SOME SAMPLE FUNCTION PROPERTIES OF THE TWO-PARAMETER GAUSSIAN PROCESS

BY GRENITH J. ZIMMERMAN

Loma Linda University

Let $\{X(s,t;\omega)\colon (s,t)\in [0,\infty)\times [0,\infty)\}$ be a two parameter Gaussian process with mean function zero and covariance function $R(s_1,t_1;s_2,t_2)=\min{(s_1,s_2)}\min{(t_1,t_2)}$. This paper derives a multiparameter law of the iterated logarithm and modulus of continuity for the process $X(s,t;\omega)$. Estimates are also given which enable the author to define an Itô type integral for a suitable class of functions and to solve a diffusion equation involving the process.

1. Introduction. A number of papers have appeared in the literature defining multiparameter analogs of the Brownian motion process. Čencov [3] and Yeh [12] have shown that a multiparameter process with parameter space the p-dimensional unit cube A and covariance function $R[(u_1, \dots, u_p), (v_1, \dots, v_p)] = \min(u_1, v_1) \cdots \min(u_p, v_p)$ can be realized in the space of continuous functions on A which vanish on $A_0 = \{(u_1, \dots, u_p) \in A : u_j = 0 \text{ for some } j, 1 \leq j \leq p\}$. Delporte [5] and W. Park [11] construct such a process on the unit cube using a Haar function expansion and W. Park generalizes some results of C. Park, Shepp and Yeh.

In the present paper a Haar function construction was used with an arctangent transformation (Ciesielski [4]) to define a Gaussian process $\{X(s, t; \omega) : (s, t) \in [0, \infty) \times [0, \infty)\}$ with mean function $m(s, t) \equiv 0$ and covariance function $R(s_1, t_1; s_2, t_2) = \min(s_1, s_2) \min(t_1, t_2)$. The sample functions of this process are continuous and the process has independent increments (i.e. if $0 = s_0 < \cdots < s_m = S$, $0 = t_0 < \cdots < t_n = T$ partitions $[0, S] \times [0, T]$, the random variables $\{\Delta X[(s_i, t_j), (s_{i-1}, t_{j-1}); \omega] : i = 1, \cdots, m, j = 1, \cdots, n\}$ where $\Delta X[(s_i, t_j), (s_{i-1}, t_{j-1}); \omega] = X(s_i, t_j; \omega) - X(s_i, t_{j-1}; \omega) - X(s_{i-1}, t_j; \omega) + X(s_{i-1}, t_{j-1}; \omega)$, are mutually independent).

Sample function properties of the process $X(s, t; \omega)$ are examined, an Itô type integral is defined for a suitable class of functions and a diffusion equation is solved. Some properties of the integral and the solution of the diffusion equation are also investigated.

A different generalization of Brownian motion to a p-dimensional parameter space has been discussed by Lévy [9].

2. Sample function properties of $X(s, t; \omega)$. For fixed $t = t_0$, $X(s, t; \omega)$ is a one-dimensional Brownian motion process with mean function zero and covariance function $R(s_1, s_2) = t_0 \min(s_1, s_2)$.

We define a partial ordering on $[0, \infty) \times [0, \infty)$ by (s', t') < (s, t) if $s' \leq s$,

Received April 6, 1971; revised November 11, 1971.

 $t' \leq t$. Let \mathscr{F}_{st} be the σ -field generated by the random variables $\{X(u, v; \omega):$ (u, v) < (s, t).

Lemma 2.1. Let $0 = s_0 < \cdots < s_m = S$, $0 = t_0 < \cdots < t_n = T$ be a partition of $[0, S] \times [0, T]$. Let $(s, t) \in [0, S] \times [0, T]$. If $s_{i-1} \ge s$ or $t_{j-1} \ge t$, then $\Delta X[(s_i, t_j), (s_{i-1}, t_{j-1}); \omega]$ is independent of \mathcal{F}_{st} .

PROOF. Since $X(s, t; \omega)$ is a Gaussian process and since $\Delta X[(s_i, t_i), (s_{i-1}, t_{i-1})] =$ ΔX_{ij} independent of every finite linear combination of $X(u_1, v_1), \dots, X(u_n, v_n)$, $(u_i, v_i) < (s, t), i = 1, \dots, n$, implies ΔX_{ij} is independent of \mathcal{F}_{st} , it is sufficient to show that $E[\Delta X_{ij}X(u, v)] = 0$ for (u, v) < (s, t).

LEMMA 2.2. Let $(s_1, t_1), (s_2, t_2) \in [0, \infty) \times [0, \infty)$. The random variable $\Delta X[(s_2, t_2),$ (s_1, t_1) ; ω] is Gaussian with mean zero and covariance $|s_2 - s_1||t_2 - t_1|$.

PROOF. Clearly $\Delta X[(s_2, t_2), (s_1, t_1); \omega]$ is a Gaussian random variable with mean zero. The covariance can be verified by a simple computation.

Theorem 1. For $\lambda \geq 0$,

$$(2.1) P[\omega: \sup_{(s,t)\in[0,S]\times[0,T]} X(s,t;\omega) \ge \lambda] \le 4P[X(S,T;\omega) \ge \lambda].$$

PROOF. Consider $X(s, t; \omega)$ at the points $\{(iS2^{-m}, jT2^{-n}): i = 0, 1, \dots, 2^m; \}$ $j=0,\,\cdots,\,2^n$. Let $Z_i(\omega)=\max_{0\leq j\leq 2^n}X(iS2^{-m},jT2^{-n};\,\omega)$ and let

$$I(\omega) = \inf \{i \colon Z_i(\omega) \ge \lambda\} \qquad (I(\omega) = +\infty \text{ if } \{i \colon Z_i(\omega) \ge \lambda\} = \emptyset),$$

 $J(\omega) = \inf \{j \colon X(IS2^{-m}, jT2^{-n}; \omega) \ge \lambda\} \qquad (J(\omega) = +\infty \text{ if } I(\omega) = +\infty).$

