The Annals of Mathematical Statistics
1972, Vol. 43, No. 6, 1852-1860

RANDOM QUOTIENTS AND THE BEHRENS-FISHER PROBLEM

By MoRrRris L. EATON! AND RICHARD A. OLSHEN?
University of Chicago and Columbia University

Let &7, be the space of n X n positive definite symmetric matrices. If
S1 and S; are random matrices in &, Si is a better a denominator than S,
(written S < (a) S2) iff U(x'S1-1x)2/2 s U(x’S2~1x)e/2 for all x € R* where
U is uniform on [0, 1], independent of S; and Sz, @ > 0, and “«s¢”’ means
stochastically smaller than. A principal result is this.

THEOREM. Let S, -+, Sm be exchangeable random matrices in . If
0<a=2, then 70y 7 Si <(a) X1y ¢iSs provided (f1, -+ -, ¢m) majorizes
(715 <<+ m)-

This has applications in establishing probability inequalities for certain
common test statistics. The results in this paper extend those of Lawton.
(Some inequalities for central and non-central distributions. Ann. Math.
Statist. (1965) 36 1521-1525; Concentration of random quotients. Ann.
Math. Statist. (1968) 39 466-480.)

1. Introduction. Assume that X;, j =1, ..., n;, i = 1, 2 are random samples
from two normal populations with (respective) means yx; and variances ¢,
Throughout, “~” means “is distributed as.” Since X, — X, ~ N(y, — p,,
n,~'e* + ny,"'g,%), the statistic
le (1‘71 - 1‘72)2

(m™"s," + ny7lsy%)
is of interest in deciding whether or not g, = p, (Scheffé (1970)). As always,
X, =n"1Y,; X, and s? = (n; — 1) X, (X;; — X,)>. When g, = p,, T} has the
same distribution as

(1.1) T,

ZZ
S — D)L+ (U= D — 1)
where Z, y; _, and x; _, are independent; Z is standard normal and y,,’ is a chi-
square random variable with m degrees of freedom. Here,
(1.2) 2= n"62(n" 0k + e,
so 0 < A< 1. In studying T,*, Hsu (1938) showed that T7,® is stochastically
smaller than F, i, —1,4,-1 and stochastically larger than F,, ., _,, where F,
denotes an F-random variable with (p, ¢) degrees of freedom. Héajek (1962)
generalized Hsu’s results as follows. Let Z, U, -- ., U, be independent where
Z ~ N(0, 1) and U; ~ y;*. Suppose that 2, ..., 2, are positive numbers satis-
fying 3 4, = 1. Then
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where v is an integer no larger than min{1/4;}. Here “«,” means “stochastically
smaller than.” Mickey and Brown (1966) independently obtained Hsu’s conclu-
sion by an argument similar to Hajek’s. Obviously, (1.3) is sharp.

It is interesting and pertinent to our work that Héajek actually proved more

than (1.3). More precisely, he showed that if the vector (¢,, - - -, ¢,) majorizes
the vector (y,, - - -, 7,) then

VA VA
(1 .4) << st

27U LU
provided only that the U, are exchangeable y,* variables (see Section 2 for defini-
tions). He really deduced (1.3) from (1.4).

More recently, Lawton (1965; 1968) established.(1.3) (actually, implicitly
(1.4)) for a wider class of random variables than those considered by Hajek.
It is assumed that the reader is familiar with Lawton’s papers. In his paper,
Lawton defines an ordering ““ < for positive random variables. If V; < V,, then
V,is called a “uniformly better denominator” than V;. Unfortunately, Lawton’s
definition of “ < depends on a rather complicated condition (called Condition
(A)). In this paper, we present an alternative definition of < in which Lawton’s
condition is replaced by others. We feel that our definition is perhaps the “right”
definition—not only because of its simplicity but because it affords a natural
generalization of the ordering to random positive definite symmetric matrices.
Moreover, Corollary 3 of the paper of Olshen and Savage (1970) renders our
conditions easy to check in those practical applications known to us. For a
more detailed discussion and a conjecture concerning the relationship between
our conditions (in the one-dimensional case) and Condition (A) see Section 3.

In Section 2, we give our definition of < for random positive definite sym-
metric matrices. In fact, our definition of < depends on a real parameter & > 0
which is intimately connected with recent results in the cited paper by Olshen
and Savage on a-unimodal random vectors. Matrix versions of (1.4) and of
many of Lawton’s results are presented in Section 2. At one point we employ
a multivariate version of an inequality for convex functions due to Marshall and
Proschan (1965).

