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ON LIMIT THEOREMS FOR QUADRATIC FUNCTIONS
OF DISCRETE TIME SERIES

By E. J. HANNAN AND C. C. HEYDE
Australian National University

In this paper it is shown how martingale theorems can be used to
appreciably widen the scope of classical inferential results concerning auto-
correlations in time series analysis. The object of study is a process which
is basically the second-order stationary purely non-deterministic process
and contains, in particular, the mixed autoregressive and moving average
process. We obtain a strong law and a central limit theorem for the auto-
correlations of this process under very general conditions. These results
show in particular that, subject to mild regularity conditions, the classical
theory of inference for the process in question goes through if the best
linear predictor is the best predictor (both in the least squares sense).

1. Introduction. A great deal of time series analysis is based upon quadratic
functions of the data. In particular, many inferential results relate to theorems
concerning the autocorrelations

(1) r(j) = 2ai {x(n) — x}H{x(n :f‘]) — X} , j=o0,
=1 {x(n) — x}°
(=j)=r(),

x(1), x(2), - -+, x(N) being a sample of N consecutive observations on some pro-
cess {x(n)}. Itis well known that, under certain conditions on the process {x(n)},
a strong law of large numbers and a central limit theorem hold for r(;) (see, for
example, Hannan [6], Chapter IV, VI). In this paper it is our object to show,
using limit theorems for martingales, that the scope of the classical inferential
theory can be appreciably widened in a natural way.

We shall be concerned with a process of the form

(2) x(m) — p = Zioa(e(n —Jj),  Hia¥(j) <co,  a(0)=1;
Ee(n) =0, E{e(m)e(n)} =0, m=£n.

If x(n) — p is a second-order stationary, purely non-deterministic, process ([6],
Chapter IIT) then it may be represented in this form with the ¢(n) as the linear
prediction errors, having variance ¢* > 0. As is well known, there will be many
representations of such a stationary process in the form (2) but for only one of
these will the ¢(n) be the prediction errors. However, our results extend beyond
the stationary case so that we do not assume stationarity for the {¢(n)} but only
that (2) holds for n = 0, together with other conditions to be discussed shortly.
A process of the kind (2) arises from a wide variety of contexts; for example
from a mixed autoregressive and moving averge process ([6], Chapter I) and as
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the response of a physically realizable filter to an uncorrelated sequence (Gikhman
and Skorokhod [5], Chapter 5).

Now the classical theory of inference for the process (2) usually requires that
the ¢(n) be independent and identically distributed with zero mean and variance
¢’ (which we paraphrase as i.i.d. (0, ¢*)). The essential feature of this paper is
that, subject to some reasonable additional conditions, the classical theory goes
through if the independence assumption is replaced by the weaker condition

3) E(e(n)| #,.) =0 as., all n,

where &, is the o-field generated by the ¢(m), m < n. This requirement has a
simple and natural interpretation in the case where {x(n)} is stationary and thus
purely non-deterministic and the ¢(n) are the linear prediction errors, for then
&, Is also the o-field generated by the x(m), m < n so that, because of (3),

4) &(m) = x(n) — E(x(n)| 1) -

To see this, write &, for the o-field generated by x(m), m < n. Clearly .5, 2
Z, and, when the ¢’s are the prediction errors

&(n) = x(n) — E(x(n)| Z,.)

which is &, measurable. Thus &, = % ,. Then, E(x(n)|.%,_,) is the best
linear predictor and the best linear predictor is the best predictor (both in the
least squares sense). Conversely, if this is so, (4) must hold and hence (3).
Thus (3) is equivalent to the condition that the best predictor is the best linear
predictor, both in the least squares sense. In the stationary case our additional
conditions are, for example, the regularity condition (7), below, together with
the requirement that E(e%(n) | % ,_,) = ¢* a.s. Our results give that, subject to
the mild regularity condition (7), the classical theory of inference for (2) goes
through when the ¢(n) are the prediction errors provided the best linear predictor
is the best predictor and the prediction variance, given the past, is a constant.

2. Strong law for autocorrelations. Here we consider the process (2) where ¢(n)
satisfy the condition (3). We shall not require stationarity of {e(n)} but instead
the condition

&) limy_, N- ¥ E(¥n)| & ,_) =a* >0 as.

and the condition that there exists a random variable X with EX? < oo such that
(6) P(le(n)| > u) < cP(X|) > u)

for some 0 < ¢ < oo and all n, all w > 0. If x(n) is stationary we modify (5) to
5y E(@(n)| F,_) =0*>0 as.

and (6) is redundant. We shall, in Section 3, make use of the condition

™ Tt < oo .

