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PHASE-TYPE DISTRIBUTIONS AND MAJORIZATION

By CoLM ART O’CINNEIDE

Louisiana State University and the University of Arkansas

Aldous and Shepp recently proved that the Erlang distribution of a
given order is the least variable phase-type distribution of that order, in the
sense of minimizing the coefficient of variation. Here we prove that it is
also least variable in the sense of majorization. We give an example showing
that the result does not extend in the obvious way to general distributions
with rational transforms and this suggests that the inequality hinges on
the Markov property.

1. Introduction. A phase-type (PH-) distribution is the distribution of a
hitting time in a finite-state, time-homogeneous Markov chain. Except for a
few remarks, we discuss only the continuous-time case. This family, which we
denote by PH, was introduced by Neuts [9] as a tool for unifying a variety of
stochastic models and for constructing new models that yield to algorithmic
analysis. It represents the natural family to which Erlang’s method of stages
[4] extends. The basic idea is that, if a distribution for a time interval is needed
in setting up a model and we choose a PH-distribution, then Markovian
methods may be applicable. Various closure and approximation properties
make this approach practicable. PH-distributions have rational Laplace—
Stieltjes transforms and, at least formally, it seems that much that holds for
the PH family should extend to all distributions with rational transforms;
however, monotonicity, nonnegativity and properties of existence and unique-
ness of solutions, on which the algorithms for PH-distributions are based,
appear not to extend to distributions with rational transforms in general. The
methodology related to PH-distributions has grown up around two basic
structures: the GI/M/1 paradigm, explored in Neuts [10] and the M/G /1
paradigm, explored in Neuts [11].

The standard parametrization of PH-distributions is as follows. Let Z =
(Z,, t = 0), be a continuous-time, time-homogenous Markov chain without
instantaneous states on the state space {1,2,...,n,n + 1} for which
{1,2,...,n}is transient and n + 1 is absorbing. Let S denote the generator of
Z restricted to the transient states, so that S is of order n. The matrices S
that arise in this way are called PH-generators and are characterized by the
conditions that they have nonnegative off-diagonal entries, negative diagonal
entries and are nonsingular. Let a = (@, a,, ..., a,) denote the initial distri-
bution of Z on the transient states and write «,,_, for the probability that Z
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is initialized in n + 1. Let T denote the time at which Z is absorbed in n + 1.
The distribution of T is said to be phase type with representation (a, S). The
integer n is called the order of the representation. The order of a PH-distribu-
tion is the smallest integer n for which a representation of order rn is possible.
The degree of a distribution with rational (Laplace-Stieltjes) transform is
defined as the degree of the denominator of the transform when expressed as
an irreducible ratio of polynomials.

Recently, the author has proved the following characterization of PH-distri-
butions [13].

THEOREM 1. A distribution on [0, ) is phase type if and only if it is either
the point mass at zero or

(a) it has a continuous positive density on (0, ) and
(b) it has rational Laplace—Stieltjes transform with a unique pole of maxi-
mal real part.

A discrete-time version of this is also proved, but that case is essentially due
to Soittola [14] and Katayama, Okamoto and Enomoto [7]. A basic theme of
ongoing research is the question: Given a PH-distribution, what can be
deduced about its order or about its possible representations? The order of a
PH-distribution is always at least as great as the degree and an example
showing that these are not always equal is given in [13]. Another example
arises in Section 3. A more specific goal is to establish that a PH-distribution
that almost fails to satisfy condition (a) or (b) of Theorem 1 is of high order. To
this end, it is established in O’Cinneide [12], using results of Dmitriev and
Dynkin [3], that a PH-distribution whose transform has maximal pole at —A,
but also has a pole at —« + i0, has order n > w8/(x — A); as k approaches A,
(b) almost fails and the order increases without bound. It remains to make
precise the claim that a phase-type density f(¢) which almost fails to satisfy
(a), in that it almost becomes zero at a positive argument, has large order.
Theorem 1 gives a partial answer to the question of Dharmadhikari [2] and
Heller [6]: When may a process be represented as a function of a finite-state
Markov chain? The author continues to study this question.

