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SOME SAMPLE FUNCTION PROPERTIES OF THE
TWO-PARAMETER GAUSSIAN PROCESS

By GRENITH J. ZIMMERMAN
Loma Linda University

Let {X(s,t; 0): (5, 1)€[0, 00) x [0, o)} be a two parameter Gaussian
process with mean function zero and covariance function R(si, t1; 82, f2) =
min (s1, s2) min (t1, £2). This paper derives a multiparameter law of the
iterated logarithm and modulus of continuity for the process X(s, t; w).
Estimates are also given which enable the author to define an It6 type in-
tegral for a suitable class of functions and to solve a diffusion equation
involving the process.

N

1. Introduction. A number of papers have appeared in the literature defining
multiparameter analogs of the Brownian motion process. Cencov [3] and Yeh
[12] bave shown that a multiparameter process with parameter space the p-
dimensional unit cube 4 and covariance function R[(u,, - - -, u,), (v, -+ -, V)] =
min (u, v,) - - - min (,, v,) can be realized in the space of contmuous functlons
on A which vanish on 4, = {(,, - - p)eA u; = 0 for some j, 1 <j < p}.
Delporte [5] and W. Park [11] construct such a process on the unit cube using
a Haar function expansion and W. Park generalizes some results of C. Park,
Shepp and Yeh.

In the present paper a Haar function construction was used with an arctangent
transformation (Ciesielski [4]) to define a Gaussian process {X(s, t; ®): (s, 1) €
[0, o) X [0, o)} with mean function m(s, f) = 0 and covariance function R(s,, t;;
Sy, b) = min(s,, s,) min (4, t,). The sample functions of this process are continuous
and the process has independent increments (i.e. if 0 =5, < -+ <5, = S, 0 =
<o <t,=T partitions [0, 8] x [0, T], the random variables {AX[(s;, t;),
(Si—l’ tj—l); w] vi=1,..0,m, .] =1, n} where AX[(Sl, t]) (S@ v Lo 1)' w] =
X(s; 15 0) — X(s535 8555 @) — X(8;-15 855 @) + X(5,_,, t;_;; @), are mutually inde-
pendent).

Sample function properties of the process X(s, t; w) are examined, an It6 type
integral is defined for a suitable class of functions and a diffusion equation is
solved. Some properties of the integral and the solution of the diffusion equation
are also investigated.

A different generalization of Brownian motion to a p-dimensional parameter
space has been discussed by Lévy [9].

2. Sample function properties of X(s, t; w). For fixed ¢t = 1, X(s, t; w) is a one-
dimensional Brownian motion process with mean function zero and covariance
function R(s,, s,) = £, min (s, §,).

We define a partial ordering on [0, co) X [0, c0) by (s, #) < (s, 1) if & < s,
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1236 GRENITH J. ZIMMERMAN

¥ <t Let &7, be the o-field generated by the random variables {X(u, v; w):
(u, v) < (s, D)}

LEmMMA 2.1. Let0=s5,< --- <58, =8,0=1¢< --- <t,= Tbheapartition
of [0,S] x [0,T]. Let (s,t)e[0,S8] X [0, T]. If s; ;=5 or t;_, =1, then
AX[(s;, t;), (8i_1 t;_1); @] is independent of 7 ,.

Proor. Since X(s, t; ) is a Gaussian process and since AX[(s;, t;), (5;_1, £;-1)] =
AX;; independent of every finite linear combination of X(u, vy), - - -, X(u,, v,),
(g, v;) < (s, 1), i=1, ..., n, implies AX;; is independent of &, it is sufficient
to show that E[AX;; X(u, v)] = 0 for (u, v) < (s, ).

E[{X(s;, t;) — X(si_y, 1;) — X(555 t;_1) + X(8i0 ;1)) X (1, V)]
= u[min (¢;, v) — min (¢;, v) — min (¢;,_,, v) + min (;_,, v)] = 0
if s;.,=2s=u,
= v[min (s;, ¥) — min (s;_;, ¥) — min (s;, ¥) + min (s;_, )] =0
if t,.,zt=v.

LEMMA 2.2. Let (s, 1), (8, 1,) € [0, 00) X [0, 00). The random variable AX|[(s,, t,),
(81, 1)); w] is Gaussian with mean zero and covariance |s, — s,||f, — t,|.

