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MAXIMUM AND HIGH LEVEL EXCURSION OF A GAUSSIAN
PROCESS WITH STATIONARY INCREMENTS

By SIMEON M. BERMAN

New York University

Let X(#), t = 0, be a centered separable Gaussian process with stationary
increments. Put ¢%(f) = EX?(t), and suppose that ¢(0) = 0. Let Y(z) be the
normalized process X(¢)/s(t), and B an arbitrary bounded closed subinterval
of the positive real axis. Under general conditions on ¢ we find (1) an ex-
plicit asymptotic formula for P{maxp Y > u} for u — co in terms of ¢ and
various functions derived from it, and (2) the limiting conditional distri-
bution of the time spent above the level u (for u — oo) given that the time
spent is positive. This limiting distribution is a scale mixture of the cor-
responding distribution previously obtained under comparable conditions
in the case of the stationary Gaussian process.

0. Introduction and discussion of the results. This paper represents an extension
of certain results on the maxima and high level excursions obtained in [2] for
the stationary Gaussian process to the more general process with stationary
increments. A simple example is W(f) — W(0) where W is stationary. This
extension is built on the “local stationarity” of the normalized process Y(#): If
t is a fixed point in B, then, for all s near ¢, the correlation EY(s) Y(¢) is very
nearly equal to exp(—oa*(s — #)f(#)), where f is a continuous positive function,
uniquely determined by ¢. When ¢?(#) varies regularly for t — 0—and we assume
this—then there exists f*(¢) such that f(#)o*(s — £) ~ o*(f*(#)(s — 1)) for s > t;
therefore, the correlation function is approximately exp[—a*(f*(¢)(t — s))] for
s near t. This is the correlation obtained from exp[—¢*(t — s)] by changing the
time scale by a factor f*(¢). It follows that if 7 is a small interval containing
t, and if Z is a stationary process with the covariance function exp(—d*(s)),
then max, ., ¥(s) has approximately the same distribution as max,., Z(f*(?)s).
For this reason the asymptotic form of the tail of max, Y differs from that of
max; Z by a simple alteration of the time interval.

The local stationarity of Y(s)also explains the form of the limiting conditional
distribution of the time spent above a high level. If Y exceeds such a level
somewhere on B, then it does so exactly once and no more, remaining above
the level for just a brief time period. For this reason the conditional distribu-
tion has, in the stationary case, a limit which is independent of the length of B.
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However, the length of the excursion of Y(s) above u depends on the point ¢
where it crosses above u; indeed, the length of the excursion is multiplied by a
factor f*(¢). By the total probability formula the limiting distribution of the
time above u is a weighted average of the distribution—a scale mixture—obtained
in the stationary case.

A trivial example of a process which we explicitly exclude is X(¢#) = Xz, where
X is Gaussian with mean 0; here Y(f) = X, max, Y(¢) = X, and the conditional
distribution of the excursion is degenerate.

1. Hypotheses. Let X(¢), =0, be a separable Gaussian process with stationary
increments. We suppose that EX(f) = 0 and that X(0) = 0 almost surely. Put
o¥(t) = EX*(f); we assume that ¢%(¢) is continuous. In this work we study the
distributions of the maximum and the high level oecupation time of the nor-

malized process
Y(t) = X(0)]a () .

In most examples of theoretical interest Y is unbounded near ¢ = 0; therefore,
the maximum of Y over a closed interval containing the origin is equal to + co
almost surely. In the case of Brownian motion Lévy noted that Y(z) has the
same behavior for t— 0 as it has for t— oo (“projective invariance”). To
exclude the case where max ¥ = oo, we shall consider the process only on a
finite interval bounded away from the origin. This interval, which we denote
by B, is fixed throughout the paper.

It follows from the definitions above that Y(#) has mean 0, variance 1, and
the covariance function

BV ¥ = T =),

This follows from the relations o%(¢ — s) = E(X(¢f) — X(5))* = EX*(f) + EX*(s) —
2EX(s)X(t) = o(t) + o*(s) — 2EX(s)X(#). An equivalent form more convenient
for our purposes is

y— 1 ot =9 — (o(t) — a(s))*
(1.1) EY(s)Y(t) = | SRR .

We make five assumptions about o°.
I. o(t — s) = o(f) — o(s) if and only if s = ¢; in particular, ¢’() is not iden-
tically equal to a constant multiple of #.
II. mingeo > 0.
III. There exists a non-decreasing nonnegative slowly varying function g(7),
t > 0, and a number a, 0 < a < 2, such that

¥(t) ~ g(t)r* for t—0.

IV. %) has a continuous derivative on B.
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Assumption I states that the process has no singularities on B: in view of (1.1),
this assumption is equivalent to

I’ Y(s) = Y(¢) if and only if s = 1.

