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ON LIMITING DISTRIBUTIONS OF A RANDOM NUMBER OF
DEPENDENT RANDOM VARIABLES'

By D. L. THOMAS
The University of Connecticut

Let {X., n = 1} be a sequence of random variables such that for suit-
ably chosen constants a, >0 and ba, n 2 1, {(Xa — by)/an} converges in
distribution to a nondegenerate random variable X. Let {Nm, m = 1} be a
sequence of positive, integer-valued random variables distributed inde-
pendently of the sequence {X.} and converging to infinity in probability
as m— oo. If {a,} and {b,} are the normalizing constants computed from
a cdf F which is in the domain of attraction of one of the extreme value
distributions and if the cdf of X satisfies a condition determined by the do-
main of attraction to which F belongs, then conditions on the limiting
distribution of {Nn/m} are obtained which are necessary and sufficient for
the convergence in distribution of the sequence {(Xn,, — bn)/am} to a non-
degenerate random variable Y. The cdf of Y is either a location or a scale
mixture of the cdf of X; and the cdf F is often unrelated to the distribution
of {X»}. These results extend a theorem stated by Berman; however, the
method of proof is conceptually simpler.

1. Introduction. Let {X,, n > 1} be a sequence of random variables defined on
a probability space (Q, .9, P) such that for suitably chosen sequences {a, > 0}
and {b,} the sequence {(X, — b,)/a,} converges in distribution to a nonconstant
random variable X. Let {N,,, m = 1} be a sequence of positive, integer-valued ran-
dom variables defined on the same space, distributed independently of the sequence
{X,}, and converging to infinity in probability. Define G,,(f) = P[N,, < m]. With
the assumption that {a,} and {b,} are the normalizing constants computed from
a cumulative distribution function (cdf) F(-) which is in the domain of attrac-
tion of one of the extreme value distributions (Gnedenko, 1943; Smirnov,
1952), this paper investigates conditions on the weak limit of {G,(+)} which are
necessary and sufficient for the sequence {(X, — b,)/a,} to converge in distri-
bution to a nonconstant random variable Y. Asin Berman’s Theorem 3.1 (1962),
the cdf of Y is either a location or a scale mixture of the cdf of X; however, the
results given here are more general in that X, need not be the maximum term
in a sequence of independent and identically distributed random variables with
common cdf F(+). In fact, Example 2.1 below demonstrates why Berman’s result
was similar to that obtained by Robbins (1948) for the limiting distribution of
the sum of a random number of random variables.
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2. Main results and examples. Throughout this paper, any extended-valued
monotone function A(.) will be assumed to be right continuous and %, will
denote its set of continuity points. Such a function will be said to be non-
degenerate in case there does not exist an x, in the extended real numbers such
that h(x) equals h(—co) for x < x, and h(+oo) for x = x,. A cdf F(+) will
be considered to be a proper distribution function (df); i.e., a df such that
lim, , F(x) =1 and lim,_,__ F(x) = 0. A random variable will always have a
proper df.

In order to emphasize that the normalizing constants must have certain prop-
erties essentially unrelated to the extreme value problem, the first proposition
states Smirnov’s (1952) basic result in a slightly more general framework.

PROPOSITION 2.1. Suppose f(+) is a monotone function and g( ) is a nondegenerate
extended-valued monotone function such that {g(— o), g(+ o0)} C {0, +oco}. If for
real constants a, > 0, b,

2.1) lim, ., nf(a,x + b,) = g(x)
for every x in &, then g(+) has one of the following forms:

9:(x; 0) = ay(x — x,)° for x> x,
= a, for x < x,,
9a(%; 5) =5 for X=X

= B(—x + xo)‘3 for x < x,
or
95(x; 0) = re’® for every x,

where x, is finite, d # 0 (2, = B, = 0 whenever 6 > 0; otherwise, a, = p, = + oo),
and a,, By, v > 0.

Henceforth, the normalizing constants, {a,} and {b,}, will be said to be of type
k (k = 1,2, 3) with exponent § in case there exists a monotone function f(+)
with {f(—o0), f(4 o)} C {0, 4 o0} such that (2.1) holds with g(x) = g,(x; 9).
This definition deemphasizes the role of f(.)—the corresponding statement in
extreme value theory being: f(+) is said to belong to the domain of attraction
of type k with exponent ¢ in case normalizing constants exist such that (2.1)
holds. - - Gnedenko (1943) succeeded in characterizing these domains of attrac-
tion (see Proposition 3.1 for a statement of his results when k equals 1 or 2) and
further properties of the normalizing constants result from his proofs:

PROPOSITION 2.2. Suppose that {a,} and {b,} are of type k (k = 1, 2) with exponent
0. Then,

(22) limnﬁw (xl - bn)/an =X
and

(2.3) lim, ., nf(a,[x — x,] + %) = g,(x; 0)
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for every x, where the real number
x, = inf{x: f(x) > 0} whenever k=1,0>0
=sup{x: f(x) > 0}  whenever k=2,0>0
=0 whenever 6 < 0.

