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ASYMPTOTIC APPROXIMATIONS FOR THE PROBABILITY
THAT A SUM OF LATTICE RANDOM VECTORS
LIES IN A CONVEX SET*

By JaMEs K. YARNOLD
McDonnell-Douglas Astronautics Company

0. Summary. Ranga Rao [10] developed a version of the Edgeworth asymp-
totic expansion for Pr(X, € B), where X, = n~* 3}»_, Z,, [Z,] is a sequence of
independent random vectors in R, having a common lattice distribution with
mean vector zero and nonsingular covariance matrix ¥, and Bis a Borel set. Use
of this expansion is very difficult, except for the distribution function of X,,.

In this paper, Ranga Rao’s expansion is used to obtain a different expansion,
when B is convex. This new expansion is much simpler to evaluate. In the
special case when B = [x|x"$£7'x < c], the new expansion assumes its simplest
form.? The first partial sum is the usual multivariate normal approximation,
and Esséen ([6] pages 110-111) determined the order of magnitude of its error,
ie.,

Pr(X, € B) = K,(c) + O(n~*/k+1)
where K,(c) is the chi-square distribution function with k degrees of freedom.
Note that the order of magnitude of the error is n~* for k = 1 and approaches
n~' as k increases. The second partial sum is
Pr (X, € B) = Ki(c) + (N(nc) — V(nc)) ;’;‘—},’,,3——7752 + O(n™)

where N(nc) is the number of integer vectors m in the ellipsoid (m + na)"£~'(m +
na) < nc having center at —na, and ¥(nc) is the volume of this ellipsoid. This
provides a new expansion for the distribution function of the quadratic form
X, 751X,

When Z, has a multinomial distribution with parameters N =1, p;, -+ -, p,,,

m p; =1, X,”£7'X, is the chi-square goodness-of-fit statistic, and the new
expansion (with k = m — 1) provides very accurate approximations for its dis-
tribution function. The accuracy of the first several partial sums, and of the
Edgeworth approximation under the (iriappropriate) assumption that Z; has a
continuous distribution, is examined numerically for a number of multinomial
distributions. It is concluded that the Edgeworth approximation assuming a
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continuous distribution should never be used when Z; has a lattice distribution,
and that the second partial sum of the new expansion is much more accurate
than the normal approximation for all multinomial distributions examined.

1. Introduction. Let[Z,] be a sequence of independent, identically distributed
random vectors in R, with mean vector zero and nonsingular covariance matrix
I,andlet X, = n"¥Z, + --- + Z,). In this paper we study approximations to
Pr (X, € B) based on the normal approximation
(1.1) Pr(X, € B) = {,d®(x)
where @(x) is the normal distribution function having the same mean vector and
covariance matrix as Z;. The central limit theorem asserts that the error in the
normal approximation goes to zero as n — oo for all Borel sets B such that the
probability of the boundary of B is zero under the normal approximation.

The normal approximation is not always satisfactory and several asymptotic
expansions have been developed. Studies of the errors in the normal approxima-
tion and its improvements are important. The multidimensional case has been
studied by Bergstrom [1], Bhattacharya [2], Esséen [6], and Ranga Rao [10].

When the normal approximation does not provide sufficient accuracy, the
multivariate Edgeworth approximation is available:

(1.2) Pr(X, e B) = §,d[®(x) + 325 n=72P,(—D(x))] -

The definition of P,(—®(x)) is given in Ranga Rao [10]. It is proven by the
author [13] that P (—®(x)) is equal to

v (_1)v+2h v v . ('21D1+ +2ka)vT+2
(3 m 5IZ=1 ?:1[ = (v, + 2)! ](D(x)'

In the latter expression the differential operator D, represents partial differ-
entiation with respect to the ith component of the vector x. The quantity
(A4, D)) - - - (2, D, ) ®D(x) is interpreted as a symbolic product which is equal to

81t---+s
'Zx 898 a ' : (D(X) 4
PR (Ox e (9x, )
where 2, ..., is the multivariate cumulant of Z; of orders s,, sy, - - -, 5. Let §;,
be the sth absolute moment of the jth component of Z;, and let 8, = >}%_, B;,.

