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TESTING WHETHER NEW IS BETTER THAN USED!

By MYLES HOLLANDER AND FRANK PROSCHAN
The Florida State University

A U-statistic J,, is proposed for testing the hypothesis Hy that a new
item has stochastically the same life length as a used item of any age (i.e.,
the life distribution F is exponential), against the alternative hypothesis H,
that a new item has stochastically greater life length (F(x)F(y) = F(x + y),
forall x =0,y =0, where F =1 — F). J, is unbiased; in fact, under a
partial ordering of H, distributions, J, is ordered stochastically in the same
way. Consistency against H; alternatives is shown, and asymptotic relative
efficiencies are computed. Small sample null tail probabilities are derived,
and critical values are tabulated to permit application of the test.

1. Introduction and summary. In performing reliability analyses, it has been
found very useful to classify life distributions F(i. e., distributions for which
F(t) = 0 for ¢ < 0) according to the monotonicity properties of the failure rate,
or alternately, the average failure rate. See Barlow and Proschan (1965),
Barlow, Marshall, and Proschan (1963), Birnbaum, Esary, and Marshall (1966),
and Esary, Marshall, and Proschan (1970a, b). (Additional references are
presented in these papers.)

Recently, several new classes of life distributions have been shown to be
fundamental in the study of replacement policies (Marshall and Proschan,
1970). Properties of such life distributions have been treated in Esary, Marshall,
and Proschan (1970a, b).

DeriNiTION 1.1, A life distribution F is new better than used (NBU) if
(1.1) F(x + y) < Fx)F(y) forallx,y = 0,

where F =1 — F. The corresponding concept of a new worse than used (NWU)
distribution is defined by reversing the inequality in (1.1).

The NBU property defined in (1.1) has also been referred to as ‘“positive
aging” by Bryson and Siddiqui (1969).

Property (1.1) may be interpreted as stating that the chance F{(x) that a new
unit will survive to age x is greater than the chance F(x + y)/F(y) that an
unfailed unit of age y will survive an additional time x. That is, a new unit has
stochastically greater life than a used unit of any age.

The boundary members of the NBU class, obtained by insisting on equality
in (1.1), are of course the exponential distributions, for which used items are
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no worse (and no better) than new items. In this paper we consider the
inferential problem of testing

(1.2) H;: F(x) = 1 — exp (—4x), x2=0,2> 0 (2 unspecified) ,
versus

(1.3) H,: F is NBU (and not exponential) ,

on the basis of a random sample X}, X,, - - -, X, from the distribution F. In the

sequel, unless otherwise stated, F is assumed continuous.

The testing problem H, vs. H, is analogous to the testing problem of H, vs.
H* where H,* specifies that F is an increasing failure rate (IFR) distribution.
The distribution F is said to be IFR if — In F(x) is convex. If F has a density
f, this condition is equivalent to the condition thaf the failure rate g(x) =
f(%)/F(x) is increasing in x(x such that F(x) > 0). Tests of H, (¢(x) = 2, 2 un-
specified) vs. H,*(g(x) is monotone increasing but nonconstant) include those
considered by Barlow (1968), Barlow (1970), Barlow and Proschan (1969),
Bickel (1969), Bickel and Doksum (1969), and Proschan and Pyke (1967). Since
Fis NBU if — In F(x) is superadditive, the IFR class is contained in the NBU
class, and thus the test of H, vs. H, that we propose focuses on a larger class
of alternative distributions than do the IFR tests. This will be appropriate, for
example, when the underlying physical process suggests that new items are
better than used ones but where we can expect the failure rate to fluctuate (and
in particular not satisfy H*).

