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BAYES, LIKELIHOOD, OR STRUCTURAL'
By D. A. S. FRASER

University of Hawaii and University of Toronto

0. Summary. The traditional model of statistics is examined in Section 1.
The model, as such, distinguishes response values only by their likelihood func-
tions. Recognition of this restricted identification effectively precludes the need
for any theory of sufficient statistics.

A probability space that has an attached observer-processor-reporter (OPR)
mechanism is examined in Section 2 as a means of assessing the nature of re-
ported information; such information may or may not be observational in
character depending on properties of the OPR mechanism.

A variation-response model is a probability space and a class of random
variables: the probability space describes the sources of variation in the system
under investigation and the class of random variables describes the possible
presentations of this variation in the response of the system. Section 3 examines
how realized values on the probability space are distinguished or identified by
the model; Section 4 considers how distributions on the probability space are
identified by response variable data.

In Sections 5, 6, 7 the essentials of three contemporary approaches to inference
are presented and each is accompanied by criticisms that proponents of the
other methods might make. The key to these criticisms lies primarily in whether
hypothetical information is added to or substantiated information is omitted
from the assembled information concerning the system under investigation.

In certain contexts the bayesian approach makes an arbitrary but typically
consistent choice of input to its analyses; it is not the input suggested by standard
invariance analysis. In those cases where a variation-response model is ap-
propriate, the use of this more embracing model presents theoretical support
for the bayesian choice (Section 8); but of course with the more embracing
model the bayesian premises are not needed to obtain the usual bayesian result.

An example in Section 9 illustrates the theoretical simplicity of classical
probabilities for certain unknowns other than realized values on a probability
space.

1. Outcome identification by the traditional model. Consider a system & under
investigation: let x be the the response variable, &2~ be the response space, and
. = {4} be the g-algebra of permissible events 4 for the response variable.
A traditional model in its most abstracted form is a class C = {P,: 0 € Q} of
probability measures on (27, .%).

In developing a model for the system & the investigator assembles the
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information concerning the system & and concerning related systems as they
bear on &; such information effectively presents the possibilities for what could
be (as opposed to what could not be) all within a reasonable degree of approxi-
mation. A traditional model C is called relevant for & if the distributions in
C are effectively the response-variable distributions in the assembled informa-
tion. A traditional model C is called adequate for & if it is relevant for &
and if the distributions in C are effectively all the assembled information. Let
6, designate the distribution describing the response. And let x, designate the
realized response value from a performance of the system. The problem of
inference then is to determine from an adequate model C the information about
6, provided by x, with C. ’

For an adequate model C consider how the response values in &2~ are dis-
tinguished one from another by the model. A value x is identified in the model
C by a set of functions of ¢,

Si(x) = {Py(A): xe 4},

the probabilities for realized events as functions of #. The set S)(x) is all that
the model presents concerning the value x, and is thus all that model provides
for making distinctions among response values. The problem of inference thus
becomes the analysis of S,(x,) with C.

In most cases with any regularity the set S,(x) can be represented by functions
referring to limiting neighbourhoods, what might be called germs of S,(x). For
example with a discrete model C, on the finest g-algebra .57 over &7, a value
x is identified by a single function of 4,

Sy(x) = Py({}) -

This function is all that the model provides for making distinctions among re-
sponse values. The problem of inference thus becomes the analysis of S,(x) with
C. Asasecond example consider a continuous model C,: suppose the g-algebra
.97 is based on the open sets of a metrizable topology and that the derivative
of each P, relative to some atom-free measure m exists at each point x,

lim, . 4000 Py(A) — flx: O)ym(A) -0
z€ A;d(A4)—0 m(A)

where d(4) is the diameter of A4 relative to some supporting metric. A value x
is thus identified in the model C, by a measure differential f(x: f)m with m un-
specified in positive value,

S(x) = {f(x:0)ym: me (0, 0)} .