Ranga Rao [10] has shown that if the characteristic function A() of Z; satisfies
Cramér’s condition C

(1.4) lim,_., sup ()] < 1

and if 8,,; < oo, then the error in (1.2) is O(n~¢~272), uniformly in all convex

sets B. This is an extension of Cramér’s [4] result for the case k = 1. Condi-

tion C is satisfied if the distribution of Z, has an absolutely continuous part.
When Z; has a lattice distribution, Cramér’s condition C is not satisfied and

the preceding expansion is not valid. In this paper it is assumed that the possible

values of Z; are restricted to the set of lattice points U = [a 4+ m|m is an integer



1568 JAMES K. YARNOLD

vector in R, ], where a = (a,, - - -, @) is an arbitrary vector in R,. Consequently
X, has a lattice distribution with possible values restricted to the lattice

(1.5) L = [(na 4+ m)/nt|m is an integer vector] .

In this case, there is a local Edgeworth approximation for the probability at
each point x in the lattice L:

(1.6) Pr(X, = x) = n=*g(x) + L2 n7""P(—(x))]
where ¢(x) is the normal density function corresponding to @(x) and P,(— ¢(x))
is defined by (1.3), upon replacing ® by ¢. Ranga Rao [10] has shown that if
B, < oo, then the error in (1.6) is O(n~*~*+#/2) yniformly in x.

Esséen [6] showed for k = 1 and Ranga Rao [10] generalized to any k that the
local expansion (1.6) can be summed over any set B and expressed in the form

(1.7) Pr(X, € B) = §,dr,"(x).

If §,,, < oo, the approximation (1.7) is valid to O(n=*~*/2) uniformly in Borel
sets B. The definition of x,*)(x) is

(1.8) 7, (%) = [ 7571 (%)
where ¢,¢)(x) = X325 n=**P (—®@(x)) and T, is the operator defined for s > 3
as follows:

T, = 328 (—1)'n=*2S,(x;nt — na;)(D;)" .
The function S;(7) is periodic in ¢ with period one for j = 0, 1, - . -, and is abso-
lutely continuous for j > 2. The definition of S,(¢) is as follows:

Sy(t) =13 S(Hy=t—[1]1-1%, where [7] is the greatest integer < 7

form=1,2, ...

_ 2 cos(2nrt)
S, (1) = (—1)mt Yo Z¥PRRY) and
2m( ) ( ) Zn—l (2”71')27"
2 sin(2nxt)

Som+1(1) = (_l)m_l L= W '

Further properties of these functions are given by Knopp ([9], page 522) in his
discussion of the Euler—Maclaurin sum formula for the case k = 1.

2. Evaluation of a Lebesgue-Stieltjes integral. Ranga Rao’s re-expression (1.7)
of the lattice sum as a Stieltjes integral is of value only for sets with sufficient
regularity. For rectangles aligned parallel to the coordinate axes, the result is
a sum of 2* terms requiring no integrations. For an arbitrary set B, on the other
hand, the natural evaluation of the Stieltjes integral leads back to the sum of
the local approximation over all lattice points in B.

In this paper, a useful evaluation is obtained for convex sets, or more gener-
ally for extended convex sets B whose sections parallel to each coordinate axis
are all intervals. By carrying out the first integration over an interval, the
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probability is expressed as a sum of 2¢~! sum-integrals, and orders of magnitude
of various terms can be studied.
An extended convex set B has representation (2.1) for every re[l, ..., kJ:

2.1y B=[x|w,(X) < x, <0,(x) and x" = (X}, -+ +s X1, X, 4y -, X)) € B,]

where B, ¢ R,_, and w,, 0, are continuous functions on R,_, into R, and x,, - - -,
x, are the components of x.

Let F be a function on R, into R, which does not depend upon n and let 7',
be the operator defined in (1.8). In Theorem I, the integral §, d(TT%., T,;")F(x)
is evaluated for an extended convex set B. This is accomplished by integrating
first with respect to x, (for various r) over the interval (w,(x"), 6,(x")) for fixed
x' e B,.

In Section 3, Theorem 1 will be used to obtain a new asymptotic expansion
for Pr(X, e B) when B is an extended convex set. This is accomplished by ap-
plying Theorem 1 to each F; in ¢, (x) = 33, ¢;(n)F,(x) in order to evaluate
5 {15 7,1, (x) (see (1.7) and (1.8)).

The following notation is used in the rest of the paper: yx,(x) is the charac-
teristic function of the set B, and y, (x’) is the characteristic function of the
set B,.