Then

$$P[\max_{i,j} X(iS2^{-m}, jT2^{-n}) \ge \lambda] = P[X(IS2^{-m}, JT2^{-n}) \ge \lambda]$$

$$= P[X(IS2^{-m}, JT2^{-n}) \ge \lambda, X(S, JT2^{-n}) \ge \lambda]$$

$$+ P[X(IS2^{-m}, JT2^{-n}) \ge \lambda, X(S, JT2^{-n}) < \lambda].$$

Now, using Lemma 2.1, the symmetry of the increments of $X(s, t; \omega)$ and the fact that $X(s, 0; \omega) = 0$ a.s. for $s \in [0, \infty)$, we have

$$P[X(IS2^{-m}, JT2^{-n}) \ge \lambda, X(S, JT2^{-n}) < \lambda]$$

$$= \sum_{i,j} P[I(\omega) = i, J(\omega) = j, X(S, JT2^{-n}) < \lambda]$$

$$\le \sum_{i,j} P[I(\omega) = i, J(\omega) = j, X(S, jT2^{-n}) - X(iS2^{-m}, jT2^{-n}) < 0]$$

$$= \sum_{i,j} P[I(\omega) = i, J(\omega) = j]P[\Delta X[(S, jT2^{-n}), (iS2^{-m}, 0)] < 0]$$

$$= \sum_{i,j} P[I(\omega) = i, J(\omega) = j]P[\Delta X[(S, jT2^{-n}), (iS2^{-m}, 0)] > 0]$$

$$\le \sum_{i,j} P[I(\omega) = i, J(\omega) = j, X(S, jT2^{-n}) \ge \lambda]$$

$$\le P[X(S, JT2^{-n}) \ge \lambda].$$

Combining this result with (2.2) gives

(2.4)
$$P[\max_{i,j} X(iS2^{-m}, jT2^{-n}) \ge \lambda] \le 2P[X(S, JT2^{-n}) \ge \lambda]$$

 $\le 2P[\sup_i X(S, jT2^{-n}) \ge \lambda] \le 4P[X(S, T) \ge \lambda]$

by the corresponding theorem for one-dimensional Brownian motion. Using the continuity of the sample paths of the process $X(s, t; \omega)$ and letting $n \to \infty$ gives (2.1).

Let f(x, y) be a function defined on $[0, \infty) \times [0, \infty)$. By $\limsup_{s,t\to\infty} f(s,t)$ we shall mean $\lim_{s,t\to\infty} \sup_{(u,v)>(s,t)} f(u,v)$. Theorem 2 is a multiparameter version of the law of the iterated logarithm. If the \limsup is taken as $s,t\to\infty$, the constant in the multiparameter version is equal to 4, however if the \limsup is taken as $s\to\infty$ while t remains in some bounded interval $0 < a \le t \le b < \infty$, the result has constant equal to 2 as in the one parameter version of the theorem. This is shown in Theorem 3.

THEOREM 2.
$$P\left[\omega: \limsup_{s,t\to\infty}\frac{X(s,t;\omega)}{[4st\log_2 st]^{\frac{1}{2}}}=1\right]=1.$$

PROOF. The proof is an analog of the standard proof of the one-dimensional theorem and will be omitted.

THEOREM 3. Let $0 < a \le b < \infty$, then

(i)
$$P\left[\omega: \limsup_{s\to\infty} \sup_{a\leq t\leq b} \frac{X(s, t; \omega)}{[2st\log_s st]^{\frac{1}{2}}} = 1\right] = 1,$$

(ii)
$$P\left[\omega: \limsup_{s\to\infty} \frac{X(s,\,t;\,\omega)}{[2st\log_2 st]^{\frac{1}{2}}} \ge 1 \quad for \ all \quad t\in[a,\,b]\right] = 1.$$

PROOF. Let $0 < \varepsilon < 1$ and suppose that

$$(2.5) P\Big[\omega: \limsup_{s\to\infty} \sup_{a\leq t\leq b} \frac{X(s,\,t;\,\omega)}{[2st\log_2 st]^{\frac{1}{2}}} > 1 + \varepsilon\Big] > 0.$$

Divide the interval [a, b] into m equal parts each of length $\delta = (b - a)/m$. If (2.5) is true then for each m there exists some subinterval $[a_m, b_m]$ contained in [a, b] such that

$$(2.6) P\Big[\omega: \limsup_{s\to\infty}\sup_{a_m\leq t\leq b_m}\frac{X(s,\,t;\,\omega)}{[2st\log_2 st]^{\frac{1}{2}}}>1+\varepsilon\Big]>0.$$

Let m be chosen so that $\delta=(b-a)/m<(a\varepsilon)/2$ and let $1< q<1/(1-\varepsilon/2)$. Let $G(x,y)=[2xy\log_2 xy]^{\frac{1}{2}}$ and $A_{k\delta}=[\omega:\sup_{0< s\leq q^k}\sup_{a_m\leq t\leq b_m}X(s,t;\omega)>(1+\varepsilon)G(q^{k-1},a_m)]$. Then

$$\begin{split} P[A_{k\delta}] & \leq P[\omega : \sup_{0 < s \leq q^k; \ 0 < t \leq b_m} X(s, t; \omega) > (1 + \varepsilon) G(q^{k-1}, a_m)] \\ & \leq 4P[\omega : X(q^k, a_m + \delta) > (1 + \varepsilon) G(q^{k-1}, a_m)] \\ & \leq \frac{2q^{\frac{1}{2}}[(a_m + \delta)/a_m]^{\frac{1}{2}}}{(1 + \varepsilon)[\pi \log_2 (q^{k-1}a_m)]^{\frac{1}{2}}} [(k - 1) \log q + \log a_m]^{-\gamma} \end{split}$$

where

$$\gamma = \frac{(1+\varepsilon)^2 a_m}{q(a_m+\delta)} > \frac{(1+\varepsilon)^2 (1-\varepsilon/2)}{(1+\varepsilon/2)} > 1.$$

Hence $\sum_{k=1}^{\infty} P[A_{k\delta}] < \infty$ and by the Borel-Cantelli lemma $P[A_{k\delta} \text{ i.o.}] = 0$ which contradicts (2.6). Thus

$$(2.7) P\Big[\omega: \limsup_{s\to\infty} \sup_{a\leq t\leq b} \frac{X(s,t;\omega)}{[2st\log_s st]^{\frac{1}{2}}} < 1 + \varepsilon\Big] = 1.$$

For any fixed t, $a \le t \le b$, using the one-dimensional theorem

$$P\bigg[\omega: \limsup_{s\to\infty}\frac{X(s,\,t;\,\omega)}{[2st\log_2 st]^{\frac{1}{2}}}>1-\varepsilon\bigg]=1\;.$$

Hence

$$(2.8) P\Big[\omega: \limsup_{s\to\infty} \sup_{a\leq t\leq b} \frac{X(s,t;\omega)}{[2st\log_s st]^{\frac{1}{2}}} > 1-\varepsilon\Big] = 1.$$

Combining (2.7) and (2.8) we have (i).