Assumption II means that the process is not degenerate at any point of B.
Assumption III was used in [2] in deriving the tail of the distribution of the
excursion and the maximum in the stationary case. The assumption that g is
non-decreasing was used in the proof of Theorem 2.1 of [2]; however, it may
not be necessary. As noted there, if @ = 2 then g can be taken to be a posi-
tive constant. The existence of certain limits in calculations to follow requires
Assumption IV. Assumption I eliminates the trivial case where Y(7) is iden-
tically equal to a fixed random variable with a Gaussian distribution, multiplied
by 1. .

We now study the behavior of EY(s)Y(#) for small |t — s|. There are two
cases to consider: a < 2 and a = 2 in Assumption III. The first case is covered
in the following lemma.

LemMa 1.1. If @ < 2, then
o+ h =0l 0 for h—so0,
a(h)
uniformly for t € B.

Proor. The ratio above is equal to
_a¥(t + h) — (1)
[o(t + k) + a(1)]a(h)
By Assumption IV the numerator is of the order |k| uniformly in ¢ € B; and, by
Assumptions II and III, the denominator is asymptotic to a positive multiple
of g*(|h|)|A|*/*; hence, since a < 2, the fraction converges to 0.
Now we consider the more complicated case &« = 2. First we recall that ¢%(¢)
always has the spectral representation [5], page 552,

o¥(t) = (= e — 1)1 + 2%)A-*dH(2),
or, equivalently, \
(1.2) o*(t) = 2 §=,, (1 — cos r)(1 + 2*)2~*dH(2),

where H is a bounded monotonic function. This is used in the following two
lemmas.

LemMma 1.2, If @ = 2, then
(1.3) lim,_, ~%%(t) = (=, (1 + ) dH(2);
the latter is positive and finite.

Proor. Divide both sides of (1.2) by #?, and let t — 0. The right-hand side
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converges to the right-hand side of (1.3), which might possibly be infinite or
zero. We shall show that it is neither. Assumption III implies that

lim sup,_, t-20%(2) < g(¢)

for every ¢ > 0; hence the limit in (1.3) must be finite. The integral in (1.3)
cannot be equal to 0: if it were so, then H would have all its mass at 2 = 0,
and so ¢’(f) would be a constant multiple of #?, and this would contradict
Assumption I.

LemMA 1.3. If a = 2, then there exists a continuous function q(t) assuming values
lq] < 1 such that

(1.4) lim, , EUL(%)—_"(’) — q(1).
uniformly for t e B.

Proor. Define ¢(¢) as
(1.5) 90 = 2 20 0)a 0}

By Lemma 1.2 and Assumption III, g(0) is positive because
(1.6) 9(0) = §=. (1 + ) dH(2) .

The finiteness of the integral (1.6) permits one to compute the derivative of ¢%(¢)
by differentiation under the integral sign in (1.2):

(1.7) ‘% = 2§~ Asin 241 + 22— dH(3) .

Using the integral representations (1.2), (1.6) and (1.7), and the Cauchy-Schwarz
inequality, we find that

do.2 2 N
(1.8) Y < g(0) - 2 §=, sin® 241 + 2%~ dH(J) .

From the elementary relations, sin* x = 1 — cos? x < 2(1 — cos x), we find that
the right-hand side is at most g(0) - 4¢°(¢); hence, the function g(), defined by
(1.5), is of modulus at most 1.

We shall show that ¢(f) does not assume the value 1. If it did, then (1.8)
would be an equality; thus, by the Cauchy-Schwarz inequality and its converse,
we would have

sin At = constant - 2 a.e. dH(A) .

Such a relation holds only if H has its support at the origin. This would con-
tradict Assumption I; hence, |¢(¢)| < 1.
The limit relation (1.4) is verified by writing the fraction as
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a(t + h) — o¥(1)
(o(t + h) — a())o(h)’
dividing the numerator and denominator by #, letting 2— 0, and then applying
Assumption IV, Lemma 1.2, and the relation (1.6). The uniformity of the
convergence is demonstrated by using the Law of the Mean and the continuity
of do?/dt. The proof is complete.
We define the function W (¢), t€ B, as

(1.9 W (t) = 271(7) for a<2,

= l;q%(‘t) for a=2.
20%(t)
For convenience we will drop the subscript «, and write W, = W. It is posi-
tive and continuous on B.
As an immediate consequence of Lemmas 1.1 and 1.3, and the formulas (1.1)
and (1.9) we obtain:

(1.10) lim,_, 1~ Ei(;(};)% R(UN

uniformly for ¢ e B; indeed, by (1.1), we have
| _ @+ h) — o)y
1 — EY(t + h)Y(¢) _ o’(h)
a*(h) N 20(t + h)a(t)

and, letting 2 — 0, we get (1.10).

2. Estimate of the tail of the distribution of the maximum over a small interval. In
this section we show that the covariance of the process Y is very close to that
of certain stationary processes. Then we use the known properties of the
distribution of the maximum for stationary processes to estimate that of the
process Y.

We observe that, for any positive constant c, the function exp(—co?*(#)) is the
covariance function of a stationary Gaussian process with variance 1; indeed,
it follows from the integral representation (1.2) of ¢* that exp(—cd*(¢)) is the
characteristic function of a symmetric, infinitely divisible distribution, and so
is also a covariance function.

