good form of A(x) for a given
stochastically increasing family. For the problem of selecting the population
associated with 1,;, we can easily see that the sufficient condition for ¢(4; ¢, d, k)
to be non-decreasing in 2 in the special cases of location and scale parameters is
given respectively by #'(x) = 1 and xh'(x) = h(x), x = 0.

Nagel [8] has discussed the construction of subset selection procedures satisfy-
ing certain optimality conditions and has in this context defined a just rule. In
our set-up, let x;, ---, x, and y,, -- -, y, be two sets of observations from the
populations such that x; < y, and x; = y, for all j = i. Then a rule R is just if
the probability of selecting «; based on the observations y,, - - -, y, is at least as
large as that of selecting =, based on x,, - .-, x,. It ‘has been shown by Nagel
that the procedure R, is just if A(x) is non-decreasing in x.
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