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A REPRESENTATION OF INDEPENDENT INCREMENT
PROCESSES WITHOUT GAUSSIAN COMPONENTS!

By THoMmAs S. FERGUSON AND MICHAEL J. KLAsS
University of California, Los Angeles

1. Introduction and summary. It is the purpose of this paper to describe a simple
way of representing processes with independent increments having no Gaussian
components and no fixed points of discontinuity. As is well known, the only
random part of such processes are the jump discontinuities occurring at random
points with random heights. The representation appearing in this paper describes
the joint distribution of the ordered heights of the jumps and of the points at
which these jumps occur. In fact, such a process in represented as a countable
sum of functions each with one random point of discontinuity at a random
height (Formula (7)). There is an analogy to the way that Wiener [8] described
the Brownian motion process W, on the interval [0, =] as a countable sum,

(1) W, = tY, + 24 2im=1 YmSlnmt’
m
where Y, Y,, ... are independent normal random variables with zero means

and unit variances. In the same way that certain almost sure properties of the
sample paths of the Brownian motion process can be read from (1) (see, for ex-
ample, Itd and McKean [4] page 21), so also may certain almost sure properties
of the general process with independent increments be read from (7).

We use the notation .2”(4) to represent the Poisson distribution with parameter
A, Z(a, ) to represent the gamma distribution with shape parameter a and
scale parameter 3, 7Z/(«, f8) to represent the uniform distribution on the interval
(a, B), and .7"(u, o) to represent the normal distribution with mean p and vari-
ance ¢®. (See [2] Section 3.1 for this notation.) Iy(x) denotes the indicator func-
tion of the set S: one if xe S, and zero if x ¢ S. Expectations with subscripts
always represent conditional expectations given the subscripted variables. R
represents the real line and R™ Euclidean m-dimensional space.

Let X, denote a process with independent increments and no fixed points of
discontinuity. For the purposes of this paper, we restrict the domain of ¢ to be
the interval [0, 1], and assume that X, = 0. As is well known the increments
of such processes have infinitely divisible distributions. Let ¢,(u) denote the
logarithm of the characteristic function of X,. The Lévy representation [5] of
¢, may be written as

i) = dum(@) — 20+ 50 (e — 1 — 2y anr )

+ i <em —1— ’fﬁ) dN,(2)
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where m(t) is continuous where A(r) is non-decreasing and continuous, where
M, and N, are measures on the Borel subsets of (— co, 0) and (0, co) respectively,
such that M,(A4) and N/(B) are non-decreasing and continuous in ¢ for fixed
Borel sets 4 and B, and where

P dM(z) < oo  and {5 T

e 01+szNl(z)<oo.

The Gaussian component of this distribution is found in the term — A(r)u?. We
do not treat this component; we assume that A(r) = 0. The first term, ium(),
is a component degenerate at m(f). This component is easily treated, so we as-
sume that m(f) = 0, also. Of the last two components, it is sufficient to consider
just one, since the other may be treated by symmetry. Thus, we intend to rep-
resent X, as a sum of a countable number of terms when X, is the process with
independent increments and log characteristic function

) G(u) = §7 <em —1— ’fﬁ) dN(z) .
We relax one condition on N, because it is not needed; namely continuity in z.
Thus we allow the process X, to have some fixed points of discontinuity provided
the lengths of the jumps at these points from the left and the right have infinitely
divisible distributions. There is at least one application that requires such a
generalization [3].

Thus, we assume that the Lévy function N, is, for each r¢[0, 1], a measure
on the Borel subsets of (0, co) that satisfies the conditions

ConbpITION 1. N, = 0.

ConbpiTioN 2. For every Borel set B, N, (B) < N, (B) whenever0 < 1, < 1, <
1, and

ConDITION 3. {2 (2%/(1 + 2%) dN,(2) < oo.
It is convenient to use the distribution function form of the measure N,. Con-
dition 3 implies that N[z, co) < oo, for all z > 0, so we define
Ny(2) = — N[z, ).

Then, N,(z) is a non-decreasing function on (0, o) such that lim,_N,(z) = 0.
In this case, Condition 3 becomes simply

3) §622dNy(2) < o .

The jumps of the independent increment process X, with log characteristic
(2) are all positive. We intend to describe X, as the sum of a countable number
of functions of the form, J,/,,(T;) — c;(t), where J; > 0 represents the height
of a jump, T, represents its position, and c;(#) is a given function (nonrandom).
We order the heights of the jumps J, = J, = .. ..