For arbitrary ¢, 0 < ¢ < 1, and subinterval 4 of B we define two stationary
Gaussian processes with means 0 and variances 1. The first, denoted U(?), has
the covariance function

2.1 EU(s)U(t) = exp{—o*(s — t)(1 + ¢) max, W},
the second, L(f), has the covariance

2.2) EL(s)L(t) = exp{—a*(s — t)(1 — ¢) min, W} .
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The covariances of Y, U and L are compared in the following:
LEMMA 2.1. For every ¢ > 0 there exists 6 > 0 such that if A is a closed sub-
interval of B of length less than o, then
(2.3) EU(s)U(t) < EY(s)Y(t) < EL(s)L(z)
forall s, tin A.
Proor. In what follows we put
|A| = length of 4.

By (1.10) and the continuity and positivity of W it follows that for every ¢ there
exists 0 such that

(2.4) 1 — (1 + e)o*(t — s) max, W .
SEYSHY(H) =<1 — (1 —¢e)0d*(t—s)ymin, W for s,tcAd
as long as |4 < 8. Since o%(t — 5) — O for |t — 5| — 0, since (2.4) is stated for

small values of ¢ — s, and since ¢ is arbitrary, we may, by the elementary relation
1 — e ~ x, for x — 0, replace the extreme members of (2.4) by exponentials;

exp{—o*(t — s)(1 4+ ¢) max, W} < EY(s) Y(¢)
< exp{—d*(t — s)(1 — ¢y min, W}.
This, by (2.1) and (2.2), is equivalent to (2.3).

It is now shown that max, U is stochastically larger than max, ¥, and the
latter is stochastically larger than max, L; thus, U and L represent “upper” and
“lower” processes for the estimation of max, Y.

LEMMA 2.2. Given ¢ > 0, let 6 be as in Lemma 2.1. If |A| < 8, then, for all x.
(2.5) P{max, L > x} < P{max, Y > x} < P{max, U > x}.

ProoF. The processes Y, U and L have means 0 and variances 1. Their
covariances satisfy (2.3); thus, the inequalities in (2.5) follow from the well-
known inequality of Slepian [7].

In order to estimate the tail of the distribution of max, L and max, U, we
use the following result from [2] for the maximum of stationary Gaussian proc-
esses. Let Z(#) be such a process with mean 0, variance 1, and covariance
function r(?) satisfying 1 — r(z) ~ g(#)|¢|* for t — 0, where g is as in Assumption
III above. For u > 0, let v be defined in terms of u as the unique solution of

(2.6) wgtv v =1.
Then there exists a constant ¥, not depending on 7 such that

P{maxg, 1 Z > u} _

2.7 lim,_, =V,
Tvo(u)/u

where
o(u) = (2m) tewn,
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Now we show how the relation (2.7) is modified when the assumption on r(7)
is changed to

(2.8) L —r(t) ~ cq(n))1",
where ¢ is an arbitrary positive constant.

LemMa 2.3. If Z is a stationary Gaussian process satisfying (2.8), and if v is
defined by (2.6), then

2.9) lim, ., P{max, . Z > u} =V, ;
Tog(u)/u

in other words, if g is multiplied by a constant, then V., is multiplied in a correspond-
ing way.

Proor. Instead of the process Z(t), ¢ € [0, T'], consider the process with the
altered time parameter Z(c'*/f), te[0, T]. It has the covariance function
r(c™"/*t); hence, by (2.8), it satisfies

1 — r(c™Vet)y ~ g(c=t)|t]~ s
therefore, by the slowly-varying property of g, it follows that
1 — r(c™Vet) ~ g(B)|t]~ .
The result (2.7) implies

(2.10) lim.  PAmax(Z(c™*t): te[0, T]) > u} _ v
b Tvp(u)lu “

By definition:
max (Z(c7V*t): te [0, T]) = max(Z(¢): t [0, Tc7**]);

therefore, (2.10) is equivalent to

@.11) lim, . PM3XrevaZ(t) > u} _
Tvg(u)u

Since T and c¢ are arbitrary, we may replace 7 by 7Tc¢”* in (2.11), and obtain
(2.9).

Using Lemmas 2.2 and 2.3 we find upper and lower asymptotic bounds for
the tail of the distribution of max, Y.

LEMMA 2.4. For ¢ > 0, let 0 be as given in Lemma 2.1. If A is a subinterval of
B of length less than 0, then

|[4] V(1 — ¢)* min, W=

P{max , Y > u}

(2.12) < liminf,_,,
v(u)/u
< lim SUp, e w
ve(u)/u

< |4|V (1 4 ¢)/*max, W=,
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Proor. The covariance function of the stationary process U satisfies
1 — EU(t)U(0) ~ (1 + &) max, Wy(t)|z|*.
Apply Lemma 2.3 with ¢ = (1 4 ¢) max, W and 4 = [0, T]; then
P{max, U > u}
T vgw)u
The last inequality in (2.12) now follows from Lemma 2.2. The first inequality
is obtained in a similar manner, by using the process L and ¢ = (1 — ¢) min, W.

lim = |4|(1 4 ¢)*max, W'V, .