Let R*(x) be the constant map from 22~ to the single entity R* = (0, c0), the
set of positive real numbers; then

S(x) = Rt (x)f(x: ).
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The set S(x) is called the likelihood function and can be labelled accordingly:
L(x: «) = R (x)f(x: +).
The problem of inference thus becomes the analysis of L(x,: +) with C,.

The likelihood function L(x: .) is all that a traditional model C, presents
concerning a response value x; different points x having the same likelihood
function are not distinguished by the model. The use of the model thus ef-
fectively makes the reduction, x — L(x: .), and replaces x, with C, by L(x,: +)
with C,. The traditional model C, does not distinguish response values having
the same likelihood. There is then no: need or use for a theory of sufficiency
together with a sufficiency principle to attain the weaker result—response values
having the same likelihood should not be distinguished.

Consider the following argument L for a further reduction. Let 4 be an open
set in .9 and suppose the diameter of A4 is small enough that f(x: 6)m(A4) with
x in A4 gives an adequate approximation to the probability content of 4. And
suppose further that 22~ is partitioned into such sets 4 and a residual set F with
m(F) = 0. Consider the observed x, with the model C,. Let 4 be the set con-
taining x,. Then the observed x, with the model C, asserts: an event 4 with proba-
bility f{x,: #)m(A4) has occurred; the event 4 with probability 1 — f(x,: 0)m(A)
has not occurred; and, accordingly, there is no observation on the conditional
model (1 — f(%,: 6)m(A4))"f(x: §) on A. With no observation on a traditional
model there is no introduced information concerning #,. Thus x, with C, as-
serts: an event 4 with probability f(x,: 8)m(4) has occurred; and the event 4 with
complementary probability has not occurred. Or equivalently: an event 4 with
probability f{x,: )m(A) has occurred. The arbitrariness of the diameter of 4
then produces the likelihood function. The problem of inference is then the
analysis of the likelihood function L(x,: +). Note that the particular likelihood
function L(x,: +) has probability of occurrence L(x,: #). Thus the model for
the terminal entity L(x,: -) is given by the entity itself. The primary step in
the argument is concerned with no observation on the conditional model 4 with
the result that the possible likelihood functions from A4 are omitted from further
consideration. This takes the information about 6, from L(x,: ) with C, to
L(x,: +) with L(x,: 6) and hence to L(x,: ).

2. On the nature of information. Consider a physical system with a basic
variable # having a known probability distribution. And suppose the system is
enclosed by a mechanism (OPR) that observes, processes, and reports on the
otherwise inaccessible variable u. Now consider a performance of the system
yielding a realized value u,. And suppose the OPR mechanism reports an item
of information concerning the realized value u,.

As a first case suppose an investigator has information concerning the behavior
of the mechanism, specifically that it reports whether or not an event 4 occurs.
And suppose that on the performance he receives the information that 4 has
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occurred. The investigator has the behavior 7,(.) and he receives the report
I,(u,) = 1 where I designates the indicator function. From the report he knows
that u, is in the set 4. And from the behavior he knows that each value in 4
would have produced the same report. The investigator can then describe the
inaccessible u, by classical probabilities: the conditional probabilities for u given
A. Of course if P(A) = 0 then a limiting operation is needed to justify the
conditional probabilities.

As a second case, suppose the investigator has only the information that 4
has occurred. He then knows of course that the realized u, is in the set 4. But
he does not know that each value in 4 would have produced the report. In fact
the mechanism might have the following behavior characteristics: for some BC 4
the mechanism might observe I () and report I,(e) = 1 if Iye) =1 and
I;(e,) = 1 if I'(e,) = 0. The investigator obtains information, true information,
but he does not know the observational information on which it is based and
he cannot describe the inaccessible e, by classical probabilities.

This second case demonstrates that reported information without knowledge
of its observational source does not support classical probabilities. In such cases
reported information is not in the form of an event (as used in Fraser (1968)
page 11) and by consequent indeterminacies shows that classical probabilities
are not available. The distinction that information may be observational and
support classical probabilities or may be non observational and not support
classical probabilities seems to be unrecognized in applications. It clarifies
certain problems and indeterminacies in the literature; for example, Freund
(1965) and the familiar tactic of choosing the test of significance to yield a de-
sired decision.