As one example of a practical problem motivating the choice of the null
hypothesis H, and alternative hypothesis H, above, consider a unit subject to
shocks occurring successively in time according to a Poisson process. Since the
occurrence of shocks and their effects cannot be directly observed, it is not
known whether shocks already experienced by the unit make it more likely to
fail under the impact of future shocks or not. However, if P, is the probability
that the unit survives the first & shocks, then it is believed that either

(a) P, =P, /P forallk, 1 =0, or

(b)y P, = P,,/P forallk,/=0.
Since under hypothesis (a), the lifelength is exponential, and under hypothesis
(b), it is NBU (Esary, Marshall, Proschan (1970b) Theorem 3.1), a reasonable
way to test (a) vs. (b) would be to test’ H, vs. H, above from lifelength observa-

tions.
Our test statistic is motivated by consideration of

7(F) =aer. S {FRF(Y) — E(x + y)} dF(x) dF(y)
(1.4) =4 — § F(x + y) d(F) dF(y)
=aer. + — A(F) .
Viewing the parameter y(F) as a measure of the deviation of F from H,, the
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classical nonparametric approach of replacing F by the empirical distribution
function F, suggests rejecting H, in favor of H, if §§ F,(x + y) dF,(x) dF,(y) is
too small. We find it more convenient to reject for small values of the
asymptotically equivalent U-statistic

(1.5) W =2nn — 1)(n = 2)]7 2" P(X,» X, + Xo)
where
(1.6) ¢(a, b) =1 if a>b

=0 if a<b,

and the >}’ is over all n(n — 1)(n — 2)/2 triples (a,, a,, a;) of three integers such
that 1 < a; < n, a; # a,, @, + a,, and a, < a;. In the sequel, the test which
rejects for small J, values is referred to as the NBU test.

Section 2 demonstrates unbiasedness, asymptotic normality, and consistency
of J,. The NBU test is unbiased for NBU alternatives. In fact, a stronger
result (Theorem 2.1) is established, namely, that when F is superadditive with
respect to G (Definition 2.1), J,(X) <, J,(Y), where Y = (Y,, 13, ---, ¥,) isa
random sample from G. The asymptotic normality of J, (Theorem 2.2) is a
direct consequence of Hoeffding’s (1948) U-statistic theory. The NBU test is
consistent if and only if A(F), defined by (1.4), is strictly less than 1, the latter
being the value of A when F is exponential. In a result that parallels Theorem
2.1, we show (Theorem 2.3) that A(F) < A(G) when F is superadditive with
respect to G. Also, consistency against NBU alternatives is established.

Section 3 considers the asymptotic relative efficiency of the NBU test. To the
authors’ knowledge, other tests for NBU alternatives have not yet been
proposed. Thus, we take as competitors, tests designed for IFR alternatives.
Since the NBU class contains the IFR class, one should expect the efficiencies
(under IFR alternatives) to favor the IFR tests, and indeed this is the case. On
the other hand, as is also to be expected, there are many NBU alternative
distributions for which the IFR tests do not perform as well as the NBU test.
The class of NBU alternatives &, ,, defined in Example 2.2, for which the
NBU test is shown to have power equal to 1 (whenn > 3 and « = (%))
illustrates this point vividly. This is discussed in Section 3.

The small sample null distribution of the statistic 7, = n(n — 1)(n — 2)J,/2 is
considered in Section 4. Exact probabilities are computed in special cases, and
in Table 4.1 lower and upper percentile points based on Monte Carlo sampling
are given in the .01, .025, .05, .075, and .10 regions for n = 4(1)20(5)50.

2. Unbiasedness, asymptotic normality, and consistency. In this section we first
show that the test which rejects H, if J, < j, ., where j, , satisfies Pi[J, < j, .l
= a, is unbiased. That is, P,[J, < j,.] = a, where P,(P,) indicates the prob-
ability is computed for an F satisfying H, (H,).

DEerINITION 2.1. Let F and G be continuous distributions, G be strictly
increasing on its support, and F(0) = 0 = G(0). Then F is said to be super-
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additive with respect to G if G™'F is superadditive, that is,

2.1) G F(x, + %) = G'F(x)) + G F(x,) , forall x,, x, > 0.
When the inequality in (2.1) is reversed, F is said to be subadditive with respect
to G.

THEOREM 2.1. Let F be superadditive with respect to G. Then J(X) <, J.(Y),
where X = (X}, - --, X,,) is a random sample from F and Y = (Y, ---, Y,) is a
random sample from G.