()2 E) = h(Xyy oy Xy gy O(X'), Xpprs =5 Xy)

— h(Xyy ey Xy W(XT), Xppgs s X))

L; = [(na; + m)/n*|m is an integer] is a lattice in R,. The Cartesian product
L, x --- x L, is the lattice L in R, defined in (1.5).
BjF(x) = F(x, -+ X X5 4 0, X545, 005 )
— F(xy, «o oy x5 % — 0, X400, 05 X)) .
W is the set of all subsets of A =[1, ..., k].

For Ie W, C(I) = [x|x;e L; if je I; x; € R, if j € I°], where I° is the complement
of I'in A.

E is the set of all subsets of W which do not contain r.

ForIeE,C (I) = [x'|x;e L;if jeI; x; e R, if je I*], where I* is the comple-

mentof /in[l, ...,r — 1, r+1,...,k].
We define abbreviated notation for sum-integrals of special types over R, and
R, ..
Ifr=7pi,-.--,i,], then
Z S g(x) - inleLil tte in €L, so—ooo et o—ooo XB(X)g(X) Hjel” dxj
c(I)nB m m

and provided /e E,
TS A = Do eny Dy ey, §% 00§70 2, (A T e d;

Cp(1) 0 By “m
Theset I, = [r + 1, - . -, k] occurs frequently, and we define C,* = C.(/,).

THEOREM 1. Let F be a function on R, into R, which has partial derivatives of
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all orders in R, and which does not depend upon n. Let f(x) = ([, D,)F(x). If
B is a bounded extended convex set, then

i (T T5)F(x)
(2.2) = (5 dF(x) + izt (= Din- o[ D5, a0 5§ (S(nix,
— na)D, )] + Oy

wp(z’)
Furthermore, for each i, the quantity within brackets is O(1).
The proof of Theorem 1 is given in the Appendix.

3. Asymptotic expansion for Pr(X, ¢ B), when B is an extended convex set and
Z; has a lattice distribution. The following theorem provides a new asymptotic
expansion for Pr(X, € B).

THEOREM 2. If B is a bounded extended convex set, if Z; has possible values in
the lattice U, and if 8,,, < oo, then

Pr(X, € B) = §, ¢(x) dx + Tizin 3 §, P(—p(x)) dx
RS R (= 1) Dk, e 5 | (S,
Cr*n By
— na,)D, 1P, _((— (X)), + O(n= 7).
Furthermore, the jth term is O(n=9/?).

Proor. It is known from (1.7) that if §,,; < oo, then Pr(X,e B) =
§d[I]%-: T;9]¢,(x) + O(n==2/2). By definition, ¢,*(x) = Y523 n~"/* X
P,(—®(x)) 50 that § , d[T[5, Ty, (%) = L35 n= § yd[ T 5es T, 1P, — ().
Because P,(—®(x)) is a function on R, into R, which has partial derivatives of
all orders and which is independent of n, Theorem 1 may be applied to each
integral in the latter sum, resulting in:

Pr(X, € B) = N5z n 9 §, P;(— §(x)) dx
(3~1) + 23528 ek _1)i,,—(i+v)/2 Sik_, p=tk=m2
X 2 3 (S0P = )T, + O(nmem27)

where y, = ntx, — na, and we have used ([[%, D;)P,(—P@(x)) = P, (—p(x)).

We next consider the second term (call it 4) on the right-hand side of (3.1).
Note that the i, v term in A4 is O(n~“+*/?), using the second conclusion of Theorem
1. Upon putting all terms in 4 such that i + v > s — 2 into the remainder and
substituting j = i + v, it follows that

(3:2) A= ZEat Bl (= 1) Bk nmeoon
22§ (S0P Ps (=), + O 07

Cr*0 By
The proof of Theorem 2 is completed by substituting (3.2) into (3.1).

The simplest version of this new expansion, beyond the normal approxima-
tion term §, ¢(x) dx, is given in Theorem 3.
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THEOREM 3. If B is a bounded extended convex set, if Z, has possible values in
the lattice U, and if B; < oo, then

Pr(X,e B) = {;¢(x)dx — nt Za; . Zaz M_f {5 (TT5, D")g(x) dx
a=0  wp=0 (n)! -« (n,)!

Myfoeer +np=3

= Db n TR 3§ (S(nkx, — na)p)rE, + ().

oy wy(z")

Furthermore, the second and third terms on the right-hand side of the equality are
O(n~*).