In Section 3, we give an extension of Hajek’s result to two dimensions which
has applications to the Behrens-Fisher problem. Also, we discuss two conjec-
tures, one of which has been mentioned; the other concerns Hotelling’s 7
statistic.

Conversations and correspondence, respectively, with Samuel Karlin and
Ingram Olkin helped us to see the relationships of exchangeability and majori-
zation to our work.

2. Main results. We begin this section with a discussion of stochastic ordering
and a-unimodal random vectors. Let & be the set of all functions g: [0, c0) —
[0, 1] such that g is left continuous, non-increasing, continuous at 0 and satisfies
g(0) = 1 and g(co0) = 0. Note that if G is a distribution function for which
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G(0) = 0, then g(x) = 1 — G(x—) is in &. Conversely, forge &, G(x) =1 —
g(x+) is a distribution function with G(0) = 0. Recall that, for random vari-
ables, X;, X, with distribution functions F,, F,, X, <, X, iff F,(x) = F,(x) for all
real x. Clearly, for positive random variables, X, <, X; iff

(2.1) Z9(X) = Z9(X,) forall ge¥.

A positve random variable Y with distribution functon F is unimodal about
0 iff F is a concave function on (0, c0). A fundamental result due to Khintchine
(1938) implies that Y is unimodal about 0 iff Y has the same distribution as U/X
where V and X are independent, U has a uniform distribution on [0, 1], and X
is some positive random variable. The reason for writing U/X rather than UX
is to make our results correspond more easily to Lawton’s. Now, let & be the
class of functions F: [0, co) — [0, 1] which are continuous, concave, non-
decreasing and satisfy F(0) = 0 and F(co) = 1. The remarks above imply that
the correspondence between & and ¥ defined by

(2.2) F(x) = §ig (%) du

is one-to-one and onto. For if G is the distribution function of X, then
F(x) = P{Y < x} = P{U/X £ x}

2.3) — §LP(X = ufx}du = g;(l - G<%—>> du

= Vs 9(u/x) du = Eg(U/x) .

In order to motivate our definition of better denominators, we first consider a
result of Lawton (1968). His Theorem 4 and the monotone convergence theorem
show that “Z, is a better denominator than Z,” is equivalent to

(2.4) EF(Z) = EF(Z,) forall Fe5 .
However, (2.3) implies that (2.4) is equivalent to

(2.5) Z9U|Z) = Eg(U|Z,) forall ge¥Z.
Then, from (2.1), (2.5) is equivalent to

(2.6) Uz, «,U|Z,.

Of course, U, Z, and Z, are independent. From Khintchine’s (1938) Theorem,
it follows that (2.6) is equivalent to

2.7 Y/Z, L, Y/|Z,

for all positive unimodal random variables Y where Y, Z, and Z, are independent.

In this paper, we will use (2.7) as a definition of Z, being a better denominator
than Z,. In fact, it is (2.7) which leads us to a definition of S, being a better
denominator than S,, where S, and S, are random positive definite symmetric
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matrices. Before proceeding to the definition, we need to introduce a notion of
unimodality for random vectors.
Following Olshen and Savage (1970), we have

DeriNITION 2.1. A random vector Y taking values in an n-dimensional real
vector space is a-unimodal about 0 iff the function t — *&f(tY’) is non-decreasing
in ¢ for t > 0 for every bounded, nonnegative, measurable function f.

A result concerning a-unimodal random vectors, which generalizes
Khintchine’s Theorem, is

THEOREM 2.1 (Olshen and Savage (1970)). Y € R" is a-unimodal iff Y ~ U'*X
where U and X are independent, U is uniform on [0, 1] and X is some random vector
in R". R

Now, let 7, be the set of n X n positive definite symmetric matrices.

DEFINITION 2.2. Let S, S, taking values in .7, be random matrices. S, is a
better a-denominator than S, (written S, < ,, S,) iff

(2.8) Y'S, Y «,, Y'S,Y

for all a-unimodal random vectors Y which are independent of S, and §,.

