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A CRITICAL AGE-DEPENDENT BRANCHING
PROCESS WITH IMMIGRATION

By HowARD J. WEINER
University of California, Davis

It is shown that the number of cells alive at time ¢, denoted by Z(#), of
acritical age dependent branching process with immigration satisfies #-1Zy(¢)
approaches a gamma law with specified constants in distribution.

1. Introduction and summary. Jagers [4] has given the following model for an
age-dependent branching process with immigration. Starting at time ¢ = 0, let
a group of k cells of age zero all arrive with probability p,, with generating
function ky(s) = Y%, pros*, according to a renewal process with i.i.d. interarrival
times {X;} each distributed as P[X < t] = G(¢), G,(0+) = 0 and non-lattice, in-
dependent of the number of cells which arrive and of past history. Each arriving
new cell initiates a standard Bellman-Harris ([3], Chapter 6) process with off-
spring distribution A(s) = 3,5, p,s' and offspring lifetime distribution G(7),
G(0+) = 0, and also non-lattice.

Let Z,(f) = total number of cells in existence at time ¢ in the overall, or im-
migration process, and let Z,(r) = total number of cells alive at time ¢ starting
with one newborn cell at time ¢ = 0 in a Bellman-Harris process with offspring
distribution A(s) and lifetime distribution G(¥).

The object of this paper is to show that in the critical case, where £%(1) = 1,
that 1=1Z,(f) converges in distribution to a suitable gamma law. A special case of
this was done for Markov branching processes in continuous time by Sevast’yanov
[6] using differential equations for certain generating functions. Durham [1]
also obtained a gamma limit law for immigration of cells arriving one at a time
in accord with a non-homogeneous Poisson process X(r) with E(X(¢)) = 6(¢). His
critical age-dependent process started by each arrival is more general than the
one treated here, as cells may be born all during the life of the parent cell. His
moment methods differ from those used here. Also, his basic equation (2) page
1122 of [1] can be obtained from (1) by substituting 1 — G(r) = exp (—0(?)),
hy(s) = s and differentiating this F(s, ) with respect to f-measure after a change
of variables to obtain an easily solved differential equation.

Seneta [5] has obtained a gamma law for a similar immigration process in
discrete time. Foster [2] has also considered such discrete time processes with
these and further results, and has considered multitype processes. Generating
function expansions are used for these results.

2. Limit law.

LEMMA. Assume {hy™ (1)} and {h™ (1)} exist for n = 1. Then E(Z(t))" exists for
all t, all n > 1, and is non-decreasing in t for each fixed n, when V(1) = 1.
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Proor. The existence of moments follows from arguments in Jagers [4] and
standard results in Harris ([3], Chapters 3 and 6).

Now Z() can be expressed as a random sum of standard independent Bellman-—
Harris critical age-dependent branching processes (i.e. with V(1) = 1). It was
shown in [7] (page 1565) that E(Z,(t))" is non-decreasing in ¢ for each n. Hence
the result follows.

THEOREM 1. Let hy(s) be the immigration generating function with all moments
{h'™(1)}, n = 1 assumed to exist, with hy"(1) = m,. Let the interarrival time dis-
tribution function be G(t) with

0< my = {7 udGy(u) < oo .
Let h(s), the off spring distribution, have {h™)(1)}, n > 1 all finite, and k(1) = 1,
0 < h®(1). Assume that the lifetime distribution function has
0< myg=SFudGu).
Denote b = 2my[h®(1).

Denote ¢ = bmy|my,.
Then

1 -1 [ — -n F(c + n)
lim,_, E(t7*Z(t))" = b —F(T

Proor. Defining the generating functions F(s, t)=E(exp (—sZ(t)) and @(s, 1) =
E(exp (—sZ,(t))), Jagers [4] obtains the integral equation
(2.1) F(s, 1)y =1 — Gy(t) + §& ho(D(s, t — u))F(s, t — u) dGy(u) .
(2.2) Let D(s, 1) = 1 — (s, 1).
Putting (2) into the right side of (1) and expanding A1 — D(s, )) in a Taylor
series about 1, we obtain
(2.3) F(s, 1) =1 — Gy(t) + §5 F(s, t — u) dGy(u)

+ Do () 5 (= D(s, ¢ — W)Y F(s, t — u) dGyu) .