More generally, suppose an investigator receives an item of information con-
cerning a realized value u, on a probability space and suppose he knows the
manner in which the item of information is generated. He can then check
whether the item of information is observational. For this let 4 be the set of
possible realized values for which the item of information is true; he can assert
that one of the values in A has occurred. And from the manner in which informa-
tion is generated he must also be able to assert that each of the values in A could
have occurred and each of the values in A would have produced the same item of in-
formation. If reported information is observational in this sense then classical
conditional probabilities given 4 describe the inaccessible realized values.

A third case, a more substantial illustration, is given in Section 3.

3. Outcome identification by the variation-response model. Consider a system &
under investigation: let u be the variable describing the various components of
variation in the system, 7/ be the variation space, .97 = {4} be the s-algebra
of permissible events 4 on %/ derived from the open sets of a metrizable
topology, and m be an atom-free measure on .%7; let x be the response variable,
& = 7 be the response space, and % be the s-algebra of events on 27, 4
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variation-response model is a class C, = {flu: A)m(du): 2 A} of probability
measures (presented by differentials) over 77 and a class C, = {¢: ¢ € D} of
homeomorphisms x = ¢u of Z/ onto 2~

As in Section 1 consider the assembled information concerning &. A varia-
tion-response model (C,, C,) is relevant for & if the assembled information
identifies sources of variation u with relevant model C, and identifies C, as the
set of possible response productions from the variation u. A variation-response
model (C,, C,) is adequate for & if it is relevant for & and if (C,, C,) is effec-
tively all the assembled information concerning &. Now let 6, be the combina-
tion (1, ¢,) Where 4, designates the distribution that describes the variation and
¢, designates the transformation that presents the response. And let u, designate
the realized variation in a performance of the system and x, designate the result-
ing observed response value. The problem of inference then is to determine
from an adequate model (C,, C,) the information about 6, = (4, ¢,) provided
by x, with (C,, C,).

Now with an adequate model (C,, C;) consider the information concerning
the inaccessible variation u that is provided by a response value x. The model
C, describes the inaccessible variation u as an element of

S, ={¢7'x: 9D},

a set of values labelled by the transformations in ®. This information concern-
ing the realized variation is observational (Section 2) if each of the possible
values for u would have produced the same information. A typical value in
the set S, is ¢, ~'x with ¢, in ®. Such a value would produce the realized re-
sponse ¢,$, x and the model C, would then describe the inaccessible variation
as an element of

{$71006.7'x: ¢ € D}
which can be reexpressed as

{hix:he g, 6D} .
The information is the same if the labelling class is the same; that is, if
¢,6,7'® = @ for all ¢, in @, or if ¢,7'¢, ¥ = V¥ for all ¢, where ¥ = {¢,7'¢:
¢ € @} is a class of transformations 2/ — 2/ that includes the identity, or if
W = ¥ for all ¢ in ¥, or if ¥ is a group of transformations. Note that if ¥
is a group then it is independent of the ¢, in its definition.

Thus a model C, produces observational information if and only if ¢~'® is a
transformation group on 77 or equivalently if and only if ®¢~" is a transforma-
tion group on £2". In such a case the class C, = @ can be factored as ® = ¢, ¥
where ¢, is an element of @ and the variation-response model (C,, C,) is called
a group-map model. Except for the response relabelling provided by the map
this is the structural model examined in Fraser (1968).

For a group-map model (C,, C,) the response expressions C, provide obser-
vational information concerning the inaccessible variation; the information
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identifies a set of possible values and gives no differential information within
that set. In this sense the response expressions (group-map expressions) can be
said to be selectively transparent.

For a group-map model (C,, C,) the initial probability model C, is changed by
the response observation x, to a likelihood function for the identified set on the
variation space and a conditional probability model describing the unidentified
variation value in that set. The likelihood function with its model gives the
information concerning 2, (as discussed in Section 1) and the conditional proba-
bility model, for any given 2, describes the only remaining unknown in the
performance of the system.