Proor. Let Y/=G'FX,), i=1,...,n. Then (Y/, ..., 7)) =, (Y,
-+, Y,). Now we show
(2.2) X, =X, +X,— Y =¥/ + Y.

The implication given by (2.2) can be seen as follows:
X, 2 X, + X, = FX;) = F(Xl + X,)
= G'FX,) = G'F(X, + X,) = G'F(X) + G'F(X,),
where the last inequality is a consequence of the superadditivity of G-'F.
Equivalently, Y, > Y/ + Y;’. From (2.2) we have (Y, Y/ + V)=
&(X,, X, + X,) and thus

CoROLLARY 2.1. The NBU test is unbiased against NBU alternatives.

Proor. By taking G to be exponential, and noting that F is NBU if and only
if F is superadditive with respect to the exponential (i. e., — In F{(x) is a super-

additive function for x = 0), the result is a direct consequence of Theorem

2.1. ]
Some examples of parametric families of life distributions which are increas-
ingly superadditive as the parameter ¢ increases are:

(@) Weibull. F)(t)=1 —exp(—Aat’),t=0,2=0.

(b) Gamma. Fy(t) = {;2’x"'exp (—Aix)/'(),t = 0,2=0.

In each case, for fixed 4 = 0 and 0 < 0, < 0, < oo, F,, is superadditive with
respect to F, . It follows that the power function is an increasing function of
the parameter 6.

The asymptotic normality of J, is obtained by applying Hoeffding’s (1948)
U-statistic theory. Let

D(x,, x,, X;) = J; = 37HP(X, X, + X)) + P X, + X3) + P(% X%, + %)},
and set @ (x)) = EDO(x,, X,, X;), Dy(x,, x,) = ED(x,, x,, X;), DPy(x,, X, X%;) =
D(x,, x,, x;), and &, = EQ XX, ---, X,) — A%, k=1, 2, 3, where A(F) is defined
by (1.4). Then Var (J,) = (;)* 233 Q) (@=Hé,, lim n Var (J,) = 9€,, and further-
more we may state

THEOREM 2.2. If F is such that &(F) > 0, then the limiting distribution of
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ni(J, — A(F)) is normal with mean 0 and variance 9§,.

Since ¢(ca, cb) = ¢(a, b) for all ¢ > 0, the statistic J, is scale invariant, and
hence in all null computations we may take the scale parameter of the ex-
ponential to be 2 = 1. Straightforward calculations yield the hypothesis values
A =1 and & = 5/3888, &, = 7/1296, &, = 1/48. From Theorem 2.2, we
immediately obtain

COROLLARY 2.2. Under H,, the limiting distribution of n*(J, — %) is normal with
mean O and variance 5/432.

We next turn to consistency. From Theorem 2.2 it is easily seen that the
NBU test is consistent if and only if A(F) < . We now prove

THEOREM 2.3. Let F be superadditive with respect to G. Then A(F) < A(G).
Proor. Make the transformation £(x;) = G(y;), i = 1,2. Then

(2.3) A(G) = §§ G(y, + 1) dG(y,) dG(y,)
— §§ G[G~F(x,)+ G~ F(xy)] dF(x,) dF(x,) .

Since G-'F is superadditive, then

(2.4) G'F(x) + G E(x,)) < G F(x, + x,) .
Combining (2.3) and (2.4) gives
(2.5) AG) = §§ G[G* F(x, + x,)] dF(x,) dF(x,) = A(F) . 0

THEOREM 2.4. If F is continuous, NBU, and not exponential, then the NBU test
is consistent.

Proor. We need only show that the hypotheses imply A(F) < %. Since F is
assumed continuous, y(F) = + — A(F) and we may equivalently prove y(F) > 0.
Set D(x,, x;) = F(x))F(x,) — F(x, + x;). Then D(x,, x,) = 0 for all x,x, >0
since F is NBU and D(x,, x,) = 0 since F is not exponential.