3. An exact asymptotic formula for the tail of the distribution of the maximum.
To find the tail of the distribution of max, Y we modify and extend the method
in [3]. The interval B is decomposed into many small intervals 4,, - .-, 4,, of
equal length; then ’

max, ¥ = max;(max, Y).

We show that the m events {max, Y > u}j=1, ..., m, are “asymptotically
disjoint”: if max ¥ > u, then it is relatively unlikely that max, ¥ > u for any
j # i. If follows that ’

Plmax, ¥ > u} ~ 37, P{max, Y > u}.
Using Lemma 2.4, we estimate the terms on the right-hand side; finally, we

let m — co.

Our first step is showing that max, Y is stochastically relatively small com-
pared to max, Y if the set 4 is small compared to B.

LeEMMA 3.1. Fore, 0 < ¢ < %, there exists § > O such that if A,, ---, A, are
closed subintervals of B of lengths all less than 0, then
P{maxUAj Y>u}
P{max, Y > u}

1 4 &\V max , W\v«
< 2(___> 5—1<————B > ™, |4, .
= 1 e 1 B W Z] 1| .7|

3.1 lim sup, .,

Proor. First we estimate the probability in the numerator in (3.1). For
arbitrary ¢, 0 < ¢ < 4, choose d as in Lemma 2.4; then

P{maxUAj Y> u)
ve(u)/u
(3.2) < >m,limsup, .

lim sup, ..

P{max,, Y > u}
ve(u)/u
Vol + &)V« 337, |4;| max,, W
V(1 + e)/*max, W¥« 3™ |A4,].
Now we find a lower asymptotic bound on the denominator in (3.1). If 4 is
any subinterval of B of length less than 4, then, by Lemma 2.4,

A HIA
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P{max, Y > u}
vh(u)fu

(3.3) > liminf,_..

lim inf,_,,

P{max, Y > u}
vh(u)fu

= |4V, (1 — ¢)/*min, WV~

= |A|V, (1 — e)/*min, W=«

It follows from (3.2) and (3.3) that the left-hand side of (3.1) is not more than

I /1 4 e)“"(maxB W)‘/“
L ™14 -
|| <1 — ¢/ \min, W 25 4]

Since 4 is an arbitrary subinterval of length less than /2, we may replace |A|
by 9/2 in the expression above; thus, we obtain the right-hand side of (3.1).
Now we estimate the difference between the distributions of the maximum
over a linear set and the maximum over a finite subset. Let 4 be an arbitrary
linear set and D = {t,, - - -, t,,} a finite subset of 4 having N elements with order

< oo < ty. Put

2 __
St = max, o

E(Y(s) — Y(t;)), j=1,--,N—1.

LEMMA 3.2. There exist positive constants K,, K, and K, such that for every ¢ > 0
the inequality

|[P{max, ¥ > u} — P{max, ¥ > u}|
(3.4) = (Ki/Ky)(ufe) 2350 S; exp(—Ky'e*2uS %)
4+ P{u < max, Y < u + ¢fu}
holds as long as max ;(uS;) < eK,.
Proor. Since the event max, ¥ > u implies max, ¥ > u, we have
P{max, Y > u} — P{max, ¥ > u} = P{max, ¥ > u, max, ¥ < u}.
For arbitrary ¢ > 0 the latter is equal to

3.5) P{max, Y > u + ¢/u, max, ¥ < u}
+ P{lu <max, ¥ < u+ efu, max, ¥ < u}.

The first term in (3.5) is not more than

(3.6) 2=t P{max, oo, Y(s) — Y(2) > efu};

in fact, if max, ¥ > u + ¢/u and max, Y < u, then for some j,
maxtjgsétj.H Y(S) - Y(tj) > e/u .

Apply Fernique’s inequality [6] to the jth term in (3.6): there exist constants
K,, K, and K, such that
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Y(s) — Y(¢;) ¢
P{maxtjssgtj.,.lTj > l—t-S:}
§ Kl s;ze/qu e—y2/2 dy
as long as uS; < eK;. Sum over j=1,...,N — 1 and apply the well-known

inequality
(e v2dy < x~1es?, x>0;

then (3.6) is at most equal to the first term on the right-hand side of (3.4). The
second term in (3.5) is evidently less than the corresponding term on the right-
hand side (3.4). This completes the proof of (3.4).

Now we estimate the second term on the right-hand side of (3.4).

LeMMA 3.3. There exists a constant K > 0 such that

Plu < max, Ygu—}—s/u}<KE
Vi(vo(u)fu) §, WY(s)yds —

forall ¢,0 < e < %, and all subintervals A of B. This holds also when A is a union
of disjoint intervals.