4. Distribution identification with a glfoup-map model. Consider a relevant group-
map model (C,, C,) for a system &. For ease of notation take an element ¢,
in @ and relabel the response space changing x to ¢,~'x. The class of trans-
formations then becomes ¥ = ¢,~'® which is a group.

Now suppose that the distribution or class of distributions C, describing
variation is not known and that a large number of observations on the system
& is to be taken with the hope of identifying the distribution. Let (u,, - - -, u,)
be the realizations for variation; then (¢,u,, - - -, ¢,u,) would designate the re-
sponse observations (x,, - - -, x,). The investigator can take any ¢, in ¥ and
examine (¢, X, «++, Py X,) = (P Pothy - -+, ¢ Pou,) as a sample from a possible
distribution for variation. Such samples and the corresponding distributions
differ one from another by an element in the group W. Thus with a sufficiently
large number of performances the distribution describing variation can effec-
tively be identified except for a transformation in the group .

Now consider this in a possibly different context, a context in which the
sources of variation would not be altered but the level or form of the response
could be different but within the range expressed by ¥. Let u be one of the
identified variables describing variation with its distribution given by f(u)m(du),
and let ¢, designate the transformation that expresses the response. If the al-
ternative variable u* = hu had been used to describe variation then ¢* = ¢ A
would be the transformation that expresses the same response. Of course ¢, and
¢,* present the same response. And in a partial sense they are the same trans-
formation, they differ only due to the arbitrariness in the labelling of the
sources of variation.

As an example, consider a response x = ¢ + u that is a general-level presen-
tation of internal variation of known form—known from preceding experience
with a similar system or with the same system in a modified context. The
variable u could be located so that its central value is zero; the relocation ¢
then expresses explicitly the location of the response as measured by its central
value. If the variable u* = k 4 u had been used then the response would be
expressed by the relocation § — k. In this alternative case the transformation
6 — k would not immediately express numerically the general response level.
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Thus: the identification of the distribution describing variation leaves an
arbitrary element, a transformation in the group ¥. Consequently the trans-
formation that expresses the response involves an arbitrary element, right multi-
plication by a transformation in the group ¥. The significance of a transforma-
tion expressing the response lies in the characteristics of the response produced,;
two transformations differing by right multiplication correspond to two dif-
ferent labellings of the sources of variation—truly an arbitrary thing.

S. The likelihood approach. The likelihood approach to a system & com-
mences with a relevant model—a relevant traditional model C; for convenience
consider here the continuous case C,.. The likelihood approach to inference is
the analysis and presentation of the set L(x,: ). .

The proponent of the likelihood approach accepts the reduction from analysis
of x, with C, to analysis of L(x,: «) with C,; he accepts the reduction not on the
analysis in Section 1 but typically on other grounds such as a sufficiency princi-
ple. And the proponent accepts the further reduction from analysis of L(x,: +)
with C, to analysis of L(x,: «) alone; he accepts this reduction on principle, the
likelihood principle or by argument from a conditionality principle. He might
welcome the argument L that L(x,: -) is all that the model provides concerning
the unknown 6,. The proponent of the likelihood approach typically believes
that all information concerning 6, is contained in the likelihood L(x,: ).

The likelihood approach produces the summary inference

L(xy Co) = L(%: +) = R*(x%)f(%: *)

concerning the unknown 6,. For simplicity of expression it may extract a repre-
sentative from L(x,: -) with maximum value 1 or with integrated value 1 rela-
tive to some convenient measure for 6:

Li(x, Co) = f%o: *)/sup, f(%,: 0)
L%, Co) = fl%o #)/§ f1%,: 0) dn(0) .