From (2.2) and (2.3) necessary and sufficient conditions for the sequence
{(Xy, — b,)/a,} to converge in distribution to a nonconstant random variable
can be derived provided one assumes that

(2.4) P[X = x;] = 0 and the characteristic function of log|X — x|
is not identically zero in some nondegenerate real interval.

However, the proof of sufficiency, which is the main interest anyway, can be
carried through under weaker hypotheses, so the results are stated in two theo-
rems. For completeness, the requirement that the limiting distributions be non-
degenerate is deleted throughout.

THEOREM 2.1. Suppose that {a,} and {b,} are of type k (k = 1, 2) with exponent
0 and that {G,,(+)} converges weakly to a df G(+) with

(2.5) GO0)=0 if >0 or G(+o0) =1 if 6<0.
Then, {(Xy _ — b,)/a,} converges in distribution to a random variable Y with cdf
PIY < y] = {5 PIX < x, + £(y — x)] dG(1)

Y is nonconstant if, and only if, either X is nonconstant and G(+ o) > 0 whend > 0
(or G(0) < 1 when ¢ < 0) or G(+) is nondegenerate and X is not identically zero.

THEOREM 2.2. Assume that the random variable X satisfies (2.4) and that the
normalizing constants are of type k (k = 1, 2) with exponent o. If {(X, — b,)/a,}
converges in distribution to a random variable Y, then {G,(+)} converges weakly to a
df G(+) satisfying (2.5).

ExaMpLE 2.1. The asymptotic distribution of the maximum has been derived
for various dependent sequences {X,}; e.g., m-dependent (Newell, 1964),
exchangeable (Berman, 1962) stationary (Berman, 1964), and independent-
increment (Statland, 1966) processes. If the normalizing constants used are of
type 1 or 2 and if the limiting distribution satisfies (2.4), then Theorems 2.1 and
2.2 generalize Berman’s Theorem 3.1 (1962) by considering the maximum, with
random index, from such dependent sequences.

For example, suppose a sequence {Z,, n > 1} satisfies the invariance principle
(see Billingsley, 1968) with scaling factors ntg. Set S, = Z, + ... + Z, (S, = 0)
and X, = max,_,, S,. Recall that {X,/(nts)} converges in distribution to a ‘“‘posi-
tive normal” random variable and note that, with

flx) = x? for x>1
=1 for x<1,
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nf(nix) — g,(x; —2)and x, = 0. Therefore, {X; /(m!s)}hasa nonconstant limiting
distribution if, and only if,

(2.6) {N,./m} converges in distribution to a random variable T with
P[T=0]<1.
In that case, the limit law is given by
PY, £ yl = (2/n)} §7 §7* e=** du dG(1)
for y > 0 and = 0 for y < 0, where G(-) is the cdf of T.

However, the theorems can be applied, as well, to the sequence of sums so
that, equivalently, the sequence {S_/(m!s)} converges in distribution to a ran-
dom variable with cdf

P[Y, < y] = r)t §o (v e P du dG(r) .
Robbins’ Theorem 2 (1948) is a special case of the sufficiency portion of the
last result (his hypotheses are slightly different, but they imply the ones used
here if G(0) = 0).

Finally, let W, be the index of the first maximum in (0, S}, ---, S,); then,
{W,/n} converges in law to a random variable having an arc sin distribution.
In this case, choose

flx) = x for x=1
=1 for x<1,
so that nf(nx) — gy(x; —1) and x, = 0. Thus, the cdf of the limiting law of the
sequence {W, [m} is given (iff (2.6) holds) by
P[Y, < y] = (2/) §; arc sin (+-'y)* dG(1)
for y > 0and = 0 for y < 0.

From the previous example it is obvious that scaling constants which are a
positive power of n can be handled easily; however, Theorem 2.1 is equivalent,
then, to Dobrushin’s case (5) with his ¢ = 1 (1955). The next example illustrates
that other kinds of scaling constants can be dealt with via our theorems.