(3.7) lim sup,_,.,

Proor. 1t is sufficient to consider the case where A is an interval. Let it be
decomposed into m intervals 4,, ---, 4, of equal length |4|/m, where m is an
arbitrary positive integer. Let d be the number in Lemma 2.1, and suppose that
m is so large that |4|/m < . If u < max, Y <u+ ¢/u, thenforsomej=1,--.,
m, we have u < max, . Y < u + ¢/u; therefore,

(3.8) Plu < max, Y < u+ ¢fu}
< Y, Plu< max, Y <u+tefu).
The jth term in this sum is equal to
(3.9) Plmax, Y > u} — P{max, . Y > u + ¢/u} .
An upper asymptotic bound on the first term in (3.9) is furnished by Lemma

2.4:

(3.10)  limsup, ., T30 Y >4} 41 4 gy max,,, W«

v
To obtain a lower asymptotic bound on the second term in (3.9), we apply
Lemmas 2.3 and 2.4 with « 4 ¢/u in place of u. First we note that if v, is the
solution of

(u + e/uyg(v, W *=1,

i.e. (2.6) with u 4 ¢/u in place of u, then v ~ v, for ¥ — oo; therefore, v is still
the “correct” function for Lemmas 2.3 and 2.4 when u is replaced by u 4 ¢/u.
(The proof is given in [2], Section 3.) Divide the second term in (3.9) by
vé(u)/u and let u — oo:
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P{max, Y > u + ¢u}
vh(u)/u
P(u + efupu  Plmax, Y > u + efu}
G+ <fu) vg(u + efu)[(u + efu)
P{max, Y > u}
BT

— &)Yee~¢ mi Y
(I — e)*e~*min, W«

lim inf,_,,

(3.11) = lim inf,

= e~*liminf,_,

=>V,|4

il
We now sum (3.10) and (3.11) over j; then (3.8) and (3.9) imply
Plu < max, Y < u+ efu}

vg(u)fu
(3.12) < Vo D [4|(1 4 )« max, , W
— Vo 271 |4,](1 — e)V%e~ min, , WY«

lim sup, .,

Since m is arbitrary we let m — oo on the right-hand side. As a continuous
function on a closed interval, W'/« is Riemann integrable; hence, the sums in
(3.12) converge to integrals, and so the right-hand side converges to

V., § . Wia(s)ds - [(1 + e}/ — (1 — e)/ee~] .

By elementary calculus, there exists K > 0 such that Ke dominates the bracketed
function of ¢ given above. The proof of (3.7) is complete.

Using Lemmas 3.2 and 3.3, we show that the tail of the distribution of the
maximum is asymptotically unchanged if the set 4 is replaced by an increasing
sequence of finite subsets whose density grows sufficiently quickly.

LemmA 3.4. Let A be a union of disjoint closed subintervals of B and, for each
positive integer N, let D = D, be a finite subset as in Lemma 3.2. If N — oo with
u in such a way that

(3.13) N ~ wi«
then
P{max, Y > u} ~ Plmax, Y > u}.

Proor. We write

Plmax, ¥ > u} _ P{max, ¥ > u} — P{max, Y > u}
P{max, Y > u} P{max, Y > u} '

1 —

and show that the latter converges to 0. By (3.3), the denominator is asymp-
totically, at least a constant multiple of vé(u)/u; therefore, it suffices to show
that

P{max, Y > u} — P{max, Y > u}

(3.14) o)
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tends to 0 as ¥ — co. Apply Lemma 3.2 to the numerator in (3.14); for ¢ > 0,
the ratio is bounded above by the sum of two terms,

(K\/K;)(ufe) 21750 S; exp(—Ky'e'/2u’S %)

3.15

e v (u)[u

and

(3.16) Plu < max, Y < u+ efu}

vp(u)/u
By Lemma 3.3, the lim sup of (3.16) is dominated by V,({, W**(s) ds)Ke; there-

fore, this may be ignored because ¢ is arbitrary.
We now estimate (3.15). By the definition of S;%, we have

‘SJ'2 =2 max[t]‘,tj+1][1 - EY(S)I}(t])] .
If u is large, then ¢, ,, — ¢, is small; thus, (1.10) implies

2 2
St < 0%t — L) maxg, .

for all sufficiently large u; furthermore, Assumption III and (3.13) imply
0t — 1) = O(tj, — 4]%) = O@™);
therefore,
max; S, = O(u™).

It follows that the product #’S;* in (3.15) may be replaced by u~3; hence, the
exponential factor is at most exp(—constant #*). The function ¢(u) in the de-
nominator has the larger exponential factor exp(—4u’). The number of terms
in the sum in (3.15) is of the order »**; hence, the ratio converges to 0 as u— oo.
The proof is now complete.

Our final lemma—before the statement and proof of the main theorem of
this section—states that if 4,, ..., 4, are disjoint intervals, then the events
max, Y > uare “asymptotically disjoint.”

LemMMA 3.5. For an arbitrary positive integer m, let B be decomposed into m
disjoint subintervals A,, ---, A,, and let max 4j Y refer to the maximum on the
closure of A;. Then, for u — co

(3.17) 7oy P{max,, Y > u} ~ P{max, Y > u} .