Proor. Clearly AX[(s,, t,), (5,, 1,); w] is a Gaussian random variable with mean
zero. The covariance can be verified by a simple computation.

THEOREM 1. For 1= 0,

(2.1)  Plo:sup,.,eo.sixiom X(8 £ 0) = 2] < 4P[X(S, T; w) = 4] .
Proor. Consider X(s, #; ®) at the points {(iS2-", jT2""):i=20,1,...,2™;
j=0,...,2"}. Let Z,(0) = max.g,» X(iS2™™, jT27"; w) and let
I(w) = inf{i: Z,(0) = 2} (Hw) = +o if{i: Z)(0) = 2} = @),
J(w) = inf {j: X(IS2~™, jT2™; w) = 1} (@) = +oo if (w) = +0c0).
Then
P[max, ; X(iS2~™, jT2-") = 2] = P[X(IS2~™, JT2™") = ]
(2.2) = P[X(IS2~™, JT2 ") = 2, X(S, JT2™") = 2]
+ P[X(IS2~™, JT2-") = 2, X(S, JT2™") < 4]

Now, using Lemma 2.1, the symmetry of the increments of X(s, #; ) and the

fact that X(s, 0; w) = 0 a.s. for s € [0, o), we have
P[X(IS2~™, JT2~") = A, X(S, JT2™") < 1]

= %o, Pl(0) = i, J(0) = j, X(S,JT2™) < 4]

< Tos PlI() = i, J(@) = ji, X(S, jT27") — X(iS27", jT2™) < 0]
(2.3) = T, Pli() = i, J() = jIP[AX[(S, jT2), (iS27", 0)] < 0]

= %, Pli(w) = i, J(w) = JIP[AX[(S, jT2""), (iS27", 0)] > 0]
Ty PU(©) = i, () = j, X(S, jT2) = 4]
P[X(S, JT2™") = 1] .

A IA
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Combining this result with (2.2) gives
(2.4)  P[max, ; X(iS2™™, jT2™) = 1] < 2P[X(S,JT2 ") = ]
< 2P[sup; X(S, jT2™") = 2] < 4P[X(S, T) = 4]

by the corresponding theorem for one-dimensional Brownian motion. Using
the continuity of the sample paths of the process X(s, t; ) and letting n — oo
gives (2.1). '

Let f(x, y) be a function defined on [0, o) X [0, o). By lim sup, , . f(s, )
we shall mean lim, ,_.,Sup,, .. f(#, v). Theorem 2 is a multiparameter version
of the law of the iterated logarithm. If the lim sup is taken as s, # — oo, the
constant in the multiparameter version is equal to 4, however if the lim sup is
taken as s — oo while ¢ remains in some bounded interval 0 < a <t < b < oo,
the result has constant equal to 2 as in the one parametér version of the theorem.
This is shown in Theorem 3.

THEOREM 2. P[w: lim sup, , ., X, Bo) 1} =1.
" [4st log, st]t

Proor. The proof is an analog of the standard proof of the one-dimensional
theorem and will be omitted.

THEOREM 3. Let0 < a < b < oo, then

: T X(s, t; w) ]
Plw:l oo SUP, 2 L =1|=1,
(1) |:w Im Sup, ., SUP,<;<p [2st log, st]"

.. T X(s, t; w) ]
Plow:limsup,_ 2" >1 forall tela,b]l|=1.
(i) [a) P. [2st log, st]t — for [, b]

Proor. Let 0 < ¢ < 1 and suppose that

T X(s, t; w)
(2.5) P[w. lim sup,_.., SUP.<;<s W > 1+ s} >0.

Divide the interval [a, b] into m equal parts each of length 6 = (b — a)/m. If
(2.5) is true then for each m there exists some subinterval [a,, b,] contained in
[@, b] such that
. X(s, t; w) }

2.6 Plw:1 o SUP, _ZV o ) 1 0.
(2.6) l:w im sup, Pa, <t<b, 25t log, st >14¢e|>

Let m be chosen so that § = (b — a)/m < (ac)/2 and let 1 < g < 1/(1 — ¢/2).
Let G(x,y) = [2xylog, xy]t and A,; = [@: SUP <.k SUP, <i<p, X(S, 1 @) >
(1 + ¢)G(¢*7*, a,)]. Then