4. Asymptotic expansion for the distribution function of the quadratic form O, =
X,"E7'X, when Z, has a lattice distribution. When B is an ellipsoid of the form

= [x|x"E'x < ¢], it is known [5] that the normal approximation for
Pr(X, € B) is {, ¢(x) dx = K,(c), the y* distribution function with k degrees of
freedom. Esséen ([6] pages 110-111) has shown that if Q, is the quadratic form
X,7X'X, and if B, < oo, then

(4.1) Pr(Q, < ¢) = K,(¢) + O(n~*/tk+Dy
Note that the order of magnitude of the error committed by the y* approxima-
tion is n~* for k = 1 and approaches n=' as k increases.

The simplest version of the new asymptotic expansion for Pr(Q, < ¢)—beyond
the y* approximation term—is the following second partial sum:

THEOREM 4. If Z, has possible values in the lattice U, B, < oo, and ¢ < oo, then
_ _ exp(—¢/2) 1
(4.2) Pr(Q, < ¢) = K,(c) + [N(nc) V(nc)] (2 )*"]E]* + O(n™)
and
— exp(—c/Z) —k/(k+1)
(4.3) [N(nc) — V(nc)] (rn) |5 = O(n )
where N(nc) is the number of integer vectors m in the ellipsoid (m + na)*$-*(m + na) <
nc having center at —na, and V(nc) = (anc)*?|L}/T'( k + 1) is the volume of this
ellipsoid.

Proor. The first step is to show that the second term on the right-hand side
of the equality in Theorem 3 vanishes when B = [x|x"¥2x < ¢]. For every
(ny, -5 n)s (IT%-, D;")$(x) is an odd function, and the integral of an odd func-
tion over the ellipsoid B vanishes.

We next evaluate the third term on the right-hand side of the equality in
Theorem 3 (call it J). When B = [x|x"E'x < ¢], 6,(x") and w,(x") are the
values of x, such that x”$£-'x = ¢. Thus

_exp(—c¢/2) _
P(x) = o) PEp

when x, = 6,.(x") or x, = w,(x’), and

J = _d Zl:'=1 n—(k—r+1)/2 Zf"q-+1eLq-+1 e ;%EL}, s e S [Sl(.yr)]z,r,,(f;/)) :=_11 dxi s
L
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where y, = ntx, — na,. We apply (8.10) and the proof which follows it to
G,(x,) = Si(),), which is differentiable except on a discrete set Lr, to. .7, (x,) = 1,
which is differentiable on the real line; and to a(x,) = G,.5 ,.(x,) = Si(»,) to
prove that

J = —d T ey Lisger, § -V (%5 DLSy(y,) dx,
T D0 eer, A 5100)) TIESE dx;
By definition S,(f) = t — [f] — }, so that D,S\(y,) = n, A, S,(y,) = —1, and
S = d BT L e Dger, § o § T
_ plk=r+1)/2 ZxTeLT N ;’keLk S ce S I1:z dxi]
=dn Y, e, e 2isger, 1 — § e § [Tk, dx;).

Diejer, e 2isper, 1 s the number of points of the lattice L which are in B =

[x]x"E~'x < ¢]. Because x ¢ L if and only if x = (m + na)/nt and m is an in-
teger vector, the latter number is equal to N(nc), the number of integer vectors
m in the ellipsoid (m + na)"L-%m + na) < nc having center at —na. It is
known ([5] page 120) that
k2§ k (zne)t”| L]}
nk’2 | SH dx1_m_V(nc)

is the volume of the latter ellipsoid. Thus J = dn=**(N(nc) — V(nc)), which is
the desired second term in (4.2).

The last step in the proof is the verification of (4.3), i.e. J = O(n—/k+D),
From Esséen ([6] page 117) it is known that for k > 2, ¥(nc) — N(nc) =
O(n*/3=#/k+1)) Thus if k > 2, then J = dn=*20(n*/2-*/k+1) — O(n~*/*+1). In the
case k = 1, Esséen ([6] Chapter IV) has shown that J = O(n~*).