Proor. According to Lemma 3.1, the tail of the distribution of max, Y is
changed by at most a relatively small amount if relatively small pieces are
removed from B. Given ¢ > 0, let us clip a small segment of length ¢/m from
the right endpoint of each interval 4,, ..., 4,; this changes the quantities in
(3.17) by a relatively small amount. For this reason we may suppose in this
proof that 4,, ..., 4, are closed and disjoint, separated by successive intervals
of a fixed positive length ¢/m, and that B is the union of 4, ---, 4,,.

By Lemma 3.4, the quantities in (3.17) are asymptotically unchanged when
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each 4, is replaced by its intersection with a finite set D of N equally spaced
points, where N grows as in (3.13); thus, it suffices to prove
(3.18) 2 Plmax, .\, ¥ > u} ~ P{max,,, ¥ > u}.

The event max,,, ¥ > u is the union of max, ., ¥ > u; hence, by the ele-
mentary formula for the union of m events in terms of probabilities of their
intersections, we get
(3.19) P{maxp,, ¥ > u} = 37, Plmax, ., Y > u} + Q,
where
(3.20) |0| < P{max, , ¥ > u for at least two distinct indices j} .

The event in (3.20) implies that for some s 4, N D and te 4; N D, for some
pair i + j,

Y(s) > u and Y(t) > u.
There are fewer than N2 such pairs, and the intervals 4, and A4; are separated
by a distance at least equal to ¢/m; therefore, the event in (3.20) has the proba-
bility at most equal to
N?supy,_yzem P{Y(5) > u, Y(£) > u}.

According to a well-known formula in [4], page 27, this is equal to the sum of
the two terms,

(3.21) N*§7 () dy}
and
(3.22) N2SUpy,_gizem §67 7 G(u, u; y) dy

where ¢(x, y; o) is the standard bivariate Gaussian density with correlation
coefficient p. By the well-known relation

2 ¢ dy < dw)u,
and the growth rate (3.13) of N, the term (3.21) is at most
(3.23) w2 P(y)
To estimate (3.22) we note that, by Assumption I, or its equivalent (I’), and the
continuity of ¢, EY(s)Y(¢) is bounded away from 1 for |s — ¢| = ¢/m; thus, there
exists b > 0 such that (3.22) is at most

N*§57" ¢(u, u; y) dy
which, by the identity

(%, y; p) = (%) ¢< Y — px > ,

(1= A1 = p%)?

is equal to
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M) §570 6 (u( I}’)&)(n fyf)* ’

which is at most
(3.24) N2p(u)g <u<2 ﬁ b)?(i-}gf
~ ul°/“¢(u)¢<u<;%b>é>(%l—z>%'

To complete the proof of (3.18), we cite (3.19) and show that
Q/P{max,,, ¥ > u}—0.

By Lemma 3.4 and (3.3), the denominator is at least of the asymptotic order
vp(u)/u; and, by (3.20), (3.23), and (3.24) the numerator is of the order of the
sum of the expressions in (3.23) and (3.24). An elementary calculation now
shows that the quotient converges to 0. The proof is complete.

The main result of this section is

THEOREM 3.1.

(3.25) lim, ., P& Y > ub _ ¢ e ds
v(u)/u
Proor. Given e, 0 < ¢ < 1, choose ¢ according to Lemma 2.1. Choose the
positive integer m so large that |B|/m < 9; and decompose B into disjoint inter-
vals 4, ---, A4, of equal lengths |B|/m. By Lemma 3.5, it suffices, for (3.25),
to find the limit of

Z;'n=1 P{maxAj Y > u} .

(3.26)
vg(u)fu
By Lemma 2.4, the lim sup of (3.26) is at most
(3.27) V(1 + &)V 27y |4, max,  We

and the lim inf is at least

(3.28) Vo(l — )% 317, |4y min, , W=

Since m is arbitrary we let m — co. The sums in (3.27) and (3.28) converge to
$x WY(s)ds

because W'« is Riemann integrable. The number ¢ is also arbitrary, so we put
¢ = 0. Inthis way (3.27) and (3.28) are transformed into the expression on the
right-hand side of (3.25).

4. Conditional limiting distribution of the occupation time above a high level. For
u > 0 and the linear set 4, put

§(u; Y, A) = Lebesgue measure of {t: te 4, Y(¢) > u},
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that is, the time spent by Y above the level u on the time set 4. In this section
we explicitly determine the conditional limiting distribution of &, given that it
is positive, i.e., the limit of

4.1 P{vé < x| & > 0}

for u— oo on a dense set of x > 0. We use the method of conditional moments

in [1, 2, 3]. Since £ is a nonnegative random variable the conditional rth mo-
ment of & given that it is positive is

E&|PE > 0} .
Since Y has continuous sample functions, it spends positive time above u, i.e.,
£ > 0, if and only if max ¥ > u; therefore, the conditional rth moment is
equal to

E¢"(u; Y, A)

*2) Plmax, ¥ > 4]