The main theorem states that the distribution of the ordered heights of the
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jumps, Jy, J,, - - - depends only on N, and not otherwise on N,, as follows. The
distribution of J,, J,, « - - is the same as the distribution of N,"'(—S,), N,"(=S,), - - -,
where S,, S,, --- is a Poisson point process at unit rate—that is, §,, S, — S,
S, — S,, - -+ are independent identically distributed with negative exponential

distribution (1, 1). The inverse function N,"!(y) = inf{z: Ny(z) = y} is well-
defined except at an at most countable number of points y < 0 (the images of
the intervals measure zero under N,) so that the random variables J,, J,, - - - are
well defined almost surely.

The actual distribution of the ordered jumps may easily be obtained from
this, provided N(z) is continuous in z as follows. The largest jump, J,, has dis-
tribution function, for x > 0,

P(J, < x) = P(N,/(—=S8)) < x) = P(S, = — Ny(x)) = eMi*l .

If lim,_,N,(z) = N,(0) > — oo, then the distribution of J, has mass exp N,(0) at
the origin and is otherwise continuous. To find the conditional distribution of
J, given J; = x,, we compute, for 0 < x, < x,,

P(J, £ x,|J; = x)) = P(N,7H(=3S,) < %[ N,7Y(=S) = X))
= P($, = —Ni(x) [ Sy = —Ny(y))
= exp[Ny(xy) — Ny(x)] -

Thus, the conditional distribution of J,, given J, = x,, is the same as the dis-
tribution of J, truncated above at x,. This procedure is easily continued. Thus,
the distribution of J,, given J; , = x;_,, - -+, J; = x,, is the same as the distribu-
tion of J; truncated above at x;_,.

Condition 2 implies that N, is absolutely continuous with respect to N, when-
ever 0 < f, < 1, < 1. Hence, the Radon-Nikodym derivative of N, with respect
to N, call it n,(z),
dN,

dN, )

n(z) =
exists and is determined up to equivalence dN,. It is shown in Lemma 3 that
there is a determination of n,(z) such that for all z ¢ (0, o0), n,(z) is a non-de-
creasing function of ¢+ on [0, 1] with ny(z) = 0 and n,(z) = 1. One is tempted to
describe such a function of ¢ as a distribution function on [0, 1]; however, the
specific values assumed by n,(z) at points of discontinuity in r are important—
they play a role in determining the distribution of the left and right hand jumps
of X, at the fixed points of discontinuity.

The conditional distribution of the points T,, T,, - - - at which the respective
jumps J,, J,, - -+ occur, given J,, J,, - - -, is, essentially, as independent random
variables with respective distribution functions, n,(J,), n,(/,), - - -. This descrip-

tion is valid if all the n, are continuous in ¢ (more generally, right-continuous
in r). However, a more precise description is needed at points of discontinuity
of n, because these are the fixed points of discontinuity of the process and part
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of the jump at such points may be due to a discontinuity on the left and the
rest of the jump due to a discontinuity on the right. This more precise descrip-

tion, as found in the main theorem, is as follows. Let U,, U,, - - - be independent
identically distributed Z/(0, 1) random variables, independent of J,, J,, - - .. The
Jth jump, J;, occurs at the point t at which the jump in

I[U.ng(Jj))(Uj)

occurs. If this occurs at a point t, of discontinuity of n,(J;), then J, is part of the left
discontinuity at t, if U; < n,(J;), and part of the right discontinuity if U; > n, (J;).

If §zdN,(z) < oo, then the sum of the jumps Y5 J; is finite with probability
one, In such a case,

(4) X, = Z;’o=l‘]j1[0,nt(Jj))(U]')

already represents a process with independent increments having log charac-
teristic function

) $u) = §5 (e — 1) dN(2) .

However, when {} z dN,(z) = oo, the sum of the jumps > 37 J; is infinite so that
the series (4) is infinite also (at least at 7 = 1). As is well known, it is sometimes
possible to center such divergent series (each term centered at its mean, say),
and obtain series convergent with probability one, even though the series is not
absolutely convergent. This is possible under Condition 3. One possible center-
ing constant for the jth term is

o N~Y(—v) _
(6) c;()) = i, m n (N, (—v)) dv.
With these centering constants, the main theorem states that
(7) X, = 2% (JjI[O,ﬂt(Jj))(Uj) — ¢;(1))

converges with probability one for each ¢ [0, 1], and represents a process with
independent increments and log characteristic function (2).