A more liberal form of likelihood would allow a nonnegative weight function
w(+) expressing in some manner an assessment from outside & concerning 6,,
and would produce a composite assessment

Ly(x,, C,, W) = RY¥(x)w()f(%,: ¢) -

The Bayesian feels that the likelihood approach is acceptable as far as it goes
but it does not go far enough. By his persuasion the Bayesian does not know
how to make inferences from just a likelihood function; rather he treats the
likelihood function as a device that modifies his numerically expressed prefer-
ences from before the performance to give his preferences concerning 6, after
the performance; he treats the likelihood function as a transition function that
operates at the time of the performance. The Bayesian believes that all un-
knowns can and should be assessed by a numerical expression of subjective
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feelings and preferences, so do not stop with the likelihood function, use it as
a transition function.

The proponent of the structural approach believes that an adequate statistical
model should always be used. If the relevant traditional model for & is ade-
quate, then the structural proponent would accept the reduction to analysis of
L(x,: +) with C,, and would give consideration to the argument L for further
reduction to analysis of L(x,: »). He accepts the general principle germain to
the likelihood approach that inference should be based on the realized response
%, and the assembled information concerning & (the possibilities for what could
be as opposed to what could not be) and should exclude feelings and preferences
that attempt to provide shadings one to another among the possibilities; to this
extent he is in accord with the likelihood approach. .The structural proponent,
however, views the traditional model as being a severe abstraction, an abstrac-
tion that generally neglects many characteristics of & that may be relevant to
identifying 6,: such seemingly minor things as distance and differentiability on
&2~ and on Q; and such seemingly central things as where and how does varia-
tion in the response originate, in other words, what is the basic probability
space. Even the minor things invalidate argument L. The structural proponent
believes that in most cases the traditional model is inadequate for the system
& being modeled and accordingly believes, in those cases, that it is inap-
propriate as a basis for inference: substantiated information has been omitted from
the assembled information concerning the system & under investigation.

6. The bayesian approach. The bayesian approach to a system & commences
with a relevant model, a relevant traditional model C; for convenience, consider
here the continuous case C,. And the approach has a prior model

P = {p(0)n(db): pell},

one or several distributions suggesting a random source & for the unknown 6,
in the system.

The bayesian approach is not directly involved with cases where there is a
random system &%~ with model P. In such cases the system under examination
is (22, &) and the model is (P, C,); as examples, tests on the progeny from a
mating of parents with known genetic characteristics; “empirical Bayes” where
sufficient data are available to support a model P.

The bayesian approach introduces the hypothetical system 57 to suggest the
differential feelings and beliefs that the investigator has concerning the possible
values for 6,; or to suggest some kind of indifference among values for 6,; or to
suggest properties that, conveniently, are functionally compatible with the
model C.

The bayesian approach accepts the composite model (P, C,) as appropriate to
the analysis of x, with C,. The composite model has probability differential
p(0)f(x: O)n(df)m(dx). The observed x, gives observational information on
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(6o, x,) and changes the preceding probability distribution to the conditional
distribution given x,,

ke, (xo)p(6) (>, 2 6)n(dl) ,

as the description of the inaccessible 6,. Note that this conditional distribution
can be calculated from p(.) and L(x,: +) alone, by modulating one by the other.
The bayesian approach produces the summary inference

B(x,, C., P) = {k, " (x)p(0)f(%,: O)n(db) : p € 11}

concerning the unknown 6,, where the indexing class II is to suggest the feelings,
the indifference, or the compatibility. *

A radical form of the bayesian approach has allowed the prior model P to
depend on the observed response, that is, P becomes P,o. In general the com-
position (P,, C,) is not a probability model and there is, accordingly, no con-
ditional distribution. However, by formal analogy with the simpler case the
following radical inference is obtained

B¥(%,: C,, P,y) = {k, (x)p(O)f(%,: O)n(dd): pe P} ;

an example may be found in Box and Cox (1964).