We now prove (ii). Without loss of generality we may assume that $b \le 1$, since $X(bs, b^{-1}t; \omega)$ has the same distribution as $X(s, t; \omega)$ and

$$\begin{split} \left[\omega: \limsup_{s \to \infty} \frac{X(s, t; \omega)}{[2st \log_2 st]^{\frac{1}{2}}} > 1 - \varepsilon \quad \text{for all} \quad t \in [a, b] \right] \\ &= \left[\omega: \limsup_{u \to \infty} \frac{X(u, v; \omega)}{[2uv \log_2 uv]^{\frac{1}{2}}} > 1 - \varepsilon \quad \text{for all} \quad v \in [ab^{-1}, 1] \right]. \end{split}$$

Suppose

$$(2.9) P\Big[\omega: \limsup_{s\to\infty}\frac{X(s,\,t;\,\omega)}{[2st\log_s st]^{\frac{1}{2}}} \leq 1-\varepsilon \text{ for some } t\in[a,\,b]\Big] > 0.$$

As above, for each m divide the interval [a, b] into m subintervals each of length $\delta = (b - a)/m$. Then (2.9) implies that for each m there exists some subinterval $[a_m, b_m]$ of length δ such that

$$(2.10) P\Big[\omega: \limsup_{s\to\infty}\frac{X(s,\,t;\,\omega)}{[2st\log_s st]^{\frac{1}{2}}} \le 1-\varepsilon \text{ for some } t\in[a_m,\,b_m]\Big]>0.$$

Let *m* be chosen so that, $\delta < (a\varepsilon^4)/4$ and let q > 1 be such that $2/[(q-1)^{\frac{1}{2}}] < \varepsilon/4$, $[q/(q-1)]^{\frac{1}{2}} < 1 + \varepsilon/2$. From the proof of the law of the iterated logarithm for one-dimensional Brownian motion (Loève [10] page 560), we have

$$(2.11) X(q^n, b_m) - X(q^{n-1}, b_m) > \{(1 - \varepsilon/4)b_m^{\frac{1}{2}}[(q-1)/q]^{\frac{1}{2}}[2q^n \log_2 q^n]^{\frac{1}{2}}\} i.o.$$

The first half of the theorem implies that for $a \le t \le b$, $n \ge n_1(q, \omega)$,

$$|X(q^{n-1}, t)| \leq 2(t/q)^{\frac{1}{2}} [2q^n \log_2 q^n]^{\frac{1}{2}}.$$

For $t \in [a_m, b_m]$, let $A_n(t) = [\omega : \Delta X[(q^n, b_m), (q^{n-1}, t)] \ge [2q^n \log_2 q^n]^{\frac{1}{2}} \gamma(t)]$, where $\gamma(t) = \{(1 - \varepsilon/4)b_m^{\frac{1}{2}}[(q-1)/q]^{\frac{1}{2}} - 2(t/q)^{\frac{1}{2}} - (1 - \varepsilon)t^{\frac{1}{2}}\}$ and let $A_n = (1 - \varepsilon)t^{\frac{1}{2}}$

$$\begin{split} [\omega: \sup_{a_m \leq t \leq b_m} \Delta X[(q^n, b_m), (q^{n-1}, t)] & \geq [2q^n \log_2 q^n]^{\frac{1}{2}} \gamma(b_m)]. \text{ Then } A_n(t) \text{ is a subset of } A_n, \ a_m \leq t \leq b_m, \ n = 1, 2, \cdots, \text{ and } P[A_n] = P[\omega: \sup_{a_m \leq t \leq b_m} \Delta X[(q^n, b_m), (q^{n-1}, t)] \geq [2q^n \log_2 q^n]^{\frac{1}{2}} \gamma(b_m)] \leq P[\omega: X(1, 1; \omega) \geq \{[2q^n \log_2 q^n]^{\frac{1}{2}} \gamma(b_m)\}/[(q^n - q^{n-1})\delta]^{\frac{1}{2}}] \leq \text{Constant } [n \log q]^{-\alpha} \text{ where } \alpha = [q/[(q-1)\delta]]\gamma^2(b_m) = (b_m/\delta)\{(1-\varepsilon/4) - 2/(q-1)^{\frac{1}{2}} - (1-\varepsilon)[q/(q-1)]^{\frac{1}{2}}\} > (a/\delta)(\varepsilon^4/4) > 1. \text{ Hence } \sum_{n=1}^\infty P[A_n] < \infty \text{ and by the Borel-Cantelli lemma } P[A_n \text{ i.o.}] = 0. \text{ Thus if } n \geq n_2(\omega) \end{split}$$

$$(2.13) \Delta X[(q^n, b_m), (q^{n-1}, t)] < [2q^n \log_2 q^n]^{\frac{1}{2}} \gamma(t) \text{ for all } t \in [a_m, b_m].$$

If $n \ge \max\{n_1(\omega), n_2(\omega)\}$, then (2.12) and (2.13) hold. If (2.11) also holds it follows that

$$(2.14) X(q^n, t) > (1 - \varepsilon)t^{\frac{1}{2}} [2q^n \log_2 q^n]^{\frac{1}{2}} > (1 - \varepsilon)[2q^n t \log_2 (q^n t)]^{\frac{1}{2}}$$

for all $t \in [a_m, b_m]$. Hence (2.14) is true infinitely often contradicting (2.10). Thus (ii) follows.

COROLLARY. There exists a set Ω_0 of probability zero such that if $\omega \notin \Omega_0$, $X(s, t; \omega)$ satisfies the one-parameter law of the iterated logarithm (as a function of s) simultaneously on the lines t = T, $0 < T < \infty$.

PROOF. (i) and (ii) imply that for any finite interval [a, b],

$$(2.15) P\bigg[\omega: \limsup_{s\to\infty}\frac{X(s,\,t;\,\omega)}{[2st\log_s st]^{\frac{1}{2}}}=1 \text{ for all } t\in[a,\,b]\bigg]=1.$$

Let $\{a_n\}$, $\{b_n\}$ be sequences such that $a_n \downarrow 0$, $b_n \uparrow \infty$. Let

$$A_n = \left[\omega : \limsup_{s \to \infty} \frac{X(s, t; \omega)}{[2st \log_2 st]^{\frac{1}{2}}} = 1 \text{ for all } t \in [a_n, b_n]\right].$$

Then $A_n \downarrow$, and by (2.15) $P[A_n] = 1$ for each n, hence $P[\lim_{n\to\infty} A_n] = P[\omega]$: $\limsup_{s\to\infty} X(s,t;\omega)/[2st\log_2 st]^{\frac{1}{2}} = 1$ for all $t \in (0,\infty)$] = $\lim_{n\to\infty} P[A_n] = 1$.

Theorem 4. Let S, $T \ge 1$, (s_1, t_1) , $(s_2, t_2) \in [0, S] \times [0, T]$, then

$$(2.16) P\Big[\omega: \limsup_{|t_2-t_1|=\eta\downarrow 0; |s_2-s_1|=\varepsilon\downarrow 0} \frac{|\Delta X[(s_2,t_2),(s_1,t_1);\omega]|}{[2\varepsilon\eta\log(1/\varepsilon\eta)]^{\frac{1}{2}}} = 1\Big] = 1.$$

PROOF. The proof uses generalizations of the ideas and methods of the onedimensional case as given by Itô and McKean [8].