The third partial sum of this asymptotic expansion for Pr(Q, < c) is given
in Theorem 5. In the rest of this article, Kaplan’s notation for multivariate
cumulants is used, e.g. A(i,, iy, i;) is the general expression for the third order
cumulant of components iy, i,, iy of Z,. If i, = i, # iy, A(iy, iy, i) = Ay, for com-
ponents iy, iy, iy. If i, = i, = iy, A(iy, iy, iy) = 4, for component i,. If i =i, # i,
A(iys I3, I5) = 4, for components i,, i,. ¢/ is an element of -1,

THEOREM 5. If Z; has possible values in the lattice U, ¢ < oo, and Bs < oo, then

Pr(Q, < ¢)
2
= Ky(¢) + (N(nc) — V(nc)) %
@9 [ 2 (Bt (1O ale) + 22 (B (- - Kera(e)) |
n

1 ,
= [ R (S, (nhx, — na)Py(— ()]

% [R5 72 3§ (Sy(ntx, — na,) D, (x))ire)] + O(n7),

Cp*n By



SUM OF LATTICE RANDOM VECTORS 1573

where
— 1 3% k k k g risicd (i i i ]
0y = § 2ifi=1 2fy=1 Lig=1 ip=1 a'1i2g 3 A(ly, 1y, I, 1)
iyignigiy rigi i18, igisigie
_ & & g'1*2g*3%4g*5"6 g'1*4g*2*g*3 ... ..
0y = Dif=1+" i6=1[ 8 + 12 A(iys Ty I5)A (i B 1)

and B is the ellipsoid [x| xT£7'x < c].

Theorem 5 is the case s = 5 of Theorem 2. The only point which requires
verification is that the first bracketed expression is equal to —n=" { ; Py(—¢(x)) dx.
This is done in [13], where it is also shown that:

(4.5) = §(o%(Q,) — 2k)

n
5 :_24<‘@_&£_ﬁ_§>

where ¢%(Q,) is the variance of Q, and z2,(Q,) is the third central moment of Q,
(to order n~'). The second method of evaluating 6, and d,, as defined by (4.5),
is convenient when the second and third moments of Q, are known. The first
method of evaluating 6, and 4,, as defined in (4.4), requires the cumulants of
Z; and g%,

The last two terms in (4.4) are at most of order n~'. Whether they are of
higher order is not known.

5. Asymptotic expansion for the distribution function of the chi-square goodness-of-
fit statistic. Given a multinomial distribution with parameters N = 1, p;, - -+, p,,,
where 37, p, =1, let Z; be the k = m — 1 dimensional random vector ob-
tained by deleting the mth component of the multinomial random vector and
centering at the mean vector, (p;, - - -, p,_;). Given asample of size n from this
multinomial, it is desired to test the null hypothesis that p,, - - -, p,, have specified
values. The classical chi-square goodness-of-fit statistic, X?, is a quadratic form
of the type Q, = X,”%7'X, to which the asymptotic expansions in Theorems 2,
4, and 5 apply, with |£| = p, --- p,and @ = —(py, =+, Pu-1)-

Hoel [8] applied the multivariate Edgeworth approximation for a continuous
distribution in (1.2) to Pr(X? < ¢), with s = 5, obtaining:

(5-1) Pr(X* <€) = Kya(6) — 2 (s (= 1) (OKnossad©)

= 2 (St (= D OKcsiade)

This is not a valid expansion, as Hoel stated, because Z; has a lattice distribu-
tion. The error in (5.1) is O(n~™~V/™), which is the same as for the y* approxima-
tion. It is clear from the valid expansion given in (4.4) and from (4.3) that the
continuous Edgeworth expansion (5.1) neglects the discontinuous term which is
O(n=(m=/m),
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However, 4, and 4, are required to use the third partial sum in (4.4), and
Hoel’s evaluation of ¢, and 4, for the multinomial (using a different and much
more complex method) provides a check upon the new first and second methods
of evaluating 6, and J, given in (4.4) and (4.5). The second method (4.5) re-
quires only the second and third central moments of X, which were obtained
by Haldane [7]:

aA(X) =2m—1) + < ;’;li—m2—2m—|—2>
P

1
n i
(X = 8(m — 1) — _’11_<18m2 4 36m— 32— 227", i) 4 0.

3

Thus, using (4.5)

= LX) — 2(m — 1)) = %( R 2)
oa(P00) B0 _m =1y

1
4 48 3 /)

n

& 3|

(5 s L 3m2—6m+4>.
P

6. Numerical investigation of the accuracy of approximations for Pr(X? < ¢). In
this section the accuracy of the following three approximations for Pr(X* < c)
is compared with that of the y* approximation for a number of different multi-
nomial distributions:

Approximation A is the second partial sum given in (4.2).

Continuous Edgeworth is the multivariate Edgeworth approximation for a con-
tinuous distribution given in (5.1).

Approximation B is the third partial sum in (4.4), without the last two brack-
eted terms.

For a multinomial distribution with expectations np,, np,, - - -, np,,, Table 1
gives for each approximation the maximum absolute error in distribution func-
tions (true-approximate), at possible values of X* (with the sign of the largest
error attached).