Define

c(j) = e(=j) = N7 T3z {x(n) — xf{x(n +)) — %}, jz0,
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where % is the sample mean of the x(n), n =1, ..., N. If x(n) is stationary its
spectral density is

2 ..
fA) = |57 a(ef
T
and the autocovariances y(j) satisfy
1) = {2 €7 f2) dA = o* iy eua(u + ) .
However we may define f(2) and 7(j) by these formulae whether or not x(n) is
stationary. We now have the following theorem

TaeoreM 1. If (3), (6) and 3 |a(k)| < oo hold, % converges a.s. to y and if (5)
holds also, then c(j) converges in probabilty to y(j). If xn) is stationary, % converges
a.s. 1o p and if (3), (5) hold c(j) converges a.s. to y(j).

Proor. If e(n) satisfies (3), (6) and 3 |a(k)| < oo, then it is easily seen that
X has a variance which is O(N~!) as N — co. It consequently follows from the
proof given in Doob [4], Theorem X 6.2, that % converges a.s. to x. It is then
clear that ¢(j) has the same a.s. behaviour as

e*(J) = N7 L5 ((n) — p)(x(n + ) — )
= 2o Lno a(@)a(VN™! X0 e(n — u)e(n + j — ) .
Now

EINT? Y Vde(n—u)e(n+j—v)| <K< oo
by virtue of (6) and if 3 |a(k)| < oo then
®)  lim, L E|Xy . Deea@a(v)N LVie(n — u)e(n + j — v)| = 0.

The same is true if in the left term in (8) the first two sums are over 0 < u < p,
p < v < oo. On the other hand,

N~ v Ele(n)e(n — k)| & ,_,} =0 a.s., k>0,
and it follows from (6) and a law of large numbers for martingales due to Heyde
(Theorem 1 of Heyde and Seneta [8]) that N=* 3I¥_ ¢(n)e(n — k), k > 0, and
hence N~ Y11= e(n — u)e(n + j — ), u + v — j converges in probability to zero.
(In order to obtain the uniform bound on the distribution of e(n)e(n — k) required
to justify the application of Theorem 1 of [8] we note that

P(le(n)e(n — k)| > u) < P(e(n) + &X(n — k) > 2u)
) = P(e(n) > u) + P(X(n — k) > u)
< 2cP(X? > u)
using (6).) Furthermore, by the same theorem together with (5), N-* X¥=/ &¥(n)
converges in probability to ¢2. Thus
Tloo Dheo a()a(V)N-! T e(n — w)e(n + j — v) — 0* T a()a(u + ))

in probability as N — co where Y}’ is a sum over 0 < u, u + j < p. It follows
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from this together with (8) and Markov’s inequality that c¢*(j), and hence c(j),
converges in probability to 7(j).

If x(n) is stationary with a.c. spectrum it is well known that ¥ converges a.s.
to x. In place of c*(j) consider

e(j) = ¢*(j) — Dioa(a@ + N7 L35 (n —u) .
Assuming x(n) stationary and (3), (5) we may show that the mean of &(j) is zero

and its variance converges to zero. The proof of the first is obvious and we
prove the second, for simplicity, in case j = 0. The variance is

2 2 5ea,=0 A(P)AUG) L X Twe =0 A(r)(s)
X [N7* 5 Zaa-s Efe(m — p)e(m — g)e(n — r)e(n — s)}] -
We evaluate the expectation using (3) and (5)'. The bnly contribution comes
whenm —p=n—rands=¢g—p+rorm—p=n—sands=p—gq+r
Both sets of identifications give the same result and we take the first. After
evaluating the expectation let us add back

N7 31 Difs-ri<n, =0 @(p)a(r)’ <1 - Jp—];rl>

which clearly converges to zero as N increases. Then we obtain
Not 23t (1= D) (25 apap + 1Y

This is N~* by the Cesaro sum of the Fourier series, evaluated at the origin, of
the convolution of f(2) with itself. It thus converges to zero. Thus ¢(0), and in
the same way &(j), converges in probability to zero. However

Lo au)a(u + j)N X3z e(n — u)
converges in probability to y(j) by the same kind of argument as was used earlier
in the proof (the convergence of )] |a(x)| not now being needed). Thus c*(j)
and hence ¢(j) converges in probability to y(j) and since, by the ergodic theo-
rem, c¢(j) converges almost surely it must converge almost surely to y(j). This
completes the proof.