Assume that x°, x,° are such that D(x°, x,°) > 0. Let x;/ =sup{x: x = x;°
and F(x) = F(x°)},i=1,2. Then

D(x/, x,") = F(xl')F(x2,) - F(xlo + %)
= F(xlo)F(xzo) - F(xlo + x20) = D(xlo’ xzo) >0.

Since F is continuous, D is continuous and there exist 9, > 0, d, > 0, such that
D(x + 6, x," + 8,) > 0. Also F(x; 4+ d;) — F(x;) > 0, i =1, 2, since x,’ and
x,’ are points of increase of F. Thus y(F) > 0. [J

The NBU distribution used in the following example illustrates that the
middle equality of (1.4), namely y(F) = 1 — A(F), need not hold when the
continuity assumption is removed. This example thus emphasizes that A(F),
rather than y(F), is the basic consistency parameter of the NBU test, since the
NBU test is consistent if and only if A(F) is less than 1 (rather than if and only
if y(F) is greater than zero.)
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ExampLE 2.1. Let F(x) = exp (—[Ax]) for x = 0, where [x] denotes the largest
integer less than or equal to x. We now show that 7(F) = 0 and A(F) =
(e + 1)7* = .072. Since y(F) and A(F) are scale invariant (i. e., if Fy(x) =
F\(x/B) for every g > 0, then y(F,) and A(F,) are constant in ) we may take
2= 1. Since F(i)F(j) — F(i + j) = ee — e~+9 = 0, we have

r(F) = D X5 (FOF() — F(i + j)} dF(i) dF(j) = 0.
We next determine A(F). Since y(F) = 0, we have
A(F) = X X5 FO)F() dF() dF(j) = (K5, F(i) dF()Y .
But,

2 FU)dF() = Yo, ei(e i) —e ) = (e — 1) o, e7% = (e + I)y='.
Since A(F) = (e 4+ 1)7* < %, the NBU test is consistent against this alternative
even though y(F) = 0. '

Example 2.2 below provides a class of NBU alternatives for which the NBU
test is not only consistent, but for which the NBU test has power identically
equal to 1 for every n. (We make the minor restriction that a,, the level of

the test based on small J, values, exceeds P[J, = 0] = (*;2)~! (see (4.3)), so that
when J, = 0 we reject H, with probability 1.)

ExAMPLE 2.2. Let 7, , denote the class of distributions with support [a, b]
where b < 2a. Then, by considering the three cases (i) x < a; y < a, (ii) x > a;
y = a, and (iii) x < a; y > a, and substituting in (1.1) one directly verifies that
every Fe 7, , is NBU. Butforevery Fe 7, ,, P,[J, =0]= P,[X,, < X, +
X,] =1, and thus P [Rej H)] = P.[J, = 0] = I.

3. Asymptotic relative efficiency and power. As far as we know, no other tests
have as yet been proposed for testing against NBU alternatives. Thus in this
section we compare the proposed NBU test with tests designed for a smaller
class of alternatives, the IFR class. When the underlying distribution is actually
IFR, it is to be expected that an IFR test will in general perform better than
the NBU test. Switching the comparison to grounds where the NBU test should
excel, we exhibit a class of NBU distributions for which the NBU test performs
distinctly better than the IFR tests.

IFR tests that have been proposed include:

(i) Proschan and Pyke (1967): Define the normalized spacings S; = (n —
i+ 1)(X; — X)), where X;) <. .. < X, are the ordered X’s with X ;, = .. 0.

()

The Proschan-Pyke test rejects H, in favor of H,* for large values of
(3.1 Vo= 2 Vig s

where V;; = 1 if §; = §;, 0 otherwise.

(ii) Total time on test (cf. Epstein (1960), Barlow (1968), Bickel and Doksum
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(1969), Bickel (1969), Barlow and Proschan (1969), Barlow (1970)): Reject H,
in favor of H,* for large values of the cumulative total time on test statistic

(3.2) K, = Z§'=1 A D IR

(iii) Bickel and Doksum (1969): Reject H, in favor of H,* for large values
of
(3.3) W, = Siiln[l — Rj(n+ 1],
where R; is the rank of S; in the joint ranking of S}, - - -, S,.