P[A4,;] = Plo: supy <k, o<iss, X(s, t; w) > (1 + ¢)G(¢*7, a,,)]
< 4Plo: X(¢*, a,, + 9) > (1 + €)G(¢* ", a,)]

2¢*[(a,, + 9)/a,]? B .
= (1 + ¢)[x log, (¢"'a,,)]} [(k — 1)logg + loga,]

A
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where

(L+ g, o (1ol —e2) o |

9(a,, + 9) (14 ¢/2)

Hence X7, P[4,;] < oo and by the Borel-Cantelli lemma P[A,, i.0.] = 0 which
contradicts (2.6). Thus

7’:

s X(s, t; 0) jl
2.7 P|: : lim e SUP, BT« =1.
(2.7) @ lmSup, . SUP,<;<p [25t log, sf]t <Il+e

For any fixed ¢, a < t < b, using the one-dimensional theorem

P[a): limsups_,mM >1— e} =1.

[2st log, st]t
Hence
o X(s, t; ) J
2.8 P[ : lim sup,_,,, sup, A\ B ) 1l —¢e|=1.
(2-8) @ P Pesezs [2st log, st]* :

Combining (2.7) and (2.8) we have (i).
We now prove (ii). Without loss of generality we may assume that b < 1,
since X(bs, b~'t; w) has the same distribution as X(s, #; ) and

1 X(s, t; w) ]
:limsup,_, -2 7 > 1 _—¢ forall tefa, b
[w Pee Dstlog st~ ela. b]

_ Y X(u, v; w) _
= |:a). lim supu_mm> 1 — ¢ forall velab™, 1]].

Suppose

X5, 60) 1 _ . for some te[a,b]}>0.

2.9 P[ limsup, ., X 5@
(29) @ AP 1t log, st =

As above, for each m divide the interval [a, b] into m subintervals each of length
0 = (b — a)/m. Then (2.9) implies that for each m there exists some subinterval
[a,, b,] of length ¢ such that

X, o) <1 — ¢ for some te[am’bm]} >0.

2.10 P[ : lim sup,__,, <
(2.10) ¢ P, [2st log, st]t —

Let m be chosen so that, § < (ac*)/4 and let ¢ > 1 be such that 2/[(g — 1)}] < ¢/4,
[¢/(g — D]t < 1 4 ¢/2. From the proof of the law of the iterated logarithm for
one-dimensional Brownian motion (Loéve [10] page 560), we have

2.1 X(g" b,) — X(g"7 by) > {(1 — ¢/4)b, (g — 1)/q]*[24" l0g, ¢"]#} i.0.
The first half of the theorem implies that for a < t < b, n = ny(q, 0),
(2.12) |X(g"7 O] = 2(1/9)'29" log, 4"]* -

For tela,,b,], let A,(1) = [o: AX[(q", b,), (4", 1)] = [29" log, 411 ()],
where (1) = {(1 — ¢/4)b,}[(g — 1)/q]t — 2(t/q)* — (1 — e)t!} and let A, =
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[0 Sup,, <1z AX[(g"%, b,). (4" 1)] = [24" log, ¢"1'7(b,)]. Then 4,(1) is a subset
of 4,,a,<t<b,, n=12,..., and P[4,] = Plw:sup, .., AX[(q",b,),
(4" 0] = [29" log, ¢")'r(bn)] = Plo: X(1, I; @) = {[2¢" log, ¢"*r(b)} /(4" —
g"~)3]#] < Constant [nlogg]~* where a = [¢/[(q — 1)3]1*(b,) = (b, /0){(1 — ¢/4) —
2/(g — D} — (I —o)lg/(g — DI} > (a/o)(¢!/4) > 1. Hence 353, P[4,] < coand
by the Borel-Cantelli lemma P[4, i.0.] = 0. Thus if n = ny(w)

(2.13)  AX[(¢" bn), (¢"7" )] < [29" log, g")ir(2) for all te(a,, b,].

If n = max {n(w), ny(w)}, then (2.12) and (2.13) hold. If (2.11) also holds it
follows that
(2.14)  X(g" 1) > (1 — e)ri[2¢" log, ¢"] > (1 — ¢)[2¢" log, (¢"n)]?
for all te[a,, b,]. Hence (2.14) is true infinitely often contradicting (2.10).
Thus (ii) follows.

COROLLARY. There exists a set Q, of probability zero such that if w ¢ Q,, X(s, t; ®)
satisfies the one-parameter law of the iterated logarithm (as a function of s) simul-
taneously on the linest =T, 0 < T < co.