As in Section 2 we use some known results about stationary processes to get
approximations for the nonstationary Y. Let Z be a stationary Gaussian process
satisfying the conditions of Lemma 2.3 with ¢ = 1. According to [2], Theorem
2.3, there exists a distribution function ¥, with support on the nonnegative
axis such that the conditional rth moment of v»§ converges:

(4.3) Ee@; Z, [0, TDY |, (o xr g () ,
P{max, ,z > u}

for every r =1 and 7> 0. Recall that ¥, is the unique distribution on the
nonnegative axis whose mth moment is given by the expression in (2.1) of [2],
divided by V. The moment generating function of ¥, is finite everywhere, so
that (4.3) implies the convergence of (4.1) to the limit ¥,. The latter distribu-
tion was shown to be completely determined by the constants « and V,. Now,
as in Lemma 2.3, we show how (4.3) is modified when c is not necessarily equal
to 1.

LemMA 4.1. If (2.8) holds, and if v is the solution of (2.6), then

@0 Epc™6(w; Z, [0, TDY _, (e xr dW ()
P{max;, . Z > u} ' -

that is, v is replaced by vcV/* in (4.3).
Proor. Let v, be the solution of the equation
(4.5) weg(v, W, =1

then (2.7) holds when v is replaced by v,. Since ¥, is determined by «a and V,,
the result (4.3) holds under (2.8) when v is replaced by »,. We have

(4.6) v, ~ v/
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indeed, by Lemma 2.3, the relation (2.7) holds when v is replaced by vc'/*. The
conclusion (4.4) now follows from (4.6).
Our main result is that (4.1) converges to the distribution function

V5 Wo(xWYe(s)) W (s) ds
V. Wia(syds -~

(4.7)

a mixture of ¥, over a scale parameter. Before going to the rigorous proof, we
give an intuitive explanation of (4.7). Let the interval B be decomposed into
many infinitesimally small intervals of the form [¢, ¢ + dt]; then by Theorem 3. 1,

P{max, , .., Y > u}
P{max, Y > u}
Wwe(t) dt

P . N A —

§ WY(s)ds

(4.8) P{max;, , s, Y > u|max, Y > u} =

Write the occupation time &(u; Z, [0, T]) as the sum over the various intervals,
(4.9) S Eu Z, [t t + dt]).

According to the proof of Lemma 3.5, the probability that this sum is positive
is asymptotic to the probability that exactly one of the summands is positive;
therefore, the conditional distribution of the sum (4.9), given that it is positive,
is asymptotic to the conditional distribution given that exactly one summand
&(u; Z, [t, t + dt]) is positive. For this reason the conditional distribution of
the sum is a mixture of the conditional distributions for the various summands;
and the mixing density is given by the last member of (4.8):

P{S £u: Z, [1, t + df]) < x| T € > 0)

=~ Z P{E(u; Z, [t, t + dt]é xlé > 0} Wl/“(t) dt

§ s WY(s)ds
The proof of the convergence of the distribution (4.1) is based on an extension
of the method of upper and lower moments used in [1].

LemMA 4.2. For every ¢ > O there exists 6 > 0 such that if A is a subinterval
of B of length less than 0, then for every positive integer r,

Etr(u; U, A) < E&"(u; Y, A) < E&"(u; L, A),

where U and L are the “upper” and “lower” stationary processes defined by (2.1)
and (2.2). '

Proor. If Z(f), te A is a measurable Gaussian process, then, by Fubini’s
theorem:

(4.10) EE"(w; Z, A) = S+ A P{Z(s;) >u,i=1, cee,r}dsy .- ds, .

By Lemma 2.1 and the version of Slepian’s inequality for the minimum of
Gaussian random variables, we get
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PlU(s) >ui=1, -, r} S P{Y(s;) >u,i=1,...,r}
gP{L(st)>u,i: 1, ...,r}
forall s, ---, s, in 4. Integrate the last double inequality over 47, and apply

(4.10); the assertion of the lemma follows.
Now we extend Lemma 3.5.

LemMA 4.3. Let B be decomposed into m subintervals A,, - - -, A,,; then for every
x> 0:
PO< %W Y, B)<x} _«, P0<0fwY,4,)=x
P{max, Y > u} = P{max, Y > u}

foru — .
Proor. Put
Ej:event{maxA].Y>u}, j=1, ..., m;
then the event {0 < v&(u; Y, B) < x} is the union of
E; n {vé(u; Y, B) < x}, j=1 ... m.

By the formula for the probability of the union of events in terms of their in-
tersections we have

(4.11) PO < 0w ¥, B) < x} = S7, P(E; N (vE(u; Y, B) < x}) + Q
where
(4.12) |O| < P(E; N E; for some pair i+ j).