A more extensive investigation of the accuracy of these approximations, in-
cluding the two-parameter I' distribution, the »? approximation with continuity
correction [3], and the C(m) approximation is given in [12], using maximum
error over the whole range and over the upper ten percent.

7. Conclusions on the accuracy of approximations for Pr(X* < c). The following
conclusions on the accuracy of these approximations are based upon the order
of magnitude of their remainders and inspection of Table 1:

A. Never use the continuous Edgeworth approximation. The %* approxima-
tion is almost as accurate or better.

B. Approximation 4 is much more accurate than the y* approximation for
every multinomial distribution examined.
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C. Approximations 4 and B are very much more accurate than the y* ap-
proximation when the y* approximation is only fair (or better). The accuracy
of 4 and B increases as Q = Y™, 1/(np,) decreases, and B is more accurate than
A when Q is sufficiently small.

D. Approximations 4, B, and y* are all very inaccurate when there are too
many small expectations. Under the assumption that, as n — co, some expecta-
tions remain finite while the rest increase without limit, the limiting distribution
of X* is the C(m) distribution. This C(m) approximation is accurate when there
are any number of small expectations. The basic idea for the C(m) approxima-
tion is due to Cochran [3], and a proof for the general case is given in [12].

E. It is recommended that the two-parameter I' approximation and the X*
approximation with continuity correction not be used (see [12]).

8. Appendix.

ProoF oF THEOREM 1. Let
(8.1) T, =T;®
(8.2) T,* =T, —1.
Then [T, T, =1+ 3k T,* 1%, T, and

(8.3)  §pd(II5- THF(x) = §5dF(x) + 27 §p d(T," [15oria THF(x) -

We now evaluate the last integral in (8.3). The quantity (7,* []%_,., T;)F
is a sum of terms of the form

(IT5=, 95(x,) 115, D;")F
where g,(x;) = S, (ntx; — na;) (—1)min~"i* is differentiable except when x; € L;,
and each term may be rewritten as

(IT5=- 95(x;)) - (IT5=, D;™F) -
Lemma 1, which appears at the end of this section, gives a reduction to sums
and Lebesgue integrals for a Stieltjes integral of the type §, d(]]%., G;).& (x). It
applies immediately to the integrals required above with & = [[*_. D,™F,
G; =g;forj=r,and G, = 1 forj < r. The result of recombining all the terms
is equivalent to applying Lemma 1 directly to
$pd(T,* T15-r11 THE(x)
1 for j=1,...,r—1
with G, =|T* for j=r and F =F,
T]- forj:r—}—l,'--,k

even though Lemma 1 is not directly applicable to operators T;; we do not give
the details of this step. The latter direct application of Lemma 1 gives the fol-
lowing result:

(84) SBd(Tr)k ] r+1 T )F(x) ZIGE Q(I)
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where
Uy =, 31§ (I A, G)(GI] D; G)F(IE),
It follows that
(IT 4, GG 1L D; Gy)F(x) = (IT 8;G5)A,G,(G,)IT D;G,)F(x)
J#3dg
because G; is a function only of x; and because the differential and difference
operators can be applied in any order. If 3je/>j < r, sayj = j,, then G, =1
so G"O(GT)(I,I D;G;)F(x) is differentiable with respect to x; and 4;,G,(G,) x
(I D;G;)F(x) = 0. Thus the E on the right-hand side of (8.4) may be replaced
i

by E,, the set of all subsets of [r 4- 1, ..., k].
If Ie E,, we define I** = I* N [r + 1, - .-, k] and the definition of the G;’s
implies

Q) =, 32§ (L] & T)(T*)II55 D; TL Ds T)FCNe) -
Using the expressions for A; T; and D; T given in Lemmas 2 and 3 (which appear
at the end of this section), it follows that if /€ E, has m elements [i, - - -, i,],
then
(8:5) Q) =n"r 3§ (T} (= 1) 78,(y,)D, ) (—n-dyle-simr—m

Cpr(1) 0By
X (I1 .40, (0Lt
where y; = nix; — na;.