Proor. (i) and (ii) imply that for any finite interval [a, b],

X(s, t; w)

2.15 P[ limsup, XG5 @)
(2-13) ¢ Pe=Tast Tog, st]?

— 1 for all te[a,b]‘J: 1.

Let {a,}, {b,} be sequences such that a, | 0, b,  co. Let

X(s, t; ®)

A = :limsup,_, ——~2 " /7
" |:w P [2st log, st]?

=1 forall te]a,, bn]].

Then 4, |, and by (2.15) P[4,] = 1| for each n, hence P[lim,_, A4,] = Plo:
lim sup, ., X(s, t; 0)/[2st log, st]* = 1 for all t€ (0, c0)] = lim,_,, P[4,] = 1.

THEOREM 4. Let S, T = 1, (s, t,), (85, 8,) € [0, S] X [0, T], then

[AX[(s5, 5), (815 1); ]| _ 1} -1
t1l=7910; lsg—s;l=¢l0 3 = .
[2¢7 log (1/en)]

Proor. The proof uses generalizations of the ideas and methods of the one-
dimensional case as given by It0 and McKean [8].

(2.16) P[w: limsup,, _

3. Stochastic integrals and diffusion equations. Let {Z(s, t; w): (s, £) € [0, c0) X
[0, o)} be a stochastic process. Z(s, t; w) is said to be a martingale with respect
to #,, = a{Z(u, v; w): (u, v) < (s, t)} if Z(s, t; ®) is integrable for all (s, f) e
[0, o) X [0, o) and whenever (s, ), (s, ') € [0, c0) X [0, co) are such that
(', t) < (s, t), E[Z(s, t; 0)| F ,p] = Z(5', '; w) a.s.

THEOREM 5. Let (s,, t,) be a fixed point in [0, S] X [0, T]. The process {AX[(s, 1),
(S to); 0] 8, £ s < S, t, £ t < T}is a martingale.

Proor. Clearly AX][(s, 1), (s, t,); @] is integrable for all (s,7). Let <, =
o X(u, vo): s, Su=ss ty v <t I (s, ) < (5, 1) < (s, 1), write AX[(s, 1),
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(5> )] = AX[(s, 1), (5, )] + AX[(S, 7), (800 t)] + AXI(S", 1), (50 7)] + AX[(s, 1),
(s’ t,)]- By Lemma 2.1, AX[(s, t), (', )], AX[(s, t'), (5, t,)] and AX[(s, 1), (5, )]
are independent of <,,,.. AX[(s, '), (s, ,)] is measurable with respect to &.,..
Hence E[AX[(s, 1), (s t)]| Fy0] = AX[(', 1), (50> 1]

We want to define an Itd type integral I(s, ¢, w; f) for the class _# of square
integrable functions f{s, ¢; w) defined on [0, §] x [0, T] x Q having the property
that f{(s, t; ) is measurable with respect to .7, = o{X(u, v; w): (u, v) < (s, 1)}
for all (s, £) € [0, ST X [0, T]. The following lemmas give the estimates needed
to construct such an integral and to solve a differential equation involving
X(s, t; w).

LemMMaA 3.1. Let X(w) and Y(w) be random variables on a probability space
(Q, 7, P). Let 7, be a sub-o-field of 7. If (i) X is independent of Y, (ii) X is
independent of 7, (iii) E[X] = 0, (iv) E[XY] < oo, then E[XY| ] = 0 a.s.

LEmMA 3.2. Let X;;(w) and Y, (w)i=1,---,m;j=1, - .-, n be random vari-
ables such that

(i) E[X,;(®)] = O for all i and j,

(ii) E[X;;(®)Y;;(®)] < oo for all i and j

(iii) Y, (@)u<i, v<jand X,(0)u <i—1,v<j— 1 are independent of
Xuv(w) u ; iorv g j’ Let Sw(w) = fb=1 3;:1 Xuv(a)) Yuv(w)’ then
3.1) Plw: max, ; |S;;| = b] < (4/b°)E[S,,.]