The proponent of the likelihood approach is against the use of subjective,
personalistic, or indifference probabilities as embodied in a model P or P,—he
is against the introduction of a hypothetical system &#”. His purpose is to in-
vestigate the system & and to extract information concerning the value of 6,
and he believes this scientific activity should be kept separate from diffuse feel-
ings and preferences concerning the value of #,. The proponent of liberal likeli-
hood acknowledges that he can obtain any bayesian result by the use of measures
and weight functions but he does not call them probabilities and in turn has
some reassurance that they will not be treated as ordinary probabilities. The
proponent of likelihood believes that his inferences are specific to &’; but of
course if some client wants a basis for action and feels a need to incorporate
diffuse feelings and preferences then certainly an option for that client is to
represent these by measures or weight functions and incorporate them with
likelihood, whatever the result may mean. He does believe that such client
expedients should be quite separate from the scientific activity for & of ex-
tracting and presenting information concerning 6,.

The proponent of the structural approach believes that an adequate statistical
model should always be used. If there is an adequate statistical model that in-
corporates information additional to some relevant traditional model, then the
bayesian use of just likelihood in fact suppresses this additional information;
which poses greater needs for justification of the bayesian premises. An adequate
statistical model effectively presents the possibilities for what could be (as op-
posed to what could not be) all within a reasonable degree of approximation;
the bayesian approach purports to add feelings and preferences to provide
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shadings one to another among the possibilities. The structural proponent
believes that the Bayesian abuses scientific principle by prescribing that such
feelings, indifference, and compatibility be input to analysis and thereby super-
imposed on results from the system &. He feels that progress in science has
been based on clearly separating feelings and impressions from observation,
experimentation, and the inference process; for history records how biased these
feelings and impressions can be and large portions of experimental design exist
for the prime purpose of excluding effects from such feelings and impressions.
This is not to suggest that ideas for new investigations should not be influenced
by the scientist’s feelings and impressions, although many may be wrong for
one close, but rather that the investigation should be an entirely separate ac-
tivity. The structural proponent believes that the Bayesian never knows the
results from his experiment or system & —only a compound of these with feel-
ings and impressions: hypothetical information has been added to the assembled
information concerning the system & under investigation.

But even more fundamental than whether one would want probabilities de-
scribing unknowns based on information from diffuse sources is the question
of whether one can have probabilities in such situations. The Bayesian argues
yes from plausible premises often in a gambling context. The results from Sec-
tion 2, however, show otherwise—probabilities are not generally available to
describe unknowns on the basis of information.

7. The structural approach. The structural approach to a system & commences
with an adequate statistical model. The underlying principle is that inference
for a system & should be based on observation and the assembled information
as to what could be as opposed to what could not be—all within a reasonable
degree of approximation. If the adequate model is traditional then the approach
leads (Section 1) to the likelihood function together with the statistical model.
If the adequate model is traditional but with additional properties such as dis-
tance and continuity then the reduction to likelihood may not be justified and
the approach opens on the range of classical methods such as confidence inter-
vals and significance tests. If the adequate model is variation-response of the
group-map form, then part of the inference process is predicated by probability
theory itself while the other part falls to likelihood and the other classical
methods (Section 3 and Fraser (1968)). If the adequate model is a general
variation-response model then the approach opens many theoretical questions
touching on the classical methods and the determination of likelihood itself;
see Fraser (1972).

The likelihood proponent focuses his attention on the group-map model with
no distribution parameter 1. As part of the structural solution he notes a derived
distribution describing the unknown @ and sees that it is just a likelihood func-
tion. He would concede that it has likelihood form only with respect to a
particular measure. He does feel, however, that the probability argument to
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obtain the derived distribution is a long route to a likelihood function. Asa
believer in likelihood he feels there is no need for a long route to a likelihood
function when one can, in fact, start with the likelihood function.

The Bayesian also focusses on the derived distribution in the group map case,
and feels that the probability arguments to obtain the derived distribution form
a long route to a distribution that is often in B(x,, C,, P) and is sometimes the
single distribution in B(x,, C,, P)—provided a customary convention is used to
construct P (cf. Section 8). He feels that the derived distribution is just one of
many provided by the bayesian approach, so why such a long argument to ob-
tain so little.

The proponent of the structural approach would reply that if only answers
are important then the easiest approach is to commence with all answers in any
way suggested by intuitive considerations. By contrast the structural approach
is primarily concerned with finding the answer, with finding what is predicated
by observation and assembled information.