Let {F, } be a sequence of alternatives with 0, = ¢, + kn~*, where k is an
arbitrary positive constant and F, is exponential. From the results of Proschan
and Pyke (1967), Bickel and Doksum (1969), and Theorem 2.2, we find the
Pitman asymptotic relative efficiency of the NBU  test with respect to the
Proschan-Pyke test to be

(3.4) ex(J, V) = (12/5){A"(6,)/ ' (6,)}* ,

where

(3.5) A9) = §§ Fy(x + y) dF(x) dFy(y),

(3.6) w(0) = 55 52 96(q5(x) + g1 fo(X)fo(p) dy dx ,

are the asymptotic means of J, and ¥V, respectively for the alternative F,, the
factor (12/5) in (3.4) equals lim, {Var,(V,)/Var,(/,)}, and A’(0,)(¢'(0,)) is the
derivative of A(6)(x(€)) with respect to ¢, evaluated at ¢ = 6,. For simplicity,
we have used the ¥V, test in our efficiency calculations. Bickel and Doksum
(1969) have shown e, (V, W) =3 and ey K, W) =1, for all F, and thus
ex(J, K) = e (J, W) = (3)e,(J, V). Consider the IFR Weibull and linear failure
rate alternatives given respectively by F(x) =1 —exp(—x’), 6 = 1, x = 0,
and Fy(x) = 1 — exp (—{x + (6x*/2)}), ¢ = 0, x = 0. For F,, H, is achieved at
0 = 0, = 1 whereas for F,, H, is achieved at § = 8, = 0. Direct calculations
yield

e (J, V) =125, ep(J, W) = .937;

eq,(J, V) = .60, ep(J, W) = .45.

Next we compare the power of the NBU test J, with the power of the IFR
tests V, and W, for the class &, , of NBU distributions introduced in Example
2.2. We showed there that the J, test has power 1 for every n > 3, for every
Fe #,, as long as a = ("7?~'. Consider the V, and W, tests based on the
normalized spacings. For simplicity, take n = 3and « = . Then both V, and
W, reject Hy when 4 =[S, > S, > S;] occurs. It is easily seen that for every
Fe 7, PJS,>S8, S >8]=1, but for many distributions in &, ,,
P,[A] < 1, implying that for these distributions the power of the V, (and W)
test is less than 1. Here the @ =  test based on J, has power 1. The case
n = 3 was chosen for convenience. It is clear that for larger n we can exhibit
F'se #,, for which the powers of the V, and W, tests are less than 1 (the
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latter value being the power of the J, test) and at the same time where the
corresponding Type I errors of ¥, and W, exceed that of J,.

Of course, the class &, , contains F’s that are IFR (e. g. uniform on [a, b))
and ones that are not. Thus this class simultaneously provides (i) F’s which are
NBU but not IFR for which the NBU test is better (as is to be expected) and
(ii) F’s which are IFR for which the NBU test is better!

4. The null distribution. Define
4.1 T, =n(n— 1)n—2)J,/2 = 3" X,, X, + X,) -
Let X, <---< X,, denote the ordered X’s. Since i < max (j, k) implies
(X X, + Xy) = 0, we can rewrite T, as
(4~2) T, = Zi>j>k Sb(Xm’ Xm + X(k)) .

Note that T, has possible values 0, 1, ..., n(n — 1)(n — 2)/6. Exact percentile
points for the NBU test can be obtained from the distribution of 7, calculated
under the assumption that the X’s are exponential. For even moderate n, these
calculations are prohibitive. We now obtain exact probabilities for some special
cases. (Where exact probabilities are available, they show excellent agreement
with the Monte Carlo values given in Table 4.1.)