(3:2) E[max; ; |S;;|"] = 16E[S,,]" -

Proor. We first show that {S,;: 1 < j < n} is a martingale with respect to
T i If j/ < j, using Lemma 3.1 and the fact that S,; is & ,; measurable,
we have

E[Smy I 'g_‘mj’] = Z:Ln=1 Zf/,zl E[Xuv Yuv I fmi'] + Z;n=l Z:=j’+1 E[Xuv Yuvlugzdmj’]
= Z;Ll Zfz;l Xuv Yuv = Smj’ *
Similarly E[S,,;|.#;,] = S;; and thus using Jensen’s inequality E[|S,,;| | 7 ,] =
|Si51-

Let Z,(w) = max,_,, |S;;(w)| and let I(w) = min {i: Z,(») = b} (I(®) = + o
if{i: Z(w) = b} = @), J(w) = min {j: |S,;| = b} (J(®) = + oo if [(w) = + 00).
Now A = [w: max, ;[Sy| = b] = U, Uil : I(@) =i, J(@) = j] = U Ul B,
and the sets B;; are disjoint.

For any (i, ), (0,0) < (i, j) < (m,n) 5, S0, dP = E[S}; 1y ] + E[(Sn; —
Si)'l5,;] Z V5,; Si; AP since E[S;;(S,; — Sij)y,;] = 0. Thus
(3.3)  E[S2,]1Z §a SL,dP = N1y Bies $a,; S5 AP = N0 D3os Sy, 8% AP

= b'P[A]
and since {S,,;: 1 < j < n} is a martingale with respect to & ,,;, we have

(3.4) E[S},] = E[max,g;q, ;] < 4E[S,.]
(Doob [6] Chapter VII, Theorem 3.4) .
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(3.1) follows from (3.3) and (3.4).
To prove (3.2), we note that

Plo: max, ; S| = b] = Xt Xj- P[B;] = (1/b) Xy X5-1 $sy; 1S P
é (l/b) Z:":l ?=1 SBU E[ISmJI l gé_’m] dp = (l/b) Z:n=1 ?=1 SB“' lSmJl dp
= (1/0) §5|Sns| 4P

since B;; € #,,. Using Theorem 3.4’ (Chapter VII [6]) and (3.4), we have

E[max, ; |S;;|'] = E[(max, ; |S;;|)’] = 4E[|S,.,"] = 16E[S7,,]-

Let f(s, t; w) be an &, measurable function for all s and ¢. Let 0 = s, <
5< <5, =80=¢4(<t < -+ <t, = Tpartition [0, S] x [0, T]. Con-
sider the product f(s;_,, t;_;; @) f(s,_1, t,_;; @)AX;;AX,,. Without loss of gener-
ality we may assume that s, , < s, ,. Then f(s,_,, ¢, ;; ) and f(s;_,, t;_,; ) are
measurable with respect to the o-field 5", where ¢ = max (¢,_,, ¢;_,) and either
(i) AX,, is measurable with respect to .7, _ _and AX; is independent of 7 .
or (ii) AX,, and AX;; are independent of %", and also independent of each

other.

LemMaA 3.3. Let f(s, t; ®), g(s, t, w) € L}[[0, S] X [0, T] X Q] be functions which
are 7 ,, measurable for all s and t. Then

(i) E[1f(Sie t-15 @)9(Sumrs Lo @)AX;; AKX, |] < o0,

(i) E[f(S;_1» t;_1; @)9(S,_1» t,_; ®)AX;AX, ] =0i+uort+v

(iii)  E[f(8;-15 8515 @)9(S5-1s 15 @)(BX;5)"] = E[ (5,15 £;_15 @)9(8; 215 1,5 )] X
(85 — 8io0)(t; — t50)-

Proor. These results follow using Lemma 2.1 and the remark preceding the
lemma.

Let < be the class of measurable functions f{s, ¢; w) defined on [0, S] x
[0, T] x Qhaving the property that f(s, #; @) is measurable with respect to ", =
o{X(u, v; 0): (u, v) < (s, t)} for all (s,£)e[0,S8] x [0, T]. Let H(sy ---,S,;
by - t)0=85< - <5, =8,0=1< ... <t, =T, bethe class of func-
tions f(s, ; w)e # = <°n LY[0, S] x [0, T] x Q] which have f(s, t; w) =

JGint_ o) for s, Ss< s, t; St <ty H= U H(Sp ++, S bys ++ + t,).
The integral is first defined for functions in H as follows: if s, < s < s5,,,, ¢, <
t é tp+1’