It follows from Definition 2.1 that if the random vector Y is a-unimodal then
Y is B-unimodal for all 8 = a, so S, <, S, implies S, <, S, for all § < a.
Examples abound in which a;, > @, and S, <, S, but not S, <(,,, S,. In the
special case n = 1 Theorem 2.1 dictates that S, <, S, iff $,*% <, $;*?; the
cited definition and theorem also guarantee, when n = 1, that S, <, S, and
B > 0 together imply S/ < ;, S, for all § < a/B.

PROPOSITION 2.1. These are equivalent:

(1) Sl <(a) Sz;
(i) U(x'S,"'x)** &, U(x'Sy~x)** for all x € R*, where U is uniform on [0, 1]
and independent of S, and S,.

Proor. The equivalence of (i) and (ii) follows from Theorem 2.1 because
Y'S,"'Y ~ U¥2X"S;~'X for each a-unimodal Y. []

What follows is the multivariate analogue of parts (i) and (ii) of Lawton’s
(1968) Theorem 4.

THEOREM 2.2. The two conditions of Propositon 2.1 are equivalent to
(ili) ZF((x'S,7'x)~**) = EF((x'S,"'x)~**) for all F e &, and x e R", x #+ 0.
PrOOF. S, <, S, iff for each g e &,

(2.9) Zg(U(x'S,x)*%) = Eg(U(x'S,'x)*) .
From (2.3), each F ¢ % has the form
(2.10) F(r) = &g(U]r), t>0,

so (2.9) is equivalent to (iii). []
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Theorem 4 of Lawton (1968) includes a criterion equivalent to (i), (ii), and
(iii) of Proposition 2.1 and Theorem 2.2 in case n = 1 and a = 2. Namely,
S, < S, iff there is a probability space on which are defined two random vari-
ables Y,, Y,, with Y; ~ S;, and E(Y,|Y;) < Y,. The equivalence of this latter
condition and (ii) of Lawton’s Theorem 4 was proved first by Strassen ((1965),
page 435). Strassen proved also a multivariate versica of this equivalence. We
have not found such results helpful in our work, though in view of what is
known at least one such is implicit in Theorem 2.2. For example, S, <, S, iff
for each x € R" there is a probability space on which are defined (univariate)
random variables Z,, Z,, with Z; ~ (x'S;"'x)7!, and E(Z,|Z,) < Z,.

For each x € R", x # 0, define f, on .7, to (0, co) by

2.11) FAM) = (M%), . Me S,

The next theorem allows us to establish Lawton’s Lemma 1 for random S € .7,.
Note that (iii) of Theorem 2.2 can be written in the form

(2.12) EF(f.7S) =z ZF(f."(Sy) -

THEOREM 2.3. For each F e 7 and x + 0, the function F o f,: &, — [0, 1] is
a concave function on the convex set 7.

Proor. It suffices to establish the theorem for F having a continuous second
derivative. For M,, M, e &, and 2¢[0,1], let

(2.13) h(A) = (F o f)(AM, + (1 — M) .

It is sufficient to show A(2) is concave in 2. Write M, = WW’ and M, = WD, W’
where W is a nonsingular n X n matrix and D, is a diagonal matrix with ith
diagonal element d;; = 6, > 0 (see Rao (1965), page 37). Putu = W-1x; so

1 — F(k-1
02+ (1 — z)ai)—l] = P

where k(2) = Y, u(2 + (1 — 2)6;)~*. Straightforward differentiation show that

(2.14) h(2) = F[

@.15)  #@) = P @) — @ [ = PUo@ke R @) — 20y -

k*(2)
Since F is concave and non-decreasing, to show #’(2) < 0, it suffices to show that
(2.16) k"(A)k(2) — 2(k'(2))* = 0.
However,
(2.17) k') = ZiuA + (1 — 0;)7*(1 —6))
and
(2.18) k() = 2 T ud(2 4 (1 — D)1 — 6.

Now, if a; = u,(A + (1 — 2)8)"31 — 6,) and b, = u,(A + (1 — 2)8,)7%, (2.16)
follows from the Cauchy-Schwarz inequality: (X @;6;)* < (X a)(X 65%)- [
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CoROLLARY 2.1. If 0 < a < 2, then F(f,*(M)) is a concave functon on .,

Proor. First note that for 0 < a < 2 and F ¢ &, the function H(u) = F(u*"?)
is also in 5. Theorem 2.3 applied to H gives the conclusion. []

In what follows all random matrices which appear are defined on the same
probability space. The next results involve two concepts whose definitions we
recall. A sequence (S,, S,, - - -, §,) of random matrices is exchangeable iff for
each permutation r of the integers 1, .., m, (S, S, ---, S,)) ~ (Seay> Saizy * v s
Szm)- Also, the vector ¢ = (¢, - - -, ¢,,) majorizes the vector = (1, - - -, 3,,)
if, possibly after reordering their components, ¢, = ¢, > --- = ¢,, 7, =
Ny =t Z s f=1¢i22f=1%k:1’2,""’"—1;2?:1?/’1': ~im:- An
important characterization is this: ¢ majorizes 3 iff » = P¢ for some doubly
stochastic matrix P (see Hardy, Littlewood, and Polya (1964), pages 45 and 49).