This paper is incomplete in one aspect. We would like to be able to state that
the set of measure zero outside of which the series (7) converges may be taken
to be independent of 7. Under the condition

(8) 13 2dNy(2) < oo ,

this is the case because (4) itself converges for + = 1 with probability 1, and is
obviously non-decreasing. (In addition, )} ¢,(f) < oo under (8).) Thus, when
(8) is satisfied, the following well-known property of the sample paths of the
process (7) is visible: almost every sample path of X, — Y7 ¢,(7) is a pure jump
function (see Breiman [1] page 314). However, when condition (8) is not sat-
isfied, we do not know whether or not the series (7) converges for all + almost
surely, although we suspect it does.

The process with independent increments and log characteristic function (2)



1638 THOMAS S. FERGUSON AND MICHAEL J. KLASS

is said to be homogeneous if its Lévy function is linear in #, N(z) = tNy(z). There
is a simplification in the representation (7) when the process is homogeneous or,
more generally, when

N(z) = G(1)N,(2)

for some non-decreasing function G(r) on [0, 1] such that G(0) = O and G(1) = 1.
In this case, n,(z) = dN,(z)/dN,(z) = G(r) independent of z. Hence the points at
which the jumps J,, J,, - - - occur are independent identically distributed random
variables, independent of J,, J,, - - -, having distribution function G(z) (with the
difficulties previously noted at points of discontinuity of G()). In addition,
¢;(t) = G()c; where
M=)
C; = ]._ _.l—_
O ey

Hence, the representation (7) becomes

X, = 251 Uilpe(U;) — G(o)e;) -

2. The proof. We precede the proof of the main theorem by four lemmas.
We have defined a Poisson point process at unit rate as a sequence of random
variables, S,, S;, S,, - - - such that §,, S, — S, S, — S,, - - - are independent iden-
tically distributed with the negative exponential distribution, (1, 1). An al-
ternative definition of the Poisson point process at unit rate is as the times of
the jumps in a Poisson process at unit intensity. The following well-known
lemma is based in part upon this fact, and its proof is omitted (see Parzen [6]
Section 4-4).

LemMA 1. Let S, S,, - - - be a Poisson point process at unit rate.

(@) The conditional distribution of S,, - - -, S, given S,,,, is as the order statistics
of a sample of size k from 7£(0, S;,,)-

(b) Let K be the largest integer k such that S, < 2, where 2 > 0. Then K ¢ Z°(2),
and the conditional distribution of S,, - -, S, given K = k is as the order statistics
of a sample of size k from 7/(0, 4).

The next lemma appears to be new and interesting in its own right. It is used
to show that the process X, defined in (7) has independent increments.

Let®, ={#cR™: 6, =0, 310, = 1}. A random m-dimensional vector M
is said to be multinomial with probability vector 8¢ 0, if P,(M =e;) =0,
where e; is the unit vector with jth coordinate one and the remaining coordinates
zero (or, equivalently, if Eexp iw'M = 3T 0;e'i).

LemMMA 2. Let K, Y,, Y,, ... be random variables, K € Z*((4), and given K = k
let Y, Y,, ---, Y, be independent, identically distributed with common distribution
function F(y). Let 6(y) be a measurable map of R into ©,,. Let M;, M,, ... be a
sequence of m-dimensional random vectors whose conditional distribution given K,
Y,, Y,, - - - is as independent multinomials with respective probability vectors 0(Y,),
0(Y,), --. Let Z= Y, FY,M,. Then Z,, - - -, Z,, are stochastically independent.
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Proor. We show that the characteristic function of Z factors:
pz(u) = Eexp[iW'Z] = E[X, Eg v, vy exp[iY;u'M;]
= ETI55 Ex(Z0s, 01(Y ;) exp[iY;u])
= E(Z% § 0.(p)er 1 dF(y)¥
= exp{4 21, § Ou(y)err dF(y) — 2}
= [Iitiexp{a § 0, (y)(et — 1) dF(y)},
completing the proof.
Condition 2 on the Lévy function N, implies that N, € N,, so that by the Radon-

Nikodym theorem there is a measurable function n, = dN,/dN, determined up to
an equivalence dN, such that

SA n,(z) le(Z) = Ny(A)
for all Borel sets 4 < (0, o0). For 1, < t,, then,
§4n,(2)dN(2) < {4 n, (z) dN,(z)
for all Borel sets 4 C (0, o0), so that n, (z) < n,(z) for almost all z(dN,). It is
important to establish that n,(z) can be chosen so that it is non-decreasing in ¢
for 1€ [0, 1] and for all z € (0, co) i.e., that the null set on which n, (z) > n,(2)

can be assumed independent of ¢ and #,. That this is the case is the content of
the following lemma.