Recall that the Erlang (n,A) distribution is the distribution of E; +
E, + --- +E,, where the E/’s are independent and identically distributed
(i.i.d.) exponential random variables of rate A. This is a PH-distribution of
order n for A < o; if A = o, we interpret the Erlang as the point mass at zero,
denoted by §,. The quantity 1/A plays the role of a scale parameter. Aldous
and Shepp [1] have proved the following theorem.

THEOREM 2. The coefficient of variation of an order n PH-distribution is at
least 1/ Vn and the order n Erlang distribution is the only one to attain the
bound.

As these authors point out, a basic question is how well a given distribution
can be approximated by a PH-distribution of a specified order. This theorem
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tells us that the Erlang distribution is, in a sense, the best approximation to a
point mass at a positive constant. The method of proof was to study the
quadratic variation of the martingale formed by conditioning the absorption
time T on the natural filtration associated with the chain Z. Orthogonality of
increments allows the coefficient of variation to be analyzed. We prove the
following strengthening of Theorem 2.

THEOREM 3. A PH-distribution with an order n representation majorizes
the order n Erlang distribution of the same mean.

Majorization, introduced by Hardy, Littlewood and Polya [5], is a stochastic
ordering for comparing variability. A more recent treatment may be found in
Marshall and Olkin [8]. Section 2 contains a discussion of majorization and
some elementary results. It also contains the decoupling idea (Theorem 5) on
which the proof of Theorem 3 is based. That proof is given in Section 3, with
an example showing that Aldous and Shepp’s result hinges on the Markov
property and on the order of a PH-distribution, rather that the more elemen-
tary quantity, its degree. ,

We remark that the discrete-time analogues of Theorems 2 and 3, in which
a point mass at a fixed integer m is to be approximated by a discrete
PH-distribution of order n < m, also holds true, where the Erlang is replaced
by its discrete analogue, being a sum of i.i.d. geometric random variables on
the positive integers.

2. Majorization. Let u and v be two probability measures on R" with
finite means. We say that v majorizes p if [fdv > [fdu for all convex
functions f; this is written p < ». It implies, in particular, that the means of
w and v are equal. The following is a well-known description of majorization,
due to Strassen [15].

THEOREM 4. Let u and v be probability measures on R™ having finite
means. Then v majorizes p if and only if there exists a pair of R"-valued
random variables (X,Y) for which E(Y|X) = X and the distributions of X and
Y are, respectively, u and v.

The condition of the theorem is that the two measures are the marginals of
a martingale and this and Jensen’s inequality immediately imply majorization.
The proof of the converse is more difficult. We write _#(X) for the distribution
of the random variable X. All random variables appearing later are real.

Here are some basic lemmas that will be needed. Some proofs are outlined,
although they are elementary.

LEmmA 1. Let X, X,,..., X, be i.i.d. with finite mean and suppose that
ay, Qay,...,a, are real constants and a is their mean. Then

At x) <R o)

i=1
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Proor. Let o denote a random permutation of 1,2,...,n, distributed
uniformly on the set of all such permutations, which is independent of the
X,’s. Then

n n
E(Z aa.(l)XlX]_, X2,...,Xn) =EZ Xl’
i=1 ;

so that

ay. X,.) =a). X.
i=1

n
E( Z a'zr(i)Xi
i=1 i=1

The lemma now follows from Theorem 4, noting that
n n
-/( Z aiXi) =-/( Z ao-(i)Xi)
i=1 i=1
by exchangeability of the X;’s. O

Lemma 2 says, in essence, that a scale mixture of a distribution is more
variable than that distribution. Lemma 3 says that majorization behaves as
expected under convolution and mixture.

LEMMA 2. Let X and Y be independent with finite means and suppose that
E(Y) =a. Then £(aX) < A(XY).