3. Central limit theorems for autocorrelations. From Theorem 1 we note that,
depending on the conditions, r(j) = ¢(j)/c(0) converges either in probability or
almost surely to o(j) = 7(j)/7(0). Here we offer two theorems, the first of which
is for the non-stationary case.

THEOREM 2. Suppose (7) holds, 3 |a(j)| < oo and {e¢(n)} is a stochastic sequence,
with Ee(n) = ¢?, all n, satisfying (3), (5), and (6) with bounding random variable X
having finite fourth moment. Suppose also that E{e*(n)e(n — r)e(n — s)} = a*z,, is
finite and uniformly bounded for every n, r > 1, s =2 1, and
(10) nt 3 e(t — Ne(t — )E(EN(t) | F 121) —as. 0°T,,

asn— oo for any r = 1, s = 1. Then, the joint distribution of N¥(r(j) — p(J)),
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1 <j < s, converges to the s-variate normal distribution with zero mean and non-
singular covariance matrix W = [w,;] where )
Wi = D D tefe(r + 0) + p(r — i) — 20(r)e(i)}
X fo(r +J) + o(r = j) — 20(Ne())} -

Proor. This theorem may be established by adapting the proof of the theo-
rem of Anderson and Walker [1], where the case {¢(n)} i.i.d. (0, ¢%) is considered.
The only parts which cannot immediately be adapted involve the replacement
of their condition }; ja’(j) < oo by our (7), their application of a central limit
theorem of Diananda in the proof of their Lemma 1 and their demontstration
that N=' 31X, {x(n) — ¢} converges in probability to E{x(l) — ¢} as N — oo.
This last result, however, is covered by our Theorem 1.

The replacement of }; ja’(j) < co by our (7) is eaS); to justify. The only point
at issue concerns the proof of their Lemma 3 where it is necessary to note that
the bound on the expectation of their (2.23) can be suitably sharpened for
|ij > n. Full details are given in the proof that we give for Theorem 3 below.

It then remains to consider the central limit part. What is required is just
that, for any sequence of constants ¢, -- -, c,, 7t 3™, ¢, 317, ¢(t)e(t + r) con-
verges in distribution to a certain normal law. In order to obtain this under our
conditions we first note that it suffices to establish the convergence result for
n~t 3im ¢, >ir, e(f)e(t — r) which differs from the former in a fixed finite num-
ber of terms (and hence the difference goes in probability to zero as n — o).
We shall obtain this last result with the aid of a central limit theorem for
martingales due to Brown [3].

Define X, = > ™, c,e(f)e(t — r), noting that {S, = X7, X,, & ,,n =1} is a
martingale. Let

Vil = D E(X | Fn) = D D ik e, 68(t — n)e(t — )E((n) | 7, y)
and st =EV>= Nt EX*.
In order to apply Theorem 2 of [3] we need to show that
(i) sV -, 1 and (i) 5,7 X E(XN(X,] = es,)) — 0
for any ¢ > 0, I(+) being the indicator function.
The condition (10) clearly ensures that (i) holds upon noting that
(11) s2=ng* ™, 3™ c,C T,y
To obtain (ii) we first note that for any u = 0,
P(X,| > u) = P(L7- le, e(m)e(n — 1) > u)
= P(Ur-idle, e(n)e(n — 1)| > u/m})
(12) = 2t P(le(me(n — n)] > ufmic,|) (using (9))
< 2¢ Wi, P(X* < ufmle,])
=< 2emP(X* < ufmc*)
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where ¢* = max,, ., |c.|. Thus, using integration by parts and (12),

EXI(X,| = es,) < 2§35, xP(|X,] > x) dx
=< 2cm (g xP(X* > x/mc*) dx — 0

as n — oo and (ii) follows. Brown’s theorem then gives that s,* >77_, X, con-
verges in distribution to M0, 1). That is, n=* }i™ ¢, 37, ¢(t)e(t — r) converges
in distribution to M0, ¢* 3™, 1™, c,c,7,,). The proof of Theorem 2 is then
completed along the lines of Anderson and Walker [1]. Our second theorem
relates to the stationary case.