THEOREM 2.4. Let (X,, -- -, X,,) be an exchangeable sequece of real random vec-
tors with values in R*. Assume the function ¢ : (R*)™ — R satisfies ¢(x;, + - -, X,,) =
B(Xeys ** *s Xom)), and further assume ¢ is continuous and convex. Then

EQ(pr Xy §o X, oo 0, X)) ZEG( Xy, 1 Xy, -y 9 X,)
whenever ¢ = (¢, - - -, ¢,,) majorizes § = (7, + -+, Yp)-

Marshall and Proshan ((1965), pages 87 and 88) have proved Theorem 2.4 in
the case k = 1. Their proof applies here without change. In the terminology
of Berge ((1963), page 219), the function (a,, -- -, a,) — E¢(a, X,, - - -, a, X,) is
S-convex (sometimes called Schur convex). The interested reader is encouraged
to pursue the eleventh section of Chapter VIII of Berge’s book. In the next

theorem and its corollary, Theorem 2.4 is applied together with our previous
results to extend the scope of Lawton’s conclusions.

THEOREM 2.5. Let S,, -- -, S,, be random matrices (considered as vectors) in &,
which satisfy the assumptions of Theorem 2.4, where k = n(n + 1)/2. If 0 <a < 2
then

(2.19) L 75S; <oy Dl &S
provided ¢ majorizes 7).

Proor. Let H: &, — (0, c0) by H(S) = F(f,**(S)), where F(f,**(+)) is as in
Corollary 2.1. In view of that corollary H is convex. Define ¢: (&)™ — (0, o)
by ¢(Sy, -+, S,) = —H(Z™, S;); ¢ satisfies the assumptions of Theorem 2.4.
Therefore, Theorems 2.4 and 2.2 imply (2.19). []

COROLLARY 2.2. LetS,, - - -, S, beindependent and identically distributed random
matrices in . If 0 < a < 2, then

1 1 «,
(2.20) m 28 < B A4S < o 2118

where 0 < 2, < 1, 3 4, = 1, and v is the largest integer not more than min{1/2,}.
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Proor. Independent random vectors are automatically exchangeable. It is
trivial that the probability vector whose every entry is 1/m is majorized by
A = (4, - -+, 4,). The arguments of the second section of Hajek’s paper (1962)
show that the probability vector whose first v entries are 1/v majorizes 4 and v is
the largest j for which a probability vector with entries 1/j and 0 majorizes 4. ]

As has been mentioned, Hajek’s results and Lawton’s extensions of them
involve majorization, but only implicitly. Also, their arguments apply verbatim
to exchangeable (not merely independent and identically distributed) variables.

3. Applications and discussion. Statistical applications of Corollary 2.2 in one
dimension for « = 1 and @ = 2 are given in the papers of Lawton (1965; 1968),
and are not repeated here. A multivariate version of Hsu’s result would be
relevant to the p-dimensional Behrens-Fisher problem in case the population
covariance matrices are proportional. To see this, alter the assumptions of Sec-
tion 1 as follows: let X, ; be p-dimensional normal with respective mean vectors
ti» | = 1, 2 and covariance matrices X and kX where Z € &, and k is an unknown
constant. In an obvious notation, S = (n, — 1)~* 31, (X,; — X,)(X;, — X,)" are
the sample covariance matrices and the analogue of T.* is
3.1 T = (X, — X,)'(n,'S* + n, 187 \(X, — X,) .