3. Stochastic integrals and diffusion equations. Let $\{Z(s, t; \omega) : (s, t) \in [0, \infty) \times [0, \infty)\}$ be a stochastic process. $Z(s, t; \omega)$ is said to be a martingale with respect to $\mathscr{F}_{st} = \sigma\{Z(u, v; \omega) : (u, v) < (s, t)\}$ if $Z(s, t; \omega)$ is integrable for all $(s, t) \in [0, \infty) \times [0, \infty)$ and whenever $(s, t), (s', t') \in [0, \infty) \times [0, \infty)$ are such that $(s', t') < (s, t), E[Z(s, t; \omega) | \mathscr{F}_{s't'}] = Z(s', t'; \omega)$ a.s.

THEOREM 5. Let (s_0, t_0) be a fixed point in $[0, S] \times [0, T]$. The process $\{\Delta X[(s, t), (s_0, t_0); \omega] : s_0 \le s \le S, t_0 \le t \le T\}$ is a martingale.

PROOF. Clearly $\Delta X[(s,t),(s_0,t_0);\omega]$ is integrable for all (s,t). Let $\mathscr{C}_{st}=\sigma\{X(u,v;\omega):s_0\leq u\leq s,\,t_0\leq v\leq t\}$. If $(s_0,t_0)<(s',t')<(s,t)$, write $\Delta X[(s,t),t]$

 $(s_0, t_0)] = \Delta X[(s, t), (s', t')] + \Delta X[(s', t'), (s_0, t_0)] + \Delta X[(s', t), (s_0, t')] + \Delta X[(s, t'), (s', t_0)].$ By Lemma 2.1, $\Delta X[(s, t), (s', t')], \Delta X[(s, t'), (s', t_0)]$ and $\Delta X[(s', t), (s_0, t')]$ are independent of $\mathcal{G}_{s't'}$. $\Delta X[(s', t'), (s_0, t_0)]$ is measurable with respect to $\mathcal{G}_{s't'}$. Hence $E[\Delta X[(s, t), (s_0, t_0)]] \mathcal{G}_{s't'}] = \Delta X[(s', t'), (s_0, t_0)].$

We want to define an Itô type integral $I(s, t, \omega; f)$ for the class \mathscr{M} of square integrable functions $f(s, t; \omega)$ defined on $[0, S] \times [0, T] \times \Omega$ having the property that $f(s, t; \omega)$ is measurable with respect to $\mathscr{F}_{st} = \sigma\{X(u, v; \omega) : (u, v) < (s, t)\}$ for all $(s, t) \in [0, S] \times [0, T]$. The following lemmas give the estimates needed to construct such an integral and to solve a differential equation involving $X(s, t; \omega)$.

LEMMA 3.1. Let $X(\omega)$ and $Y(\omega)$ be random variables on a probability space (Ω, \mathcal{F}, P) . Let \mathcal{F}_0 be a sub- σ -field of \mathcal{F} . If (i) X is independent of Y, (ii) X is independent of \mathcal{F}_0 , (iii) E[X] = 0, (iv) $E[XY] < \infty$, then $E[XY | \mathcal{F}_0] = 0$ a.s.

LEMMA 3.2. Let $X_{ij}(\omega)$ and $Y_{ij}(\omega)$ $i=1, \dots, m; j=1, \dots, n$ be random variables such that

- (i) $E[X_{ij}(\omega)] = 0$ for all i and j,
- (ii) $E[X_{ij}(\omega)Y_{ij}(\omega)] < \infty$ for all i and j
- (iii) $Y_{uv}(\omega)$ $u \leq i$, $v \leq j$ and $X_{uv}(\omega)$ $u \leq i-1$, $v \leq j-1$ are independent of $X_{uv}(\omega)$ $u \geq i$ or $v \geq j$. Let $S_{ij}(\omega) = \sum_{u=1}^{i} \sum_{v=1}^{j} X_{uv}(\omega) Y_{uv}(\omega)$, then

(3.1)
$$P[\omega : \max_{i,j} |S_{ij}| \ge b] \le (4/b^2) E[S_{mn}]^2$$

$$(3.2) E[\max_{i,j} |S_{ij}|^2] \le 16E[S_{mn}]^2.$$

PROOF. We first show that $\{S_{mj}: 1 \leq j \leq n\}$ is a martingale with respect to \mathscr{F}_{mj} . If $j' \leq j$, using Lemma 3.1 and the fact that $S_{mj'}$ is $\mathscr{F}_{mj'}$ measurable, we have

$$\begin{split} E[S_{mj} \, | \, \mathscr{F}_{mj'}] &= \sum_{u=1}^{m} \sum_{v=1}^{j'} E[X_{uv} \, Y_{uv} \, | \, \mathscr{F}_{mj'}] + \sum_{u=1}^{m} \sum_{v=j'+1}^{n} E[X_{uv} \, Y_{uv} \, | \, \mathscr{F}_{mj'}] \\ &= \sum_{v=1}^{m} \sum_{v=1}^{j'} X_{vv} \, Y_{uv} = S_{mj'} \, . \end{split}$$

Similarly $E[S_{mj} | \mathscr{F}_{in}] = S_{ij}$ and thus using Jensen's inequality $E[|S_{mj}| | \mathscr{F}_{in}] \ge |S_{ij}|$.

Let $Z_i(\omega) = \max_{1 \le j \le n} |S_{ij}(\omega)|$ and let $I(\omega) = \min \{i : Z_i(\omega) \ge b\}$ $(I(\omega) = +\infty)$ if $\{i : Z_i(\omega) \ge b\} = \emptyset$, $J(\omega) = \min \{j : |S_{ij}| \ge b\}$ $(J(\omega) = +\infty)$ if $I(\omega) = +\infty$. Now $\Lambda = [\omega : \max_{i,j} |S_{ij}| \ge b] = \bigcup_{i=1}^m \bigcup_{j=1}^n [\omega : I(\omega) = i, J(\omega) = j] = \bigcup_{i=1}^m \bigcup_{j=1}^n B_{ij}$ and the sets B_{ij} are disjoint.