ExXAMPLE 2.2. Suppose {X,/(nlog n)} converges in law to a nonconstant ran-
dom variable X satisfying (2.4). If
fx) =x7! log)'c for x=e
=e! for x<e,
then nf(nx log n) — g,(x; —1) and x, = 0. Therefore, {X,, /(mlogm)}hasa non-
constant limiting distribution if, and only if, (2.6) holds.

THEOREM 2.3. If {a,} and {b,} are of type 3 with exponent & and if {G,(+)}
converges weakly to a cdf G(+) with G(0) = 0, then {(X, — b,)/a,} converges in
distribution to a random variable Y with cdf

P[Y < y] = §¢ P[X < y + log £/°] dG(¥) .

Y is nonconstant if, and only if, either X is nonconstant or G(+) is nondegenerate.
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Unfortunately, the author could not prove the converse, except in some special
cases. It is conjectured that a theorem analogous to Theorem 2.2 is true with
(2.4) replaced by the assumption: the characteristic function of X is not identi-
cally zero in some nondegenerate real interval.

ExAMPLE 2.3. Cramér (1965) states that if {Z,, n > 0} is a (standardized)
normal stationary process which satisfies a strong mixing condition, then
{(max,_,, Z, — b,)/a,} can converge in law to a random variable with the same
cdf as though the Z,’s were independent and identically distributed normal
random variables; i.e., with the exponential type of extreme value distribution
(see Gumbel, 1958). It follows immediately that

{(maXOSksN - m)/am}
can have a limiting distribution with cdf
PlY < y] = (¢ exp(—t~e v) dG(t) .

3. Proofs and lemmas. In order to give a more general statement of Gnedenko’s
characterizations of the domains of attraction, a positive function 4(+) defined on
the positive real numbers will be said to vary regularly at infinity with exponent
o in case h(x) = x°L(x) where —oo < o < oo and L(+) varies slowly; i.e.,

lim, ., L(xy)/L(x) =
for every y > 0 (see Karamata, 1930 or Feller, 1966).

PROPOSITION 3.1. f(+) belongs to the domain of attraction of type k (k =1, 2)
with exponent 0 if, and only if, f(x, — (— 1)kxe»=9)) varies regularly at infinity with
exponent p = —|0|.

This proposition is helpful in finding the appropriate function f(.) when given
the sequences of normalizing constants. Its proof, as well as the proofs of Pro-

positions 2.1 and 2.2, is essentially the same as the proof of the original version
and ultimately depends on the following generalization of a well-known result:

PRroposITION 3.2. Let g(+) and h(+) be nondegenerate monotone functions with
g(—o00) = h(— o) and g(+ o) = h(—|—oo) If {f.(+), n = 1} is a sequence of mono-
tone functions such that

3.1 lim, . f.(a,x + b,) = g(x)  forevery x in &,
(3.2) lim,_., f,(a,x + B,) = h(x) forevery x in &,,

where a, > 0, b,, a, > 0, B, are real constants, then there exist real constants
¢ > 0, d such that h(x) = g(cx + d) for every x and

(3.3) lim,_. a,/a, = c and lim,_. (8, — b,)/a, =d.
Conversely, (3.1) and (3.3) imply (3.2) with h(x) = g(cx + d).

Now, we turn to the proofs of the theorems in the previous section. They are
conceptually simple and rely on the easily proved
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Lemma 3.1. Suppose that {,(+), m = 1} and {§,(+), n = 1} are sequences of
Borel measurable functions such that {n,,(N,)} converges in distribution to a random
variable U and {¢,(X,)} converges in distribution to a random variable V. Let W be
a random variable independent of U and identically distributed with V. Then, the
sequence of random vectors {1, (N,), &y _(Xy )} converges in distribution to the ran-
dom vector (U, W) and h(7,,(N,), &y _(Xy, )) converges in distribution to h(U, W),
for any continuous function, h(+, +), of two variables.