From a pragmatic point of view one can examine cases where all three
methods are available. To get substance one needs to go to variation-response
models and to avoid open issues restrict attention to group-map models. Con-
sider f(¢~'x: 2) = g(¢~'[x]: D, k(D : 2) where [x] is a transformation variable
for the group @ and D = D(x) = [x]'x designates the orbit (see Fraser (1968),
(1972)); the underlying group-map model is x = ¢u where u has distribution
flu: 2.

The structural approach gives, among other results, the distribution k(x)g(¢~[x]:
D, 2)dv(0) for ¢ given 2 and the likelihood R*(D)A(D: 2) for 4.

The likelihood approach gives R*(x)g(¢~[x]: D, A)h(D: 1). Extended likeli-
hood methods can then give the sectional likelihood R*(x)g(¢~'[x]: D, 2) for ¢
given 2 and the profile likelihood R*(x)g(r#,(D) : D, 2)h(D: 2) for 2 (/1 maximizes
g under first argument variation). The sectional likelihood if given an appropriate
measure reproduces the distribution for ¢ given 2. On the other hand the profile
likelihood is typically not even a likelihood, is not the likelihood from the input
variable D but has an extraneous and improper factor g(#(D) : D, 2).

The bayesian approach typically needs the radical form of analysis. A con-
ventional distribution for ¢ given 2 can produce the distribution for ¢ given 4
obtained from the structural approach. But to obtain the component A(D: 2)
for 2, the prior for ¢ typically would need to depend on the observation x and
be chosen in a goal-directed manner to eliminate the factor g(¢~'[x]: D, 4).
Such a procedure might have some reassurance if the goal were known but the
goal (obtained deductively) seems exclusively a result of the structural approach.

8. Structural support for the Bayesian. Consider a group-map model (C,, C,)
and suppose that A has a single element, that 227 has been relabelled (Section
4) so that the class of transformations ¥ is a group, and that m is an invariant
measure on &2~ :
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C, = {fwym(du)} , C,={p:9e¥}.

The corresponding traditional model describing the response variable x is

C = {fig~x)m(dx): $ T} .
This model has invariant form under the group ¥': the variable x with distribu-
tion labelled ¢ in ¥ is transformed by an 4 in ¥ into the variable Ax with dis-
tribution h¢ in ¥. The transformation / changes the variable (from x to y = hx)
and it changes the parameter value labelling the response distribution (from ¢,
to ¢, = hgy,); but it does not change the model.

Now consider a bayesian analysis based on arguments of indifference. A
transformation 4 carries x into y = hx‘and ¢ into ¢ = h¢; a prior differential
p($)n(dg) is carried in to p(h~'¢)n(dh~*¢). The model is unchanged; a Bayesian
could argue that the prior distribution should also remain unchanged:

P 9m(dh=g) = p($)n(dg) .

This implies that p(¢)n(d¢) = cu(dg) where p is the left Haar measure on ¥
typically this is an improper distribution but it can be normalized on a large
but compact set. The resulting posterior distribution for ¢ is

k(x)f($~"x)p(dg) -

Surprisingly, however, the Bayesians seem to prefer a prior measure that is
right Haar (Jeffreys (1961); Stone (1965)). For the group-map model (C,, C,)
arguments to support this choice of right Haar measure are available from the
structural approach—given of course the premise of an indifference prior.

Consider the results from Section 4 concerning the identification of the varia-
tion distribution. Let # now be one of the identified variables describing varia-
tion and ¢, be the corresponding transformation giving the response. And let
h be an element in the group W. Then u* = hu is an alternative variable de-
scribing variation and ¢,* = ¢,h~* is the corresponding transformation giving
the response. An indifference argument relative to the group ¥ should reflect
the arbitrariness in the choice of representative for response expression from
variation:

p(ghyn(dph) = p($)n(dp) -

This implies that p(¢)n(dp) = cu(dp) where v is the right Haar measure. The
resulting posterior is

k(x)f($"x)u(dp) -
In this analysis the variable, the model and the essential parameter that de-
scribes the response distribution remain unchanged; the indifference argument
expresses the arbitrariness in the group element used within the model to stand
for the essential parameter.
The structural examination of the group-map model leads to an appropriate
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indifference argument: no change of variable, parameter, model; indifference
to choice of representative for response expression. This is not presented in
support of the bayesian approach, but as an indication of how structural argu-
ment can identify an appropriate entity otherwise undetermined in the bayesian
method.