I(s, t, 0; f) = 240 D51 f(Sics tios @)AX[(8i5 85), (Sim1s £5-1)]
+ DS 13 @)AX[(s5, 1), (Sims )]
+ 251 f(Ses 8205 @)AX[(85 15)s (S 1;-1)]
+ f(8es 1,3 @)AX[(s, 1), (505 2,)] -
This definition can easily be shown to be independent of the choice of partition

used in defining the integral.
The integral so defined has the following properties. For f, ge H (L* =

L[0, S] x [0, T] x Q)
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(i) E[I(s, t, w; f)] = O for all (s, £) € [0, S] X [0, T},
(i) I(s, t, w; af + Bg) = al(s, t, w; ) + BI(s, t, w; g),
(iii) I(s, t, w; 1) = AX][(s, ?), (0, 0); w] = X(s, £; @),
(iv) I(s, t, w; f) is a continuous function of (s, #) with probability one,
(v) EUL(s, t, 03 )5, £, @3 9)] = (f; 9)us
(Vi) Pl : supyg,gsiosisr H(s: t, @5 f)] = b] < (4/6%)|f(s, &5 @)|[7a
(vii) if f(s, t; @) = h(s, t; @) for all ® € Q, where Q, is any P-measurable subset
of Q, then I(s, t, w; f) = I(s, t,0; ) 0 £ 5 < 5,0 <t < Tae. in Q,.

These properties follow using standard techniques and the results of Lemmas
3.2 and 3.3.

As in the one-dimensional case, the integral so defined is a linear isometric
operator from H to L*) and can be extended to a linear operator from the
closure of H to L*Q). It can be shown that the closure of the class of (s, ¢; »)
step functions in Z”includes all functions in _2Z = £’ n L*[[0, §] x [0, T] X Q].
The extension satisfies (i)—(vii) for f, g € .7 (It6 [7]).

LemMA 3.4, Letfe _« andlet b > 0, then

(1) E[supy,sero.s1x00,7 [1(5, 8 @3 [)F'] = 16E[L(S, T, w; )]
(i) bP[w: SUp ero,s1x00,71 [1( & @5 )] = b] = 16E[L(S, T, w; f)]".

Proor. The lemma follows using Lemma 3.2.

THEOREM 6. Let Y(s, t; ) = I(s, t, w; f) = §¢ {3 f(u, v; w) dX(u, v; w). Then
{Y(s, t; w): (s, £) €[0, 8] X [0, T} is a martingale.

Proor. Let{f,(s, t; )} be a sequence in H such that ||f, — f]|,.— 0 as n— co.
Let Y, (s, t; w) = I(s, t, w5 f,). Y,(s,t; w)n=1,2, ..., is measurable with respect
to &, for all (s, f)e[0, 8] X [0, T] and ||Y, — Y||q— 0 as n— co. Hence
Y(s, t; ») is measurable with respect to .7, for all (s, f) € [0, S] x [0, T].

Let (s, ¢) < (s, ). Without loss of generality we may assume that f, e
H(spy « s Sps by -+ -5 t,) Where s’ =5, ' = t;, s = 5,,t =t are partition points.
We can write

E[Y,(s, t; )| F ] = Dt Dhat E[fu(Sins 03 @)AX; | F 0]
+ Z£=1 Z’}=,B+1 E[fn(si—v tj-l; w)AXij |-7€z—;'t']
+ Dicart L=t ELfu(Sicn 405 @)AX; | F 0]
=14+ 114 1II.

In I both f,(s;_,, t;_,; w) and AX;; are measurable with respect to .#,.,., hence
I =Y, t; w)a.s. Toshow that II and III are zero, for each term in II and
III we consider the o-field &, where y = max [, 5;_,], r = max [, t;_,]. F,v
is a sub-o-field of .7, f,(s;_, t;_,; ®) is measurable with respect to & . and
AX;; is independent of & .. Thus, for a typical term in II or III, E[f,(s;-y
iy 0)AX | F 0] = EE[fu(sior 4o @)AXy; | F 0| F o) = E[fa(Sicn 0
0)E[AX;;]| # ] = 0 a.ss. Hence E[Y,(s, t; 0)| F,,] = Y, (5, F; w) a.s. Lett-
ing n — oo gives the desired result.
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As an application of the stochastic integral we find a solution of the diffusion
equation

(3:5) AY[(s, 1), (0, 0); w] = §§ §3m[u, v; Y(u, v; @)] dudv
+ V¢85 o[u, v; Y(u, v; 0)] dX(u, v; ©) .