For any (i,j), (0,0) < (i,j) < (m,n) $\int_{B_{ij}} S_{mj}^2 dP = E[S_{ij}^2 I_{B_{ij}}] + E[(S_{mj} - S_{ij})^2 I_{B_{ij}}] \ge \int_{B_{ij}} S_{ij}^2 dP$ since $E[S_{ij}(S_{mj} - S_{ij})I_{B_{ij}}] = 0$. Thus

(3.3)
$$E[S_{mJ}^2] \ge \int_{\Lambda} S_{mJ}^2 dP = \sum_{i=1}^m \sum_{j=1}^n \int_{B_{ij}} S_{mj}^2 dP \ge \sum_{i=1}^m \sum_{j=1}^n \int_{B_{ij}} S_{ij}^2 dP$$

$$\ge b^2 P[\Lambda]$$

and since $\{S_{mj}: 1 \leq j \leq n\}$ is a martingale with respect to \mathscr{F}_{mj} , we have

(3.4)
$$E[S_{mJ}^2] \le E[\max_{1 \le j \le n} S_{mj}^2] \le 4E[S_{mn}^2]$$

(Doob [6] Chapter VII, Theorem 3.4).

(3.1) follows from (3.3) and (3.4).

To prove (3.2), we note that

$$P[\omega : \max_{i,j} |S_{ij}| \ge b] = \sum_{i=1}^{m} \sum_{j=1}^{n} P[B_{ij}] \le (1/b) \sum_{i=1}^{m} \sum_{j=1}^{n} \int_{B_{ij}} |S_{ij}| dP$$

$$\le (1/b) \sum_{i=1}^{m} \sum_{j=1}^{n} \int_{B_{ij}} E[|S_{mj}|| \mathscr{F}_{in}] dP = (1/b) \sum_{i=1}^{m} \sum_{j=1}^{n} \int_{B_{ij}} |S_{mj}| dP$$

$$= (1/b) \int_{\Lambda} |S_{m,l}| dP$$

since $B_{ij} \in \mathscr{F}_{in}$. Using Theorem 3.4' (Chapter VII [6]) and (3.4), we have $E[\max_{i,j} |S_{ij}|^2] = E[(\max_{i,j} |S_{ij}|^2] \le 4E[|S_{mJ}|^2] \le 16E[S_{mn}^2]$.

Let $f(s,t;\omega)$ be an \mathscr{F}_{st} measurable function for all s and t. Let $0=s_0 < s_1 < \cdots < s_m = S$, $0=t_0 < t_1 < \cdots < t_n = T$ partition $[0,S] \times [0,T]$. Consider the product $f(s_{i-1},t_{j-1};\omega)f(s_{u-1},t_{v-1};\omega)\Delta X_{ij}\Delta X_{uv}$. Without loss of generality we may assume that $s_{u-1} \leq s_{i-1}$. Then $f(s_{u-1},t_{v-1};\omega)$ and $f(s_{i-1},t_{j-1};\omega)$ are measurable with respect to the σ -field $\mathscr{F}_{s_{i-1}\tau}$ where $\tau = \max{(t_{v-1},t_{j-1})}$ and either (i) ΔX_{uv} is measurable with respect to $\mathscr{F}_{s_{i-1}\tau}$ and ΔX_{ij} is independent of $\mathscr{F}_{s_{i-1}\tau}$ or (ii) ΔX_{uv} and ΔX_{ij} are independent of $\mathscr{F}_{s_{i-1}\tau}$ and also independent of each other.

LEMMA 3.3. Let $f(s, t; \omega)$, $g(s, t, \omega) \in L^2[[0, S] \times [0, T] \times \Omega]$ be functions which are \mathscr{F}_{st} measurable for all s and t. Then

- (i) $E[|f(s_{i-1}, t_{j-1}; \omega)g(s_{u-1}, t_{v-1}; \omega)\Delta X_{ij}\Delta X_{uv}|] < \infty$,
- (ii) $E[f(s_{i-1}, t_{j-1}; \omega)g(s_{u-1}, t_{v-1}; \omega)\Delta X_{ij}\Delta X_{uv}] = 0 \ i \neq u \ or \ t \neq v$
- (iii) $E[f(s_{i-1}, t_{j-1}; \omega)g(s_{i-1}, t_{j-1}; \omega)(\Delta X_{ij})^2] = E[f(s_{i-1}, t_{j-1}; \omega)g(s_{i-1}, t_{j-1}; \omega)] \times (s_i s_{i-1})(t_j t_{j-1}).$

PROOF. These results follow using Lemma 2.1 and the remark preceding the lemma.

Let $\mathscr C$ be the class of measurable functions $f(s,\,t;\,\omega)$ defined on $[0,\,S]\times [0,\,T]\times\Omega$ having the property that $f(s,\,t;\,\omega)$ is measurable with respect to $\mathscr F_{st}=\sigma\{X(u,\,v;\,\omega):(u,\,v)<(s,\,t)\}$ for all $(s,\,t)\in[0,\,S]\times[0,\,T]$. Let $H(s_0,\,\ldots,\,s_m;\,t_0,\,\ldots,\,t_n)$ $0=s_0<\ldots< s_m=S,\,0=t_0<\ldots< t_n=T,$ be the class of functions $f(s,\,t;\,\omega)\in\mathscr M=\mathscr C\cap L^2[[0,\,S]\times[0,\,T]\times\Omega]$ which have $f(s,\,t;\,\omega)=f(s_{i-1},\,t_{j-1};\,\omega)$ for $s_{i-1}\leq s< s_i,\,t_{j-1}\leq t< t_j,\,H=\bigcup H(s_0,\,\ldots,\,s_m;\,t_0,\,\ldots,\,t_n).$ The integral is first defined for functions in H as follows: if $s_k\leq s\leq s_{k+1},\,t_p\leq t\leq t_{p+1},$

$$\begin{split} I(s,\,t,\,\omega;f) &= \sum_{i=1}^k \sum_{j=1}^p f(s_{i-1},\,t_{j-1};\,\omega) \Delta X[(s_i,\,t_j),\,(s_{i-1},\,t_{j-1})] \\ &+ \sum_{i=1}^k f(s_{i-1},\,t_p;\,\omega) \Delta X[(s_i,\,t),\,(s_{i-1},\,t_p)] \\ &+ \sum_{j=1}^p f(s_k,\,t_{j-1};\,\omega) \Delta X[(s_i,\,t_j),\,(s_k,\,t_{j-1})] \\ &+ f(s_k,\,t_p;\,\omega) \Delta X[(s,\,t),\,(s_k,\,t_p)] \;. \end{split}$$

This definition can easily be shown to be independent of the choice of partition used in defining the integral.