LEMMA 3. There exists a determination of the Radon-Nikodym derivative n, =
dN,[/dN, such that for all x€[0, 1], n/(x) is non-decreasing in t, n(x) =0, and
n(x) = 1.

Proor. Let D be a denumerable dense set in [0, 1]. Include in D the points
0 and I, and all fixed discontinuity points of the process (i.e. points ¢, for which
there exist a Borel set A such that

lim,, ., Ny(A) # lim,,, N,.(A)) .

There are only a countable number of such points. To see this, let T, be the
set of all ¢ for which there exists a Borel set 4, < (1/m, o) such that

. . 1
lim, ., N,.(4,) - lim, ., N,.(4,) > ol

Then 7, is a finite set. (If not, then N,(1/m, co) being at least the sum of these
jumps would be equal to infinity, contradicting Condition 3.) The sets T, are
non-decreasing in m, and the limit as m — oo is exactly the set of all fixed points
of discontinuity, which must therefore be countable.

Find, for each re D, n,(x) such that §, n, dN, = N/(A) for all Borel sets. A.
Then, for #, < 1, n, (x) < n,(x)a.e. (dN,). Redefine n,(x) for 1€ D if necessary
so that n, (x) < n,(x) for all xe [0, co) and all 1,€ D, 1,€ D, 1, < t,, and so that
n(x) = 0 and n,(x) = 1. Define for r ¢ D

n(x) = lim, ., . ., n,.(x) .
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Then, for all x € [0, c0), n,(x) is non-decreasing in r. Furthermore, for ¢ D
§4ndN, = limt'/t,t’eD §4n,.dN, = limt’/t,t'eD Ny (A) = Ny(A)
for all Borel sets A, showing that n,(x) is a Radon-Nikodym derivative dN,/dN,,

and completing the proof.

LEMMA 4. Let g be a non-increasing square-integrable real-valued function defined
on [0, o). Let X, X,, -+ be a sequence of independent random variables with
EX; =0.and Var X; = 67 < 0. Let S, = ¥* X,, let a, = X" 0%, and assume
a, — oo ash— oo. Then

§lntsn® g(x) dx —, . 0 as n— co.

Proor. Let e > 0. Let t, = sup{r: {2+ g(x) dx < ¢}, and let 7, = sup{r:
§ar_i9(x)dx < e}. Weare to show P{S, = 1,i.0.} = Oand P(S, < —#,i.0.} = 0.
Since g is non- mcreasmg, we have 7/, < t,, so by the symmetry of the problem
with respect to S, it is sufficient to show, say, P{S, = f i.0. }=0. Let ¢, =
min(%,, a,/2). It is sufficient to show P(S, > 1,’i.0.} = 0. Let b(n) = inf{b: a, =
2*}. Then, for all k

P{S, = t,/1.0.} < P{U 20 {S; = 1;'})

2inzk P{Usimysi<omsn (S5 = 1))

Zinzk PlUsimisi<oimsn {85 = o))

Zinzie P{Max; i S; = 15,}

Dinzk Bnan—1{thm)? (Kolmogorov’s inequality)
Dinze 2" ()"

= Znzkmer 2" Gm) P+ Dazkmene 27 (1)

where E = {n: {,,, < a,,,/2}. If ne E°, t},, = a,,,/2 = 2", so that

)

A IA A A A TIA

Linzimere 2 (0) 7" S Loz 27712777 < o0

If n (S E, t;ﬂ.n) = ib(n) é ab(n)/z’ and
e = (e 9(x) dx < g(a, — £)i,.

ap—tpn

Thus, t}.,, = fym) = /0@ — L) = &/9(@y)/2) = €/g(2""), so that

2n—1 2
Dinzhmen 2" () TP S Dk 2 gi§_) ’

But since g is non-increasing,
§0 9(x)*dx < 00 = 317 g(n)* < oo = 37 2"g(2")* < oo .
Thus both summations in (9) are finite and hence converge to zero as k — oo.