THEOREM 3. Let x(n) be stationary and satisfy (3), (5)' and (7). Then the joint
distribution of N¥(r(j) — p(j)), 1 £ j < s, converges to the s-variate multivariate
normal distribution with zero mean vector and covariance matrix W = [w,;] where

wi; = Lem{e(r + 1) + p(r — i) — 20p(r)e(i)}
X {o(r + Jj) + p(r — j) — 2p(r)e(j)}
= Xr—w{o(No(r + i — j) + o(No(r + i + j) + 20 (Ne(i)e())
— 2p(n)p(i)o(r + j) — 20(r)e(j)o(r + i)} .

This proof also follows [1] and improves the theorem of that paper in three
ways. Firstly the independence of the ¢(n) is replaced by (3), (5)’. Secondly
X ja*(j) < oo is replaced by ) jia?(j) < oo. Thirdly )] |a(j)| < oo is avoided.
Because we use the conditions (3), (5)’ we must confine ourselves to a one-sided
sum, >3 a(j)e(n — j) (i.e., to the purely non-deterministic case) while [1] treats
the case of a two-sided moving average. The second and third relaxations of
the conditions of the theorem in [1] may be made under the other conditions
of that theorem.

Proor. Let us take the case where u is known to be zero since mean correc-
tion makes no difference to the truth of the theorem. Instead of Ni{r((j) —
o(j)} we may consider the limit distribution of N¥{c*(j) — p(j)c*(0)}/c*(0) and
since ¢*(0) converges a.s. to y(0), by Theorem 1, we thus consider

(13) NYe*(J) — o())e*(0)} -
We first show that we may omit all terms involving an ¢*(n). These terms are
(see [1] page 1301)
(14) NHET a(k)atk + DTk — o()) L5 a*(k)Ty)}
where
T = L) — I ()

and

E|T{),| = o*min(2k + j, 2N — j) .
(In [1] a bound by (2k + j)e* is given for E|T{)| and this accounts for the
replacement of our Y] jia*(j) < oo by 3] ja’(j) < oo in[1].) Thus, taking the
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first term in (14), for example,
NE(| 257 a(k)a(k + )T}
< N-io* £ a(k)a(k + j)| min(2k + j, 2N — )
< G[{N"* Ty a’(k) min (2K + j, 2N — )}
X {N= 5§ a(k + j) min(2k + j, 2N — )] -
However,
N=% Yo a*(k) min(2k + j, 2N — j)
= 2 50 @(k)kAkINY + N7 3 a(k) + 2 D5 a¥(k)kt,
which converges to zero. The same is true of the second factor and the second
term in (14) and thus (14) converges in probability to zero.
Let us put x(n) = x,(n) + x,(n) where )
x(n) = Ngpa(j)e(n —j) -

We also put
¢;i(k) = N7' 2V x(m)xy(n + k) ; ij=1,2.

If 7, (k) = Ec;;(k), then
r5(k) = %, ei“fij('z) da
and
2 .. 2 i ii1l2
fuld) = I e, fuld) = 7 | D @l

fuld) = Jal®) = T 58 a(/)e Tz ali)e=

All of these functions are square integrable over [—=, z]. In fact to see that,
for example, f(4) is square integrable under (7) note that this is equivalent to

Ziso{ X5 a(f)a(j + k) < oo
and
L X5 fta()) - J e + BF £ D D5 (R Z T e + k)
S{Z (D) Do L5 j 7 + k)
S{X ) D @(k) Zia ™t < oo
under (7).
Now (13) becomes
(15)  N{eu()) + en()) + eu()) + ca(D} — p(7)eu(0) + €x(0) + 2¢,(0)}] -

We call c},(k) the expression c;,;(k) with all terms involving an ¢’(n) omitted. We
wish to show that the contribution to the primed form of (15) from the c};(k) for
i, j not both equal to unity has a variance which, for all sufficiently large N,
may be made arbitrarily small by taking K large. To this end we put

NHeij(k) — Eei(k)} = Nicij(k) + N¥eij(k) — Ecii(k)} »
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wherein c}}(k) contains all terms in c,;(k) involving an ¢*(n). If we evaluate the
variance of this as if the ¢(n) and x(n) were Gaussian we shall not affect the
variance of Nic};(k). Since on this Gaussian assumption the two terms on the
right are uncorrelated, we obtain the variance of the left-hand term as an upper
bound to the variance of Nic};(k). The variance of the left-hand term is, on the