The integral so defined has the following properties. For $f, g \in H$ $(L^2 = L^2[[0, S] \times [0, T] \times \Omega])$

- (i) $E[I(s, t, \omega; f)] = 0$ for all $(s, t) \in [0, S] \times [0, T]$,
- (ii) $I(s, t, \omega; \alpha f + \beta g) = \alpha I(s, t, \omega; f) + \beta I(s, t, \omega; g),$
- (iii) $I(s, t, \omega; 1) = \Delta X[(s, t), (0, 0); \omega] = X(s, t; \omega),$
- (iv) $I(s, t, \omega; f)$ is a continuous function of (s, t) with probability one,
- (v) $E[I(s, t, \omega; f)I(s, t, \omega; g)] = (f, g)_{L^2}$
- (vi) $P[\omega : \sup_{0 \le s \le S; \ 0 \le t \le T} |I(s, t, \omega; f)| \ge b] \le (4/b^2) ||f(s, t; \omega)||_{L^2}^2$
- (vii) if $f(s, t; \omega) = h(s, t; \omega)$ for all $\omega \in \Omega_1$ where Ω_1 is any *P*-measurable subset of Ω , then $I(s, t, \omega; f) = I(s, t, \omega; h)$ $0 \le s \le S$, $0 \le t \le T$ a.e. in Ω_1 .

These properties follow using standard techniques and the results of Lemmas 3.2 and 3.3.

As in the one-dimensional case, the integral so defined is a linear isometric operator from H to $L^2(\Omega)$ and can be extended to a linear operator from the closure of H to $L^2(\Omega)$. It can be shown that the closure of the class of $(s, t; \omega)$ step functions in \mathscr{G} includes all functions in $\mathscr{M} = \mathscr{G} \cap L^2[[0, S] \times [0, T] \times \Omega]$. The extension satisfies (i)—(vii) for $f, g \in \mathscr{M}$ (Itô [7]).

LEMMA 3.4. Let $f \in \mathcal{M}$ and let b > 0, then

- (i) $E[\sup_{(s,t)\in[0,S]\times[0,T]}[I(s,t,\omega;f)]^2] \leq 16E[I(S,T,\omega;f)]^2$
- (ii) $bP[\omega: \sup_{(s,t) \in [0,S] \times [0,T]} [I(s,t,\omega;f)]^2 \ge b] \le 16E[I(S,T,\omega;f)]^2$.

PROOF. The lemma follows using Lemma 3.2.

THEOREM 6. Let $Y(s, t; \omega) = I(s, t, \omega; f) = \int_0^t \int_0^s f(u, v; \omega) dX(u, v; \omega)$. Then $\{Y(s, t; \omega) : (s, t) \in [0, S] \times [0, T]\}$ is a martingale.

PROOF. Let $\{f_n(s,t;\omega)\}$ be a sequence in H such that $||f_n-f||_{L^2}\to 0$ as $n\to\infty$. Let $Y_n(s,t;\omega)=I(s,t,\omega;f_n)$. $Y_n(s,t;\omega)$ $n=1,2,\cdots$, is measurable with respect to \mathscr{F}_{st} for all $(s,t)\in[0,S]\times[0,T]$ and $||Y_n-Y||_{\Omega}\to 0$ as $n\to\infty$. Hence $Y(s,t;\omega)$ is measurable with respect to \mathscr{F}_{st} for all $(s,t)\in[0,S]\times[0,T]$.

Let (s', t') < (s, t). Without loss of generality we may assume that $f_n \in H(s_0, \dots, s_m; t_0, \dots, t_n)$ where $s' = s_\alpha$, $t' = t_\beta$, $s = s_r$, $t = t_p$ are partition points. We can write

$$\begin{split} E[Y_{n}(s, t; \omega) | \mathscr{F}_{s't'}] &= \sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} E[f_{n}(s_{i-1}, t_{j-1}; \omega) \Delta X_{ij} | \mathscr{F}_{s't'}] \\ &+ \sum_{i=1}^{r} \sum_{j=\beta+1}^{p} E[f_{n}(s_{i-1}, t_{j-1}; \omega) \Delta X_{ij} | \mathscr{F}_{s't'}] \\ &+ \sum_{i=\alpha+1}^{r} \sum_{j=1}^{\beta} E[f_{n}(s_{i-1}, t_{j-1}; \omega) \Delta X_{ij} | \mathscr{F}_{s't'}] \\ &= I + II + III . \end{split}$$

In I both $f_n(s_{i-1}, t_{j-1}; \omega)$ and ΔX_{ij} are measurable with respect to $\mathscr{F}_{s't'}$, hence $I = Y_n(s', t'; \omega)$ a.s. To show that II and III are zero, for each term in II and III we consider the σ -field $\mathscr{F}_{\tau\tau}$ where $\gamma = \max[s', s_{i-1}], \tau = \max[t', t_{j-1}]$. $\mathscr{F}_{s't'}$ is a sub- σ -field of $\mathscr{F}_{\tau\tau}$, $f_n(s_{i-1}, t_{j-1}; \omega)$ is measurable with respect to $\mathscr{F}_{\tau\tau}$ and ΔX_{ij} is independent of $\mathscr{F}_{\tau\tau}$. Thus, for a typical term in II or III, $E[f_n(s_{i-1}, t_{j-1}; \omega)\Delta X_{ij} | \mathscr{F}_{s't'}] = E\{E[f_n(s_{i-1}, t_{j-1}; \omega)\Delta X_{ij} | \mathscr{F}_{s't'}] = E[f_n(s_{i-1}, t_{j-1}; \omega)E[\Delta X_{ij}] | \mathscr{F}_{s't'}] = 0$ a.s. Hence $E[Y_n(s, t; \omega) | \mathscr{F}_{s't'}] = Y_n(s', t'; \omega)$ a.s. Letting $n \to \infty$ gives the desired result.

As an application of the stochastic integral we find a solution of the diffusion equation

(3.5)
$$\Delta Y[(s, t), (0, 0); \omega] = \int_0^t \int_0^s m[u, v; Y(u, v; \omega)] du dv + \int_0^t \int_0^s \sigma[u, v; Y(u, v; \omega)] dX(u, v; \omega).$$

The following hypotheses are made.

- (i) $m(\cdot, \cdot; \cdot)$ and $\sigma(\cdot, \cdot; \cdot)$ are Baire functions of $(s, t; \eta)$ for $(s, t) \in [0, S] \times [0, T], -\infty < \eta < \infty$.
- (ii) There is a constant K such that $|m(s, t; \eta)| \le K(1 + \eta^2)^{\frac{1}{2}}$, $0 \le \sigma(s, t; \eta) \le K(1 + \eta^2)^{\frac{1}{2}}$.
- (iii) $m(\cdot, \cdot; \cdot)$ and $\sigma(\cdot, \cdot; \cdot)$ satisfy a uniform Lipschitz condition in η i.e. $|m(s, t; \eta_2) m(s, t, \eta_1)| \le K|\eta_2 \eta_1|$, $|\sigma(s, t; \eta_2) \sigma(s, t; \eta_1)| \le K|\eta_2 \eta_1|$ where K is independent of s, t and η .