THEOREM. Let N, satisfy Conditions 1,2, and 3. Let Ji=N"(=S8)j=1,2,...
where S,, S, - - - is a Poisson process at unit rate. Let U,, U,, -.. be independent
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identically distributed //(0, 1), independent of S,, S, - --. Let

&) = §ioi NZ(=0) N, Y(—v)) dv

17 _n
T

where n, is as in Lemma 3. Then for each t € [0, 1], the series

(10) X, = 25a (Jj[[o,m(./j))(Uj) - Cj(t))

converges with probability 1, and X, is a process with independent increments and log
characteristic function

. [UX
(an Gy = §7 (€0 = 1= ) g
Proor. Leta, =0and a, = 37 1/j. Let K, be the largest integer k for which
S, < a,. With probability one K, < K, < ... and K, —» oo. Since K, —

K, ,e. ”(1/n) PIK, — K,_, = 2} = O(1/n* so that >, P{K, — K,_, = 2} < oo.
The Borel-Cantelli Lemma implies that with probability one K, — K,_, = 2 only
finitely often. In other words, with probability one the sequence K, K, - - -
contains all the integers from some integer on.

Let

XM = 5 (om0 p(Us) — €5(0)) -

We will show that X, converges almost surely for each t € [0, 1]. Then by the
above paragraph the series (10) converges almost surely as well. Let

Vi = 252 i n(Us) — §im 9.(v) dv
where for 0 < v < oo

9.(v) = Nl_l(—v)vy n(N,7(—=)) .

I + N7Y(—
We shall complete the proof by showing,

i°) X, — vV,™ —, . 0asn— oo for each re[0, 1]
(ii°) for each n, ¥, is a process with independent increments, and
(iii®) ¥, converges with probability one for each r € [0, 1] to a random vari-
able with characteristic function (11).

(i%) X, — V= |§ar 9.(v) dv| < |§ar 94(v) dv] -

The function g,(v) is square-integrable since

Srou(vy dv = §7 (%)dv

g <,sz__22>2 dN,(2)

2
20> =
SOl—f—zz

IA

dN,(z) < oo .
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Also g,(v) is eventually non-increasing and so is bounded by a square integrable
non-increasing function g say g, < ¢g. Hence by Lemma 4

!Xt(") _ Vz(")l < u(nn g(v) dv[ -, 0 as n— oo .

(ii°) Let 1(0) =0 < (1) <12y < --- < t(m) = 1. Then ViR, Vin) — Vim ...,
Ve, — Via_, are independent if Z,, Z,, - .., Z are independent where

Z, = Skn )l U, a=1,...,m.

j=1"3" g a=1)J j)mg(a)(J )
From Lemma 1, K, € ./(a,) and the conditional distribution of S,, - - ., S, given
K, = k is as the order statistics of a sample of size k from 7(0, a,). Thus,
Lemma 2 applies and Z,, Z,, - - -, Z,, are independent.
(iii°) Let

V. (t) - j= 1\n 1+1 J |0 ne(J 5 ))(U) San lgt(v) dv.

Then, for each re[0, 1], V (), Vy(2), - - - are independent since V,(r) is deter-
mined by those S; that fall in the interval [a,_,, a,]. Therefore, V', = >7_, V(1)

converges almost surely if it converges in law. (See Neveu [5] page 155.) The
characteristic function of the first term of V,™ is

Eexp{iu 28 il n,0)(U))}
= EE, EK i exp{Z’."" iuJ I, nt(.lj))(Uj)}
= EE, [[f (1 + (ei — D)n,(J;))
= E [[£» §en (1 + (exp[iuN,"(—v)] — D)n,(N," (=) :i" dv

n

= E(1+ - §or (expliuh (= )] — DN, (=) do)

= exp{§i» (exp[iuN,7'(—v)] = D)n(N,"(—v)) dv} .
The third equality follows since the distribution of the J; given K, is as the order
statistics of a sample of size K, from (0, a,), and the product involves the J;

symmetrically, so that the expectation given K, may be computed as if J; were
independent (0, a,). The characteristic function of ¥, is therefore

E exp{iuV,™}

_ exp{ an <exp[iuN;l(_v)] 1 1J£LE/1\/_:—("12)27)2> n(Ny~'(—v)) dv}
which converges as n — co to
exp{Sg" <exp[iuN]"(—v)] -1 — 1,..’_;[\,]]\/,(1,(:%2) n(Ny7(—v)) dv}
- exp{g <e 1 1_’:;"_)(_2) n,(x) le(x)} .

Since n, is the Radon-Nikodym derivative of N, with respect to N,, this is the
characteristic function (11).
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