Gaussian assumption, ([6] page 210)

Yo (U — [l [N){yaa(u)ys5(u) + 735(u + K)rsu(u — K)}
which converges to
(16) 27 §% A fiOf 550 + | fi;(D)Pe**4} da

because of the square integrability of the f;;(4) and Parseval’s theorem. How-

ever, as K — oo,
S fa(A)dAd, V7. fu(2)d2

converge to zero because the Fourier series of a functionin L, (—=, 7), 1 < p <
oo, converges in the L, norm to the function ([9] page 50). (In our case the
function is Y%, a(j) exp ijA € L,.) Thus taking K sufficiently large we may, if
i, j are not both unity, make (16) arbitrarily small and hence the variance of
Ntc},(k), for all sufficiently large N, arbitrarily small.

By what is sometimes called Bernstein’s lemma ([6] page 242) the theorem
will now result if it is shown that the N¥{c],(j) — o(/)c1,(0)} are jointly asymptot-
ically normal with a covariance matrix which converges, as K is increased, to
W. The proof of the asymptotic normality is the same as that given in the course
of proving Theorem 2. Putting

0'() = Zisx alk)atk + J)] Lk (k) »
the covariance of the N#{c},(j) — p’(j)c1,(0)} converges to W’ where W’ is obtained
from W by replacing f(2) by f,,(2). Since N¥(p(j) — 0'(/))ci(0) evidently con-
verges in probability to zero and W’ converges to W as K — co because of the
theorem, quoted above, on L, convergence, the theorem is proved.

4. Some applications and extensions. The most obvious application of the re-
sults of Sections 2 and 3 is to the autoregression

(17) Zizo BU)x(n — k) — p} = e(n),  B(O) =1,

wherein we assume that
2it-o B(K)z* # 0, lzZl =1,

so that x(n) can be represented in the form (2), and (7) is satisfied (see, for
example, [6], Chapter I). The j(j) and ¢* (=Ee*(n)) are estimated through

Zg’-oﬁ(j)c(k_j):ao,kaz’ k:0a 19""qa
([6], Chapter VI) and, remembering that §(0) = 1, we see that B(l), ceey ,é(q)
are functions only of the r(j), j=1,2, ---,¢ and thus Theorem 3 may be

applied. Similar considerations apply to the mixed autoregressive and moving
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average process obtained when (17) is altered only by the replacement of the
right-hand side by
25=00(j)e(m — j) -

It seems that all of the classical inferential theory for the S(j), o(j) (see [2];
[6], Chapter VI) will continue to apply under the appropriate conditions of the
present paper.

There are other problems that yield to the same treatment as we have applied
to the r(j) in the present paper. For example, if x(n) is generated by (2) and is
stationary with finite fourth moment and (3) holds, then

limy ., sup ;<. [N 24, (x(n) — p)ei™’| =0 a.s.

The proof of this proposition, which is important in connection with the esti-
mation of the frequencey of a sinusoidal signal réceived together with noise,
follows the same lines as that given in Hannan [7].

Acknowledgment. We are indebted to E. Seneta for some useful conversations
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REFERENCES

[1] ANDERsSON, T. W. and WALKER, A. M. (1964). On the asymptotic distribution of the auto-
correlations of a sample from a linear stochastic process. Ann. Math. Statist. 35 1296
1303.

[2] Box, G. E. P. and JeENkINs, G. M. (1970). Time Series Analysis Forecasting and Control.
Holden-Day, San Francisco.

[3] BrowNn, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist. 42 59-66.

[4] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[5] GikuMAN, L. 1. and SKOROKHOD, A. V. (1969) Introduction to the Theory of Random Pro-
cesses. Saunders, Philadelphia.

[6] HANNAN, E. J. (1970). Multiple Time Series. Wiley, New York.

[7] HaNNAN, E. J. (1971). Non linear time series regression. J. Appl. Probability 8 767-780.

[8] HevypE, C. C. and SENETA, E. (1972). Estimation theory for growth and immigration rates
in a muliplicative process. To appear in J. Appl. Probability.

[9] KATZNELSON, Y. (1968). Harmonic Analysis. Wiley, New York.

DEPARTMENT OF STATISTICS

AUSTRALIAN NATIONAL UNIVERSITY

Box 4, Post OFFice, CANBERRA A.C.T. 2600
AUSTRALIA