The following hypotheses are made.

(i) m(+, +; +)and a(-, «; +) are Baire functions of (s, #; 1) for (s, 1) € [0, ST X
[0, T], —o0 < 7 < o0.
(ii) There is a constant K such that |m(s, £; 7)| < K(1 + 7))}, 0 S o(s, 57) =
K(1 + 7).
(iii) m(+, +; +) and a(-, +; ») satisfy a uniform Lipschitz condition in 7 i.e.
lm(s, t; m,) — m(s, t, )| < K|n, — 7|, |o(s, £ 195) — (s, & 7)| < K|y, — 7, where
K is independent of s, ¢ and 7.

Assuming hypotheses (i), (ii) and (iii) it is possible using Lemma 3.4 and an
iterative process as in the one-dimensional case (Doob [6] page 277-282) to con-
struct a process Y(s, #; ) having the following properties.

(A) The Y(s, t; w) sample functions are almost all continuous in [0, S x [0, 7.

(B) §&§5 E[Y(s, t; w)]Pds dt < oco.

(C) For each (s, #,) € [0, S] X [0, T, Y(s,, #,; o) is independent of AX[(s;, £;),
(8;-1> t;_q); @] fOr 5, = s, 01 1;_, = 1,

(D) Y(s, t; ») is measurable with respect to <7, = o{X(u, v; ®): (4, V) <
(s, 9} v a{Y(0, 0; ®), Y(u, 0; ®), Y(0, v; ®): (u, v) < (s, 1)}

(E) For each (s, t) [0, S] x [0, T], ¥(s, t; w) satisfies (3.5). The process
Y(s, t; w) is essentially uniquely determined.

4. Sample variation. Let {X(s, : 0): (s, 1) € [0, S] X [0, T]} be a Gaussian sto-
chastic process of real-valued random variables with mean function m(s, ?) and
covariance function R(s,, t;; 8, t,) = E[X(s,, t,;; @)X(8,, ty; @)] — m(sy, t)m(s;, 15)
satisfying the following conditions:

(i) m(s, t) has bounded second order partial derivatives on [0, S] X [0, T].
(i) R(sy, b 8o 1) is continuous for0 < s, 5, < 8, 0 < 4, 1, < T and has uni-
formly bounded third order partial derivatives for s, # s,, t, % £

Define
R(s, t; 5, £) — R(s, t; u, t) — R(s, t; 5, V) + R(s, t; u, V)
(s —u)(t —v)
Similarly define D,~(s, ), D,*(s, ) and D_~(s,#). Let f(s,#) = D_~(s, 1) —
D_*(s,t) — D, (s, t) + D,*(s, ?).
Note. Unless otherwise indicated the sums in this section will be on j, k =
1, ..., 2" and the indices will be omitted.

D_+(S, t) = 1imu—>s+;v—~t—
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THEOREM 7. If X(s, t; w) satisfies the above conditions then with probability one,
4.1y lim,__ 3 [AX[(jS2-", kT2"), ((j — 1)S27*, (k — 1)T2"); o]]?
= {7 §5 f(s, Hydsdt.
Proor. The proof uses Taylor’s series expansions and follows the methods

used by Baxter [1].

CoRroLLARY 1. If {X(s, t; w): (s, t) € [0, S] X [0, T} satisfies the assumptions
of Theorem 7 and if )

R(sy, 15 855 1) = u(sy, 8)V(Sy, 1) 5558, L,
= u(Sy, L)V(Sy, 1) S8, L=
= U(Sy, L)V(Sy, ty) S5 =8, L=,
= u(Sy, L)V(Sy, 1) =8, L=t

then with probability one,
lim,_., > [AX[(jS27", kT27™), (j — 1)S27", (k — )T27); 0]]?