9. Probabilities for unknowns. Probabilities obtained from assembled informa-
tion about a system have two distinct roles. One is the description or prediction
of what will happen in a future performance of the system. The other is the
description of a past realization of the system, a realization that typically would
be partially or completely concealed to avoid trivial descriptions. The kind of
information that supports these latter* probabilities was examined in Section 2;
the effect of proper information is to change initial probabilities into conditional
probabilities—given the observational content of the information.

Consider the second role for probabilities: the description of a partially or
completely concealed realization of a stable system or more generally, perhaps,
the description of an unknown in the physical environment. With observational
information on a stable system probabilities are available (Section 2). More
generally with frequency, observational and other information including feel-
ings and impressions, probabilities are claimed by the Bayesians to be still avail-
able; the results of Section 2, however, show that this general bayesian claim
is false. The question then remains: do probabilities for unknowns extend at
all beyond the strict case satisfying Section 2. In this section attention is re-
stricted to contexts satisfying Section 2 but unknowns other than the realization
itself are considered.

There are of course some statisticians of extremely conservative persuasion
who are reluctant to use probability even to describe a realized value from a
stable system. In being so, they are of course denying the raison d’étre for
conditional probability and hence denying a substantial part of probability
theory. Most statisticians however accept this use of probability and the argu-
ments for it are not presented here.

There may then be some of conservative persuasion who are reluctant to use
probability as based on observational information from the OPR mechanism of
Section 2; they must however face the substantial arguments that there is still
no differential information among the possibilities identified by the informa-
tion. Again, the arguments for this use of probability are not presented here.

For exemplification consider a measuring instrument with known stable be-
havior and suppose two measurements are made on an unknown physical con-
stant. To keep the details simple suppose the two uses of the instrument are
represented by one toss of two symmetrical dice and suppose the values obtained
are added to the physical constant to give the two reported measurements.

Let u, and u, designate the results for the first and the second die, let 6, be
the physical constant, and let x, = 6, 4 u, and x, = 6, 4 u, be the reported
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measurements; suppose x; = 126 and x, = 129.
The OPR conditions for observational information are satisfied. The obser-

vational information is
Uy — Uy =%, — %, = 3;

and there is no information on the location of (u,, u,) as given by, say, u,. The
observational information changes the probabilities 1/36 for each possible pair
into probabilities { for each of the pairs (1, 4), (2, 5), (3, 6). These are classical
probabilities describing the three possible physical states for the entity before
the investigator. Generally, statisticians who acknowledge conditional proba-
bility would acknowledge these probabilities. The acute investigator then notes
that the label 6, = 125 attaches to the physical state (1, 4), the label 6, = 124
to the physical state (2, 5), and the label 6, = 123 to the physical state (3, 6).
The probabilities describing the possible physical states are then in fact saying
Pr (0, = 125) = }, Pr(6, = 124) = }, and Pr (6, = 123) = 4. The student, the
scientist, the experienced gambler—certainly the experienced gambler—would
be prepared to bet on the concealed dice and he would use the probabilities
recorded above. In doing so he is actually betting on the 6, value, as he would
readily admit: for the true value of 6, is in fact the one that labels the realized
pair of values on the dice. Probabilities are describing things in the physical
world and we must accept the consequences of those descriptions.

Classical probabilities for physical states can produce classical probabilities
for entities within the observational system that provides information. This
happens generally with the group-map models of Section 3.

Of course a committed Bayesian might say that with a pattern of possible 6,
values the probabilities would be different. But such a source pattern for the
6, values was not part of the premises in Section 2, not part of the present
analysis, and is not part of typical scientific analyses.
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