If m < k — r, then the power of n~* in the integrand of Q(7) is at least 1 +
(s —3) =s—2. Also Sy(y;) is bounded by a constant independent of n, and
the same is true of every partial derivative of f(x). It follows from the latter
and the fact that the region of integration in Q(7) is independent of n that the
integral in Q(7) is O(n="=»/%). To estimate the multiple sum over (X oo s X; ) €
L; x --- x L; in Q(I), note that from the definition of the lattice L it is known
the spacing between values of x; € L; is n~%. If d is the diameter of B,, an im-
mediate estimate of the multiple sum in Q(1) is O((dn*)™). Thus

Q(I) — pm2, 0((dn5)’”) . O(n—(s—Z)/z) — O(n—(s—Z)/Z)
if m < k —r. There is only one /€ E, such that m = k — r, namely [, =
[r+ 1, ..., k]. Consequently forr=1, ...,k
(8.6) §o d(T,* [T THF(x) = QL) + O(n=t=51) .
Because /,* = [I, --.,r — 1] and [,** is the null set, it follows from (8.5)
that

®.7) Q) = Bt (=)= 3 § [Sy(ntx, — na,)D, = f(x)]rw)]

For each i and r, the expression in outer brackets in (8.7) is O(1), by the argu-
ment just used to determine the order of magnitude of Q(7).
The conclusions of Theorem 1 follow from (8.3), (8.6), and (8.7).
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LemMMA 1. Let G; be a function of x; on R, into R, which is differentiable except
on a discrete set® L;. Let 7 and a = ([[%., G,;).% be functions on R, into R,,
where & is dzﬁ"erentzable everywhere and « is of bounded variation on compact
sets. If B has the representation (2.1), then

(B8  §yda() = Tyer( 3§ [T 4,6)(G)I] D 6)F (0I5 -

Proor. From the definition of the Lebesgue-Stieltjes integral, it follows that
B9 §yda() = Do [ 2§ (18,6 2,6, ()],
where

(1;[ A; Gj)(g D;G;).Z(x) = 1;[ A, 111 D; [15.,G; 7 (x) -

Note that the range of every differential or difference operator is understood to
be everything to its right.
For every /¢ E we define I, = I U [r], which provides a one-to-one corre-
spondence of E onto E°: [ = I,. (Note that (/,)° = I*.) Consequently
Vada(x) = Zrex[ 3 § (1 A~G-)(H D;G;).7 (%)
+ ZJ S (HA G)(HD Gy~ (x)] -

C{Ip)nB
By Fubini’s theorem,

ZS(HAG)(HDG)Q'(X) =2 S(HAG)(DG)(HDG)ﬁT(x)dxw

I AIAGHIID,6) () = 2§ 5 )(HA G;)(8,G)(I] Dy 67 () -

wS (1'[A G)(D, G )1 D; G,)-F (x) dx,

Oplz’)

(8.10) +,2, (14;6)@,G)I1 D;6;)-~(x)

we(z’)
Tp€ Ly
Op(z’)

:ws(x,)d’”?'[(lzl Ai GJ)(Gr)(Ill Dj G])]-gv(X)
= [(1;[ A, G")(G’)(g D,G,).F (X))’ .

wplz’)

The proof of the first equality in (8.10) is as follows: The hypotheses on G, and
F#(x) imply the x" section .57 ,,(x,) of, .F (x) = (II A;G, M D;G;)-F(x) is dif-
ferentiable with respect to x, on the real line. G,, FaAx, ) a(x,) = G,.7,.(x,)
satisfy the hypotheses of Lemma 1 in the one-d1mens1onal case with x = x,, B =
(w,(x"), 0,(x")), and the first equality in (8. 10) is given by (8.9) (upon replacing
a(x) by a(x,), F(x) by F.(x,), and A by A = [r].)

Consequently

fsda() = Trer[ 2§ (] 8,G)(GI] D;G)-F (915201

which completes the proof of Lemma 1.