. (s, 1) du(s, 1) du(s, 1)
= {745 | u(s, ¢ —
o §s ["(s )55 a1 as ot
— DD IS0 s, P D T g ar.
ot as ds ot

CoROLLARY 2. Let{X(s, t; ): (s, f) € [a, b] X [c, d]} be a Gaussian process satis-
fying the conditions of Theorem 7. Then with probability one,
(4.2) lim,_, > [AX[(@ + j(c — a)27", b + k(d — b)2™"),
X(@+ (j— e —a2™ b+ (k— 1)d— 5)27); 0]
= {44 f(s, )ds dt .
CoROLLARY 3. Let {X(s, t; w): (s, t) €[0, S] X [0, T]} be a Gaussian process

withmean function zero and covariance function R(s,, t,; 5,, t,) = min (s,, s,) min (¢, t,).
Then with probability one,

lim, .. Y [AX[(jS27", kT2, ((j — 1)S2-", (k — 1)T2~"); o] = ST.
THEOREM 8. Let {Y(s, t; w): (s, t) € [0, 8] X [0, T} be a solution of the diffusion
equation (3.5), then with probability one,
4.3) lim,_,, > [AY[(jS27", kT2 ™), (j — 1)S27", (k — 1)T27"); o]]?
= {7 §5 ou, v; Y(u, v; )] dudv .
PrOOF. Let K = kT2, K — 1 = (k — 1)T2™", J = jS2-", J — 1 =(j — 1)S2-*,
then
Z[AY[U, K), (V= 1, K = DJP = X [§&-1 §7mlu, v; Y(u, v)] du dv]?
+ 2 2 (V& Sa-umlu, v; Y(u, v)] du d][§5_, §7-, ofu, v; Y(u, v)] dX(u, v)]
+ X [8E-, §2o o[u, v; Y(u, v)] dX(u, V)] = 4, + 2B, + C, .
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It can be shown that 4, — 0, |B,| — 0 a.s. as n— oo. Hence the existence of
the limit on the left-hand side is an event whose probability is the same for all
functions m(s, ¢; 7) satisfying (i), (ii) and (iii) and the value of the limit when it
exists is independent of m(s, t; 7). We shall use m(s, t; 7) = 0 in our calculations.

The sum of squares of the increments of the process can be decomposed in
the following manner.

2 [8% 71 o[, v; Y(u, v)] dX(u, 0)F
=1 2 [§5. Vo Flo, Y, u, v, K, J) dX(u, v)]°

where F(o, Y, u, v, K, J) = {o[u, v; Y(u, v)] — o[u, K — 1; Y(u, K — 1)]} +
{o[u, v; Y(u, v)] — o[J — 1, v; Y(J — 1,0)]} + {o[u, K — 1; Y(u,K — 1)] — o[/ —
LEK—1LYJ—-LEK—-—D)}+{eJ—-—1,v»YJ—-1v]—-0/—-1K-—1
YU—-1L,K—D)}+20[J—LK—-1LY(J—-1K —'1)]. When expanded this
sum of squares gives fifteen terms. It can be shown, using methods similar to
those employed by Berman [2], that the absolute values of all terms in the sum
converge to zero almost surely as 7 — co with the exception of the term

S, = X [{E §ol — LK — 15 Y(J — 1, K — 1)] dX(u, v)
= 3 @[(j — 1)S2", (k — )27 Y((j — 1)S27", (k — 1)T27™)]
x [AX[(jS2, kT2, ((j — 1)S27*, (k — 1)T2-")]]*.

Let m be an arbitrary fixed positive integer. Then for n > m, I' = {(s, 7):
(@ — HS2 ™ < s < aS2™, (B — NT2™™ <t < fT2™™), Xis ming o*s, £;
Y(s, )] T30 [AX[({(a — D27 4 278, {(8 — 127" + k27T), ({(e — 27"+
(— 12778, {(B — 127" + (k — D27 )P < S, < Doy maxe ofs, 15 ¥,
H] Zm AX[({(a — D27 + j277)S, (B — D27 + k27 T), ({(@ — 127" +
(j — D278, {(B — 1)2~™ + (k — 1)27"}T)]]*. Applying Corollary 2 of Theorem
7, we see that the lower bound converges a.s. as n— oo to

_ ming o¥[s, t; Y(s, f)][a2™ — (a — 1)27"]S[27" — (8 — 1)27"]T
= » ¥, ming o’s, £ Y(s, H](S2—™)(T2~™)
and the upper bound converges a.s. as n — co to Y7 maxy o’[s, £; ¥(s, 1)] X
(§2-™)(T2~™). As m — oo these bounds converge a.s. to the common limit
§7 §8 o”[u, v; Y(u, v)] dudv since o’[s, t; Y(s, t; w)] is a continuous function of
(s, f) with probability one.
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