Taking Laplace-Stieltjes transforms of (2.3), rearranging and reinverting, we

obtain

(2.4 F(s, 1) =1+ 2o, b)) §6(—D(s, t — u)"F(s, t — u)dHy(u),
where
(2'5) Ho(t) = Zf=0 Go(n)(t) s

with G,™(f) the nth convolution of G(f), and G,() the unit step function.
We now obtain asymptotic formulas for the E(Z,(#))" by induction. Denote

(2.6) E(Z(1)" = My (1) with M (1) = m(1)
and ‘
2.7 EZ,O)) = M, (1), with M,(?) = m(?) .
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On differentiating (2.4) once with respect to s and setting s = 0, one obtains,
since D(0, 1) = 0,

(2.8) my(t) = my §im(t — u) dHy(u) .

Note that

(2.9) TF (o | = M) and L (—D(s, )] = M,@).
os™ s=0 as™ §=0

From ([7] page 1566), m(t) = 1, so that
(2.10) my(t) = moH(t) ,
and standard renewal theory yields that
(2.11) lim, . t-my(t) = myjmog .

Taking second derivatives with respect to s in (2.4) and setting s = 0, one
obtains
(2.12) My(t) = my & (My(t — u) + 2my(t — u)) dHy(u) .
Taking now Laplace-Stieltjes transforms of (2.12) expanding around s | 0, and
denoting the transform of a function K(#) by K(s), one obtains, using sMy(s) ~ 2/b,
([7] page 1567),
(2.13) lim, |, *My(s) = 2mq/mog[my[myg + 1/8] .
Reinverting, using Abelian and Tauberian theorems in Widder [8], which apply
by the lemma, one obtains

(2.14) lim, ... t*My(t) = myfmog[mq/my; + 1/b] -

Similarly, the result of Theorem 1 is easily checked for the cases n = 3, 4. Fol-
lowing now the argument in [7] (page 1566), a further induction appealing to
standard Abelian and Tauberian theorems yields that the limit behavior of M,,(?)
is obtained solely from the behavior of the nth derivative (D(0, £)F(0, 1))™ in

the right hand side of (2.4).
Using the Leibnitz rule for differentiation, using D(0, r) = 0,

(2.15) (—D(0, HF(0, )™ = Xty (WF*¥(0, 1)(—D(0, ))*~*
= Y2=i (MF™®(0, £)(—D(0, t))™*

using D(0, ¢) = 0.
Assume now that the theorem holds by induction up to n — 1.
Hence, for k < n — 1,

(2.16) t My, (t) ~ b*T'(c + k)/T(c) .
From [7] (page 1567),
(2.17) e EIM, (1) = 17 F(=D(0, )R ~ (n — k)L 6T TR
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From (2.15) to (2.17)
(2.18) =] —D(0, )F(0, H)]™ ~ T3zt (7)(n — k)! b=*=¥=5=*T'(c + k)/T(c)

— ntp-o-v s L+ )
T(o)k!

A straightforward induction repeatedly using I'(a + 1) = al'(a) yields that

Te+k) _ T(+n
* T(gk! ~ T(c+ DI(n)

Substituting (2.19) into (2.18) yields

(2.19) 2k

_Letn
T(c + DI'(n)
Taking Laplace transforms in (2.20) it follows that for s 10,

I'(c + n)
T(c + DT(n)
Putting (2.21) into (2.4), after taking nth derivatives and setting s | 0, using the
fact that only (D - F)™ terms count in the asymptotic expansion, yields that
(2.22) "My (s) ~ 0 T(nyb--vp) L€+

Mg I'(c + DHI'(n)
= b7"n! I'(c + n)/T(c) .

Again by Abelian and Tauberian theorems, (2.22) implies

(2.20) =D —D(0, t)F(0, )]™ ~ n! ="~V

(2.21) s"Y(—=D - F)™(s) ~ T(n)n! b=-0

- ~ pn L+ n)
(2.23) M) ~ b7 S

as t — oo, and the induction is complete.

THEOREM 2. Under the hypotheses of Theorem 1, Z,,[t converges inlaw to a gamma
distribution T'(c, b).

Proor. Theorem 1 yields that for all n > 1,
lim,_, E(Z,/t)" = b-"T'(c 4+ n)/T'(c),
the moments of a I'(c, 6) law, and which uniquely characterize it. This suffices
for the proof.

3. Remarks. Theorems 1 and 2 may be immediately generalized to the case
of this general immigration of cells undergoing a general critical branching process
as treated for a special case of immigration in [1]. This is due to the facts that
the asymptotic moment structure for the general critical process is the same as
for the critical branching process, that (2.1) holds formally, that the monotonicity
of moments follows using the same argument as [7] (page 1565) and the lemma
given here, and finally since the results depend only on asymptotic moment
computations. The formal definitions of modified parameters and explicit limit-
ing gamma law will not be given here,
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