#In Lemma 1 L; is defined more generally as a discrete set, instead of a lattice. The defini-
tions of C(I) and C(I) are the same with this more general definition of Lj;.
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TABLE 1
Maximum error of approximations for Pr(X? < c)
Expectations 22 A B (éc()jntinuous
geworth
2,2,2 —.2701 .0504 .0344 —.2465
3,3,3 —.1982 .0315 .0201 —.1841
5,5,5 —.1348 .0173 .0142 —.1254
10,10,10 —.0977 .0102 .0057 —.0932
20,20,20 —.0659 .0044 .0021 —.0638
50,50, 50 —.0315 .0016 .0009 —.0310
100,100,100 —.0201 .0012 .0009 —.0198
.1,10.45,10.45 —.0849 .0638 .1829 —.2144
.5,10.25,10.25 —.2260 .0544 .0319 —.2038
1,10,10 —.1454 .0385 .0284 —.1353
2,10,10 —.1183 .0134 .0077 —.1101
3,10,10 —.1021 .0137 .0089 —.0969
5,10,10 —.0777 .0073 .0057 —.0721
.1,.1,10.8 —.1667 .1261 .1225 —.0764
.5,.5,10 —.3935 .1055 .0784 —.3617
1,1,10 —.2751 .0583 .0407 —.2574
2,2,10 —.1728 .0203 .0198 —.1598
3,3,10 —.1316 .0210 .0148 —.1253
5,5,10 —.0964 .0128 .0062 —.0917
1,1,1,1 —.3339 .1039 .0619 —.2919
2,2,2,2 —.1603 .0418 .0291 —.1472
3,3,3,3 —.1330 .0271 .0131 —.1190
5,5,5,5 —.0852 .0134 .0075 —.0770
10,10,10,10 —.0515 .0062 .0026 —.0472
.1,10.3,10.3,10.3 .1080 .0546 .1605 .1573
.5,10.17,10.17,10.17 —.0971 .0314 .0174 —.0863
1,10,10,10 —.0766 .0213 .0135 —.0683
2,10,10,10 —.0568 .0100 .0060 —.0542
3,10,10,10 —.0474 .0080 .0023 —.0418
5,10,10,10 —.0329 .0067 .0016 —.0278
.1,.1,10.4,10.4 .2091 .1460 .3065 —.3021
.5,.5,10,10 —.2103 .0700 .0487 —.1866
1,1,10,10 —.1184 .0498 .0280 —.1045
2,2,10,10 —.0638 .0166 .0131 —.0612
3,3,10,10 —.0638 . .0121 .0052 —.0565
5,5,10,10 —.0427 .0079 .0032 —.0380
.1,.1,.1,10.7 —.2229 .1555 .1302 —.1976
.5,.5,.5,10.5 —.3233 .0897 .0660 —.2994
1,1,1,10 —.1663 .0679 .0380 —.1456
2,2,2,10 —.0975 .0182 .0133 —.0924
3,3,3,10 —.0926 .0154 .0063 —.0833
5,5,5,10 —.0571 .0096 .0051 —.0526
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LEMMA 2. D; T, = (—1)y=*n==918 _(y;,)D;*"%, where y; = nix; — na;.
PROOF.
(8.11) D, T, = Dy(2353 (— 1)'n™28,(y;)D;")
= i (=18, (y) Dy 4 iz (= 1)'n D, S,(y,)1D; -
A property ([9] page 522) of the function S;(¢) is that (d/dt)S,(t) = S,_,(¢). Thus
2550 (= 1)'n=* D, S,(y;)1D;*
(8.12) = uzi (= 1)yn~*2niS,_(y;)D;* where S_,(f) =0
= — i (= 1)y () D
From (8.11) and (8.12), Lemma 2 follows.
LemMA 3. If x; € L;, then A; T, = n=iD,.

PRrROOF. x; € L; implies that y; = ntx; — na; is integral; also

Aj Tj(s) — Tj(s)(yj _|_ 0) _ Tj(s)(yj _ 0)
= D (=17 28,(y; + 0)D;F — Tzt (= 1)'nm28(y; — 0)D;* .
For i =+ 1, S;(y; + 0) = S;(y; — 0) because S(¢) is absolutely continuous. Thus
the latter expression is equal to

—n S (y; + 0)D; — Sy(y; — 0)D;] = n~tD; .
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Added in proof. In the proof of Lemma 1, see Hildebrandt, T. H. (1963)
Introduction to the Theory of Integration. Academi Press, New York. Theorem
13.8, page 60, for k = 1 and problem 6, page 139 for k = 2.

The second equality in (8.10) is given as Property I of the Stieltjes integral,
page 60, Widder, D. V. (1947) Advanced Calculus. Prentice-Hall, New York.

FORTRAN IV computer programs for all of the computations in these arti-
cles are available from the author. One program calculates the exact upper tail
probability of the y* distribution and the seven approximations, at each possible
value of y?, for arbitrary n, m, p;, - - -, p,,. The second program does the same
(more efficiently) when all p; are equal. The third program calculates the upper
tail probability of the C(m) distribution. The first program also computes N(nc),
V(nc), and the lattice remainder N(nc) — V{(nc), which also arise in the lattice
point problem in the theory of numbers.