Define the spacings 4, = X;, — X, ,,i=1, ---,n. Then, for n = 3, we
have

(4'3) Po[Tn = 0] = Po[Xm) < X(l) + Xm] - Po[Z?:a 4; < Al]
=n PSS, [Iexp(—(n — i 4 Day)da; = (%)
For n = 3, P[T, < 1] = 1, and calculations similar to (4.3) yield, for n = 4,

“9 FIT. = 1= (= _1{((2?__ 21))((2’;__21))} ‘

The complete H, distribution of 7, is found, by direct calculation, to be
P[T,= 0] = 7/105, P[T,= 1] = 4/105, P,|[T,=2]=16/105, P,T,= 3] =
33/105, P,[T, = 4] = 45/105.

We also have, forn = 3
(4.5) P[T, =n(n— 1)(n — 2)[6] = P[X > Xy + X Xy > X

+ X(s)’ Tt X(n) > X(n—l) + X(n—z)]
=n! {7 SZ :+x2' s :on_zﬂn_a s:on_1+xn_2 P OXP (—Xpip1) dX, i1 -
To evaluate the n-fold integral of (4.5), let ¢;(d;) denote the coefficient of
—X,_;(—x,_;_,) in the exponent after the jth integration. Then ¢; = ¢, , + d;_,
and d; = ¢;_, + 1, with ¢, = d; = 1. Thus the desired probability is seen to be
equal to
(4.6) PT, = n(n — 1)(n — 2)/6] = n! [T]32 c;h]lcn s + dus] ™ -

We now obtain expressions for ¢; and d;. Define the y sequence by y,., = d;
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with the initial values y, = 0, y; = 1. This sequence satisfies y; ., = y;, + y;;
this is the famous Fibonacci sequence for which (cf. Brand (1966) page 381)
Yo = (5)7Hs™ — ¢}, where s = {1 + (5)%}/2, t = {1 — (5)}}/2. If we define the
z sequence by z;,, = ¢; with initial values z, = z, = 0, then the relations
between the ¢’s and d’s yield z,_, = y, — 1. Solving for the ¢’s and &’s in terms
of the y’s and z’s and substituting into (4.6) yields

T2 —1 —3(git2 __ git2)]-1
(@7) AL, = n(n — 1) — 2yj6] = "I L

To make the NBU test practical, we need more tail probabilities than those
available via direct calculations. Table 4.1, based on Monte Carlo sampling,
gives lower and upper critical points of 7, in the a = .01, .025, .05, .075 and
.10 regions for n = 4(1)20(5)50. For n < 19, each value is based on 100,000
replications, for n > 19, on 10,000 replications. In Table 4.1, the lower tail
should be used for tests of H, versus F NBU, the upper tail for tests of H,
versus FNWU. The lower tail values are integers C,” for which the estimated
probabilities [T, < C,] are closest to a, and similarly the upper tail values
are integers C,” for which the estimated probabilities 2T, > C,’] are closest
to a. Parenthetical entries adjacent to critical points give the Monte Carlo
estimated tail probabilities for those estimated probabilities that are not within
.002 of the nominal a. For n > 25, all estimated probabilities agree with the
nominal a(to three decimal places). For n > 50, use the normal approximation
(see Section 2) keeping in mind that (i) lower tail probabilities of events of the
form [T, < a] are underestimated using the normal approximation and upper
tail probabilities of events [T, = b] are overestimated, and (ii) for fixed n, the
approximation improves as « increases, 0 < @ < §.

We close with a comparison of some exact probabilities and their Monte Carlo
estimates. Letting B, ={T, =0}, C,={T, <1}, D, ={T, = n(n — 1)(n — 2)/6},
the values of (P,{B,}, PO{Bn}) are, for n = 4,5, 6,7, respectively (.067, .066),
(.018, .018), (.005, .005), (.001, .001); the corresponding values of (Py{C,},
B{C,}) are (.105, .103), (.028, .028), (.007, .007), (.002, .002) and those of
(Py{D,}, B{D,})) are (.429, .431), (.179, .177), (.054, .053), (.011, .011). The
very close agreement inspires confidence that the entries in Table 4.1 are
accurate.
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