According to the proof of Lemma 3.5, the right-hand side of (4.12) is of smaller
order than P{max, Y > u} for u — oo; therefore, from (4.11) and (4.12) we
obtain

PO< 6w Y, B) <x) s P(EN (0w Y, B) <)

(4.13)
P{max, Y > u} P{max, Y > u}

In order to complete the proof we have to replace the set B on the right-hand
side by A;. If E; occurs but not E, for any other k + j, then £(u; Y, B) is equal
to §(u; Y, A;), that is, the time spent over u is consumed on A4;. The probability
that E; occurs and E, also for some k = j is not more than the right-hand side
of (4.12). By the remark following (4.12), the latter probability may be ignored
in passing to the limit in (4.13). For this reason B may be replaced by 4, on
the right-hand side of (4.13), and the assertion of the lemma follows.

Our major result is:

THEOREM 4.1. The conditional distribution
(4.14) P{vé(u; Y, B) < x|& > 0})

converges to the limiting distribution (4.7).
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Proor. As noted following (4.3) the moment generating function of ¥, is
finite everywhere. The moment generating function of (4.7) is a mixture of the
corresponding functions for ¥, namely,

§5 {2 exp[tx W ~V(5)] AW (x)} WV(s) ds
, Wiia(s) ds ‘

This is finite for every ¢ because W is positive on B and so is bounded away from
0. As in [2] the finiteness of the moment generating function allows us to use
the moment convergence theorem to prove the convergence of (4.14).

Let B be decomposed into intervals 4,, ---, 4, as in Lemma 4.3. By de-
finition, the conditional distribution (4.14) is equal to

P{0 < v6(u; Y, B) < x}
P{max, Y > u} ’

(4.15)

and, by Lemma 4.3, is asymptotic to

P{0 < vE(u; Y, 4;) < x}
P{max, Y > u}

(4.16) 2%

The rth moment of the monotone function (4.16) is equal to

E[vE(w; Y, 4)]"

(1.17) 2= P{max, Y > u}

Givene, 0 < ¢ < 1, choose 6 > 0 as in Lemma 4.2, and then choose the in-
tervals A4,, ---, A4, so that each is of length less than J; thus, by Lemma 4.2,
the moment (4.17) is at most
2 E(vd(u; L, 4))

(4.18) P{max, Y > u}

and at least

S EE(w U, 4,))
P{max, Y > u}

(4.19)

Apply Lemma 4.1 with Z = L and ¢ = (1 — ¢) min,, W: the jth term in the
numerator in (4.18) is asymptotic to

(1 — ¢)~/*max,, W-/*. P(max, L > u) {3 x" d¥ (x),

and so (4.18) is asymptotic to

(I =) {5 xm d¥ (%) s max,. W-«Plmax, L > u}.
P{max, Y > u} 2 s, (maka; }

By Lemma 2.3 (with Z = L and c as before) and Theorem 3.1 this converges to

§oxmdW (%) X, max,, W/amin,, WV*|4,| .
(1 — e)(r—l)/a SB Wl/a(s) ds

(4.20)
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By an analogous argument, with U in place of L, we find that (4.19) converges to

Vo xmdW¥, (x) X7, min, W-r/“max, W4, .

(4.21) (1 4 e)r=1/a§ , WY(s) ds

The sums appearing in (4.20) and (4.21) converge, as m — co, to the common

limit
§s WO/o(s)ds .
Letting ¢ — 0, we find that (4.20) and (4.21) converge to the common limit
Vo (85 X WV (9)]” d Y ()} W/ (s) ds
V5 We(s) ds ’

which is the rth moment of the distribution function (4.7). From this we wish
to conclude that the moment (4.17) converges to the moment (4.22); this would
complete the proof of the theorem.

These last steps are taken with a compactness argument. Let F,(x) be the
distribution function (4.15), and F, ,(x) the distribution (4.16); then, as shown
above, '

(4'23) Fu(x) ~ Fu,m(x)

for every x > 0and m = 1, asu — oo. Let F,.(x) be an arbitrary weakly con-
vergent sequence with index #’ — oo, and let F be the weak limit. By (4.23),
the sequence F,, ,, also converges weakly to F. For each r, the moment

(4.24) \oox" dF,.,

is bounded above by (4.18) (with u = u’), which converges; therefore (4.24) is
bounded; thus, we can, by the diagonal process, extract a subsequence F,,, ,
such that

(4.25) §o x" dF,. .

(4.22)

converges for every r > 1. The limit of (4.25) is necessarily the rth moment
(for r = 1) of a fixed distribution G,

(4.26) {o x" dG,, .

This is dominated by the moment sequence (4.20). Since the latter has an every-
where convergent generating function, so does the moment sequence (4.26).
Apply the moment convergence theorem: the subsequence F,,, , converges com-
pletely to G,,. Since, by definition, F is the weak limit of F,,, ,,, it follows from
the uniqueness of the weak limit that F = G, at all continuity points for all
m = 1. Since m is arbitrary and since (4.26) is bounded above and below by
(4.20) and (4.21), respectively, we let m — oo and then ¢ — 0; then (4.26) con-
verges to (4.22); therefore, F has the moment sequence (4.22). Since F is the
limit of an arbitrary weakly convergent subsequence, it follows that it is the
limit of the original sequence, and indeed, it is also the complete limit.
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