Assuming hypotheses (i), (ii) and (iii) it is possible using Lemma 3.4 and an iterative process as in the one-dimensional case (Doob [6] page 277–282) to construct a process $Y(s, t; \omega)$ having the following properties.

- (A) The $Y(s, t; \omega)$ sample functions are almost all continuous in $[0, S] \times [0, T]$.
- (B) $\int_0^T \int_0^s E[Y(s, t; \omega)]^2 ds dt < \infty$.
- (C) For each $(s_0, t_0) \in [0, S] \times [0, T]$, $Y(s_0, t_0; \omega)$ is independent of $\Delta X[(s_i, t_j), (s_{i-1}, t_{j-1}); \omega]$ for $s_{i-1} \ge s_0$ or $t_{j-1} \ge t_0$.
- (D) $Y(s, t; \omega)$ is measurable with respect to $\mathscr{B}_{st} = \sigma\{X(u, v; \omega) : (u, v) < (s, t)\} \vee \sigma\{Y(0, 0; \omega), Y(u, 0; \omega), Y(0, v; \omega) : (u, v) < (s, t)\}.$
- (E) For each $(s, t) \in [0, S] \times [0, T]$, $Y(s, t; \omega)$ satisfies (3.5). The process $Y(s, t; \omega)$ is essentially uniquely determined.
- **4.** Sample variation. Let $\{X(s, t: \omega) : (s, t) \in [0, S] \times [0, T]\}$ be a Gaussian stochastic process of real-valued random variables with mean function m(s, t) and covariance function $R(s_1, t_1; s_2, t_2) = E[X(s_1, t_1; \omega)X(s_2, t_2; \omega)] m(s_1, t_1)m(s_2, t_2)$ satisfying the following conditions:
 - (i) m(s, t) has bounded second order partial derivatives on $[0, S] \times [0, T]$.
- (ii) $R(s_1, t_1; s_2, t_2)$ is continuous for $0 \le s_1, s_2 \le S$, $0 \le t_1, t_2 \le T$ and has uniformly bounded third order partial derivatives for $s_1 \ne s_2, t_1 \ne t_2$.

Define

$$D_{-}^{+}(s,t) = \lim_{u \to s^{+}; v \to t^{-}} \frac{R(s,t;s,t) - R(s,t;u,t) - R(s,t;s,v) + R(s,t;u,v)}{(s-u)(t-v)}.$$

Similarly define $D_{+}^{-}(s, t)$, $D_{+}^{+}(s, t)$ and $D_{-}^{-}(s, t)$. Let $f(s, t) = D_{-}^{-}(s, t) - D_{-}^{+}(s, t) - D_{+}^{-}(s, t) + D_{+}^{+}(s, t)$.

Note. Unless otherwise indicated the sums in this section will be on $j, k = 1, \dots, 2^n$ and the indices will be omitted.

THEOREM 7. If $X(s, t; \omega)$ satisfies the above conditions then with probability one,

(4.1)
$$\lim_{n\to\infty} \sum \left[\Delta X[(jS2^{-n}, kT2^{-n}), ((j-1)S2^{-n}, (k-1)T2^{-n}); \omega]\right]^2$$
$$= \int_0^T \int_0^S f(s, t) \, ds \, dt.$$

PROOF. The proof uses Taylor's series expansions and follows the methods used by Baxter [1].

COROLLARY 1. If $\{X(s, t; \omega) : (s, t) \in [0, S] \times [0, T]\}$ satisfies the assumptions of Theorem 7 and if

$$R(s_1, t_1; s_2, t_2) = u(s_1, t_1)v(s_2, t_2) \qquad s_1 \leq s_2, \quad t_1 \leq t_2$$

$$= u(s_1, t_2)v(s_2, t_1) \qquad s_1 \leq s_2, \quad t_1 \geq t_2$$

$$= u(s_2, t_1)v(s_1, t_2) \qquad s_1 \geq s_2, \quad t_1 \leq t_2$$

$$= u(s_2, t_2)v(s_1, t_1) \qquad s_1 \geq s_2, \quad t_1 \geq t_2$$

then with probability one,

$$\begin{split} \lim_{n\to\infty} \sum \left[\Delta X [(jS2^{-n}, kT2^{-n}), ((j-1)S2^{-n}, (k-1)T2^{-n}); \omega] \right]^2 \\ &= \int_0^T \int_0^S \left[u(s, t) \frac{\partial^2 v(s, t)}{\partial s \, \partial t} - \frac{\partial u(s, t)}{\partial s} \frac{\partial v(s, t)}{\partial t} \right. \\ &- \frac{\partial u(s, t)}{\partial t} \frac{\partial v(s, t)}{\partial s} + v(s, t) \frac{\partial^2 u(s, t)}{\partial s \, \partial t} \right] ds \, dt \, . \end{split}$$

COROLLARY 2. Let $\{X(s,t;\omega):(s,t)\in[a,b]\times[c,d]\}$ be a Gaussian process satisfying the conditions of Theorem 7. Then with probability one,

(4.2)
$$\lim_{n\to\infty} \sum \left[\Delta X [(a+j(c-a)2^{-n}, b+k(d-b)2^{-n}), \times (a+(j-1)(c-a)2^{-n}, b+(k-1)(d-b)2^{-n}); \omega] \right]^{2}$$

$$= \int_{b}^{d} \int_{a}^{c} f(s,t) \, ds \, dt.$$

COROLLARY 3. Let $\{X(s, t; \omega) : (s, t) \in [0, S] \times [0, T]\}$ be a Gaussian process with mean function zero and covariance function $R(s_1, t_1; s_2, t_2) = \min(s_1, s_2) \min(t_1, t_2)$. Then with probability one,

$$\lim_{n\to\infty} \sum \left[\Delta X[(jS2^{-n}, kT2^{-n}), ((j-1)S2^{-n}, (k-1)T2^{-n}); \omega]\right]^2 = ST.$$

THEOREM 8. Let $\{Y(s, t; \omega) : (s, t) \in [0, S] \times [0, T]\}$ be a solution of the diffusion equation (3.5), then with probability one,

(4.3)
$$\lim_{n\to\infty} \sum \left[\Delta Y[(jS2^{-n}, kT2^{-n}), ((j-1)S2^{-n}, (k-1)T2^{-n}); \omega] \right]^2$$
$$= \int_0^T \int_0^S \sigma^2[u, v; Y(u, v; \omega)] du dv.$$