ProOF oF THEOREM 2.1. The details of the proof will be given for k = 1 and
0 < 0; the other cases are similar. Now, (2.2) implies that {X, /a,} converges in
law to X — x,; hence, writing
(XN,M - bm)/am = [aNm/am][XNm/aNm] - [bm/am] ’
the first result will follow from Lemma 3.1 if {ay_/a,} converges in law to 7'/,

where T is a random variable with cdf G(-). We prove a generalization of the
latter which will be useful in the proof of Theorem 2.2:

Lemma 3.2. If {a,} and {b,} are of type k (k = 1,2) with exponent 6 and if
{G,..(+)} converges weakly to a df G(+) for some subsequence {m'} of {m}, then
Play , < aa, ] = G(a™), if 60<0

=1— G(a9), if 6>0,

lim,,._,,
provided a > 0 and a=° is in €.
Proor. In the case under consideration f(-) is a non-increasing function such
that, for x > 0, lim,_,_, nf(a,x) = a,x°. Thus,
Play,, < aa,] < P[N, flay,) = mflaa, )(N, [m)]
and, by an obvious generalization of Section 20.6 of Cramér (1946),
lim sup,,._.., Play , < aa, ] < G(a™%).
Applying the same type of argument to Pla, > aa, ], we obtain
lim inf,

m’—oo

Pla, , < aa,] 2 G(a~?).
The necessary and sufficient condition for Y to be nonconstant is a result of
the facts that X and T are “independent” and that the only characteristic func-

tions whose reciprocals are characteristic functions belong to degenerate cdf’s
(Lukacs, 1960).

ProoF oF THEOREM 2.2. As above, takek = 1and d < 0. Wehave (X, /a,}
converges in law to Y — x,. Let H,(+) and H,(-) denote the cdf’s of |X — x,| and
|Y — x,|, respectively, and let {m'} be a subsequence of {m} for which {G,, (-)}
converges weakly to some df G(+). Then, sending m’ — oo in

P[| Xy, | < yan] < Play,, < aa, ] + P[|Xy, | < yay, /4],

one obtains from Lemma 3.2 that
H,(y) £ G(a™%) + Hy(yla),
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provided a, y > 0, yis in %Hz, a%isin &, and y/a is in ,%/Hl. Letting ¢ — oo
and, then, y — co, G(+4 o0) must be one and there exists a random variable T
such that {N, /m’} converges in distribution to 7. By Theorem 2.1., Y — x,
must have the same distribution as (X — x,)T-" where, now, T is considered
to be independent of X. Any other weakly convergent subsequence of {G, ()}
will lead in exactly the same way to a random variable S, independent of X,
such that (X — x,)S~"/° has the same distribution as Y and, thus, as (X — x,)T-'°.
Since P[X = x,] = 0, P[S = 0] = P[T = 0] = P[Y = 0] and, without loss of
generality, we assume that S and T are positive. Then, (2.4) implies S and T
have the same distribution (this result is equivalent to stating that, under the
hypotheses, a scale parameter mixture of |X — x,| is identifiable—see Teicher
(1961)). Hence, every weakly convergent subsequence of {G,(+)} has the same
limit and the theorem follows (Feller, 1966, page 261).

ProOF oF THEOREM 2.3. Write
Xy, — ba)la, = [ay [a,)[(Xy, — by )|ay, + (by, — b,)lay,];
then, the theorem follows easily from Lemma 3.1 if {a, /a,} converges in
probability to one and if {(by — b,)/a, } converges in distribution to (say
0 < 0)log T/, where T is a positive random variable with cdf G(.). We again

prove a generalization of these last statements, but, unfortunately this time, the
results are not strong enough to prove a converse to Theorem 2.3:

LemMma 3.3. If {a,} and {b,} are of type 3 with exponent ¢ and if {G,, (+)} con-
verges weakly to a df G(+) for some subsequence {m'} of {m}, then
(3.4 lim,, ., P[by , — b, =< bay ]|= G(e™), if 0<0
=1— G(e?), if 6>0,

provided e=% is in & ;,. Moreover, fora>1

3.5) lim sup,, _, Play _, > aa,] < G(0) + 1 — G(+ o) ;
and for a < 1
(3.6) lim sup,,._, Play , < aa, ] < G(0) + 1 — G(+ o).

Proof. The proof of (3.4) is similar to that of Lemma 3.2 and will be omit-
ted. It also follows that in (3.4) ay _, can be replaced by a,.. We prove (3.5)
for 6 < 0. Let ¢ belong to the interval (1, a) and b > 0; then, Play _, > aa,)
is less than, or equal to,

Pl(ay,, — cay)b = (by,, — bu)a — )] $ Plby_, — b, > ba,.] .

Applying the “usual argument” to the first term on the right and using (3.4) for
the second term, we obtain

lim sup,, ., Play_, > aa, ] < G(exp[bd(c — 1)/(a — ¢)]) + 1 — G(e~?),

provided exp[bi(c — 1)/(a — c)] and e~? are in ;. Now, send b — +oco. The
proofs for ¢ > 0 and for (3.6) are similar.
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The last statement of the theorem follows as in Theorem 2.1.
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