Under the hypothesis that g, = p,, X, — X, ~ N,(0, (n,7! + kn,)Z), S ~
W(Z, p, n, — 1) and §* ~ W(kZ, p, n, — 1) where W(Z, p, m) denotes a Wishart
distribution on .7, with m degrees of freedom and expectation mX. In this
notation, we allow m < p. The distribution of 7,* does not depend on X when
gy = pp. If we put £ =1 and let V = (n,"* + kn,"")"%(X, — X,), then when
= Ha

(3.2) T} ~ VA — 1)7'S, o, + (1 — A(ny — )71, 17V

where ¥V ~ N,(0, ) and S, ~ W(I, p, m) for m =n, — 1 and m = n, — 1. Of
course, 2 = n,~*(n,”* + kn,”")~'. Note that 2(n, — 1)7*S, _, + (1 — A)(n,— 1)7'S,
has the same distribution as a convex combination of (n, 4+ n, — 2) independent
w(l, p, 1) random matrices. Our interest in the present problem arose from
attempting to generalize (1.3) to the multivariate case. The following theorem
accomplishes this for two dimensions (p = 2).

THEOREM 3.1. Suppose Z ~ Ny(0, 1), W,, ---, W, are independent and inde-
pendent of z and that W, ~ W(I, 2, 1). Let 2, - -, 4, be nonnegative, 3, A4;,=1
and assume at least two 2; are positive. Then for any integer, v, 2 < v < min{1/4;},

- -1
¢ 23] zc.zmrawyzcnz 3] 2
where S, = Y W, m=1,2, ... k.

ProOF. Z is 2-unimodal according to Corollary 3 of Olshen and Savage (1970).
But, Corollary 2.2 does not apply directly as each W, is a.s. singular. Thus, for



RANDOM QUOTIENTS AND THE BEHRENS—FISHER PROBLEM 1859

each ¢ > 0, let W9 = W, + ¢ where [ is the 2 x 2 identity matrix. From
Corollary 2.2, (3.3) holds for each ¢ > 0 with W, replaced by W,, and S, =
™, W,©. Noting that the map P — P~'is continuous on .% and letting ¢ — 0,
we have (S,,)"! —, . S,~, m = 2,and (X5, 4, W)t —_ . (5k., A, W;)~*. The
last assertion follows from the assumption that at least two 2; are nonnegative.
Since a.s. convergence implies convergence in distribution, (3.3) follows. []

The restriction in Theorem 2.4 that a < 2 is essentially a restriction on dimen-
sion because any probability density on R™ which is bounded at 0 cannot be the
probability density of an w-unimodal random vector for @ < n (see Corollary 3
of Olshen and Savage (1970)). Of course, we had hoped to decide whether or
not Theorem 3.1 is true for p > 2. We once thought Theorem 3.1 was false
for p > 2, but are now unsure. A special instance of this question concerns
Hotelling’s T* with non-standard normalizing constants. Namely, is ky,*/xi_, 11
stochastically decreasing in k? (See Rao (1962) page 458.) An affirmative
answer for p = 1 follows from Hsu (1939) and for p = 2 from Theorem 3.1.
From Pearson’s (1934) Tables of the Incomplete Beta Function, the result appears
to be true for all p. One might conjecture (what is almost the same) that F,  is
stochastically decreasing in ¢ for each p. The case p = 1 has been discussed
and the case p = 2 follows from Lawton (1968) or our Corollary 2.2. However,
this result is false for p > 2 as can be seen by a cursory examination of standard
F-tables.

According to Lawton, the pair (X, k) satisfies Condition (A) if (i) the one-
dimensional variable X has a continuous distribution, and (ii) forany a < 0 < b
the function f, ,(z) = P{a < X/h(z) < b} is concave for z > 0. Here, 4 is a con-
tinuous real-valued function. In view of the similarity of Lawton’s results and
those of the present paper, and the arguments of page 27 of Olshen and Savage
(1970), it seems plausible that if (X, #) satisfies Condition (A), then X is a = a(h)
unimodal for some a > 0. If A(x) = x¥%, @ > 0, then a variant of Theorem 5
of Olshen and Savage (page 31) shows that X is a-unimodal. Theorem 3 of Olshen
and Savage (page 30) shows that conversely, if X is a-unimodal, then (X, x — x"%)
satisfies Condition (A). If X ~ N(d, 1) and A(x) = x%, then (X, &) satisfies Con-
dition (A) iff |5] < 2 (see Lawton (1965), Corollary 1). In this case, Corollary
3 of Olshen and Savage establishes that X ~ N(9, 1) is 2-unimodal iff |d] < 2.
However, the general question of Condition (A) implying a-unimodality re-
mains open.
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