PROOF. Let $K = kT2^{-n}$, $K - 1 = (k - 1)T2^{-n}$, $J = jS2^{-n}$, $J - 1 = (j - 1)S2^{-n}$, then

$$\sum \left[\Delta Y[(J,K), (J-1,K-1)]\right]^{2} = \sum \left[\int_{K-1}^{K} \int_{J-1}^{J} m[u,v; Y(u,v)] du dv\right]^{2} + 2 \sum \left[\int_{K-1}^{K} \int_{J-1}^{J} m[u,v; Y(u,v)] du dv\right] \left[\int_{K-1}^{K} \int_{J-1}^{J} \sigma[u,v; Y(u,v)] dX(u,v)\right] + \sum \left[\int_{K-1}^{K} \int_{J-1}^{J} \sigma[u,v; Y(u,v)] dX(u,v)\right]^{2} = A_{n} + 2B_{n} + C_{n}.$$

It can be shown that $A_n \to 0$, $|B_n| \to 0$ a.s. as $n \to \infty$. Hence the existence of the limit on the left-hand side is an event whose probability is the same for all functions $m(s, t; \eta)$ satisfying (i), (ii) and (iii) and the value of the limit when it exists is independent of $m(s, t; \eta)$. We shall use $m(s, t; \eta) \equiv 0$ in our calculations.

The sum of squares of the increments of the process can be decomposed in the following manner.

$$\sum \left[\int_{K-1}^{K} \int_{J-1}^{J} \sigma[u, v; Y(u, v)] dX(u, v) \right]^{2}$$

$$= \frac{1}{d} \sum_{L} \left[\int_{K-1}^{K} \int_{J-1}^{J} F(\sigma, Y, u, v, K, J) dX(u, v) \right]^{2}$$

where $F(\sigma, Y, u, v, K, J) = \{\sigma[u, v; Y(u, v)] - \sigma[u, K-1; Y(u, K-1)]\} + \{\sigma[u, v; Y(u, v)] - \sigma[J-1, v; Y(J-1, v)]\} + \{\sigma[u, K-1; Y(u, K-1)] - \sigma[J-1, K-1; Y(J-1, K-1)]\} + \{\sigma[J-1, v; Y(J-1, v)] - \sigma[J-1, K-1; Y(J-1, K-1)]\} + 2\sigma[J-1, K-1; Y(J-1, K-1)].$ When expanded this sum of squares gives fifteen terms. It can be shown, using methods similar to those employed by Berman [2], that the absolute values of all terms in the sum converge to zero almost surely as $n \to \infty$ with the exception of the term

$$\begin{split} S_n &= \sum \left[\int_{K-1}^K \int_{J-1}^J \sigma[J-1,K-1;\ Y(J-1,K-1)]\ dX(u,v) \right]^2 \\ &= \sum \sigma^2[(j-1)S2^{-n},(k-1)T2^{-n};\ Y((j-1)S2^{-n},(k-1)T2^{-n})] \\ &\times \left[\Delta X[(jS2^{-n},kT2^{-n}),((j-1)S2^{-n},(k-1)T2^{-n})] \right]^2. \end{split}$$

Let m be an arbitrary fixed positive integer. Then for n > m, $\Gamma = \{(s,t): (\alpha-1)S2^{-m} \le s \le \alpha S2^{-m}, (\beta-1)T2^{-m} \le t \le \beta T2^{-m}\}, \sum_{\alpha,\beta=1}^{2^m} \min_{\Gamma} \sigma^2[s,t; Y(s,t)] \sum_{j,k=1}^{2^{n-m}} [\Delta X[(\{(\alpha-1)2^{-m}+j2^{-n}\}S,\{(\beta-1)2^{-m}+k2^{-n}\}T),(\{(\alpha-1)2^{-m}+(j-1)2^{-n}\}S,\{(\beta-1)2^{-m}+(k-1)2^{-n}\}T)]]^2 \le S_n \le \sum_{\alpha,\beta=1}^{2^m} \max_{\Gamma} \sigma^2[s,t; Y(s,t)] \sum_{j,k=1}^{2^{n-m}} [\Delta X[(\{(\alpha-1)2^{-m}+j2^{-n}\}S,\{(\beta-1)2^{-m}+k2^{-n}\}T),(\{(\alpha-1)2^{-m}+(j-1)2^{-n}\}S,\{(\beta-1)2^{-m}+(k-1)2^{-n}\}T)]]^2$. Applying Corollary 2 of Theorem 7, we see that the lower bound converges a.s. as $n \to \infty$ to

$$\sum_{\alpha,\beta=1}^{2^{m}} \min_{\Gamma} \sigma^{2}[s, t; Y(s, t)][\alpha 2^{-m} - (\alpha - 1)2^{-m}]S[\beta 2^{-m} - (\beta - 1)2^{-m}]T$$

$$= \sum_{\alpha,\beta=1}^{2^{m}} \min_{\Gamma} \sigma^{2}[s, t; Y(s, t)](S2^{-m})(T2^{-m})$$

and the upper bound converges a.s. as $n \to \infty$ to $\sum_{\alpha,\beta=1}^{2m} \max_{\Gamma} \sigma^2[s, t; Y(s, t)] \times (S2^{-m})(T2^{-m})$. As $m \to \infty$ these bounds converge a.s. to the common limit $\int_0^T \int_0^s \sigma^2[u, v; Y(u, v)] du dv$ since $\sigma^2[s, t; Y(s, t; \omega)]$ is a continuous function of (s, t) with probability one.

REFERENCES

- [1] BAXTER, G. (1956). A strong limit theorem for Gaussian processes. *Proc. Amer. Math. Soc.* 7 522-27.
- [2] Berman, S. M. (1965). Sign invariant random variables and stochastic processes with sign invariant increments. Trans. Amer. Math. Soc. 119 216-43.
- [3] ČENCOV, N. N. (1956). Wiener random fields depending on several parameters. Dokl. Akad. Nauk SSSR 106 607-09.
- [4] Ciestelski, Z. (1966). Lectures on Brownian motion, heat conduction and potential theory.

 Math. Institute, Aarhus Univ., Denmark.

- [5] Delporte, J. (1966). Fonctions aléatoires de deux variables presque surement à échantillons continus sur un domaine rectangulaire borné. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 181-205.
- [6] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [7] ITô, K. (1944). Stochastic integral. Proc. Imperial Acad. Tokyo 20 519-24.
- [8] Itô, K. and McKean, H. (1965). Diffusion Processes and Their Sample Paths. Academic Press, New York.
- [9] LÉVY, P. (1965). Processus Stochastiques et Mouvement Brownian. Gauthier-Villars, Paris.
- [10] LOÈVE, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton.
- [11] PARK, W. J. (1970). A multi-parameter Gaussian process. Ann. Math. Statist. 41 1582-95.
- [12] Yeh, J. (1960). Wiener measure in a space of functions of two variables. Trans. Amer. Math. Soc. 95 433-50.