Proor. Clearly, E(XY|X) = aX and the result follows from Theorem 4. O

LEMMmA 3. Suppose we have probability measures satisfying p; < v;, i = 1,2,
and suppose that 0 <p =1 — q < 1. Then with * denoting convolution we
have

Ri*pg <Vvi*¥vy and puy +quy < pry+ qu,.
The next result is the key to the proof of Theorem 3.

THEOREM 5. Let X;, X,,...,Y,,Y,,... and N,, N, be three independent
i.i.d. sequences of nonnegative random variables having finite means, the N;'s
being integer valued. Then

N N, N
(1) -/(ZXi+ EE)</(Z(X,~+K~)-
i=1 i=1 i=1

REMARK. A superficial insight into this result is that decoupling the sum of
the X.’s from the sum of the Y;’s allows variability-reducing cancellation.

Proor. We construct a martingale (W;, W,) such that the left-hand side of
(1) is the marginal distribution of W, and the right-hand side is the marginal
distribution of W,. Without loss of generality, assume that the underlying
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probability space supports a random variable U, uniformly distributed on
[0, 1], which is independent of the random variables appearing in the state-
ment of the theorem. We define W; by

so that it clearly has the desired distribution. Before introducing W,, we define
an integer-valued random variable N (which we later show has the same
distribution as N,) as follows. First let

X
ZL+1Xi +Y’

where L = min(N;, N,) and M = max(N;, N,). If the denominator here is
ever 0, we define C arbitrarily to be 3. Now define N by:

If N, = N,, thenset N = N;

ifU<C, set N=Nj;

if U>C, set N=N,;
ifU<1-C, set N=N,;
ifU>1-C, setN=N,.
With N so defined, we define W, by

N
W,= X (X, +Y).
i=1

If N, > N,, then {
(2)

If N, < N,, then {

We now prove:

D) E(W,|W) = W,;
(i) N is independent of the X,’s and Y;’s and has the same distribution
as N,.

Part (i) establishes the martingale property, while part (ii) establishes that the
right-hand side of (1) is the distribution of W,. Theorem 5 is an immediate
consequence of these facts and Theorem 4.

We write 5 for the o-field generated by X,,Y;, i = 1,2,... . Let us prove
(). Equation (2) defines a regular conditional probablhty for N given &, N;
and N,, from which we have:

For n, =n, =n:
n
E(W,|#,N,=n,,N,=n,)= ) X, +Y,.
i=1
For n, > n,:

n, ny
E(WolF Ny =n;,Ny=n,) =CYL (X, +Y) +(1-C) ¥ (X;+Y)
i=1 i=1

ZX+ZY

i=1
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For n, <ny:

ng ni
E(WolF, Ny=ny, Ny=ny)=(1-C) L (X;+Y) +CYL (X, +Y)
i=1 i=1

n ng
XX+ LY.

i=1 i=1

Together, the three statements imply that

N, N,
E(Wol#,N;, Ny) = Y X, + Y Y, =W,.
i=1 i=1

As this is a function of W, only, (i) follows.
To prove (ii), let 7; denote P(N; = i). Then we have

P(N=n|%)=P(N=n|%, N, =N, =n)n?
n—1

+Y (P(N=n|%,N,=n,N,=a)

a=0

+P(N =nl%, N, =a, N, = n))m,m,

+ Y, (P(N=nl# N,=b,N,=n)

b=n+1

+P(N = n|.7_, Nl =n, N2 = b))‘lTb‘lTn

n—1
=i+ Y (C+1-C)ymm,

a=0

£ Y (1-C+O)mm  [by(2)]
b=n+1

This proves (ii) and completes the proof of the theorem. O

3. Proof of the main theorem and an example. We are now ready to
prove the main theorem. The proof is by induction on representation order. A
PH-distribution with a representation of order 1 is a mixture of the point mass
at zero and an exponential distribution. By Lemma 2, this majorizes the
exponential distribution of the same mean, which is an Erlang distribution of
order 1. So the result holds for n = 1.

Suppose we have established the result for PH-distributions of order n — 1.
Let u denote a PH-distribution with an order n representation (a, S). Let u;
denote the PH-distribution with the order n representation (e;, S), e; being
the ith unit vector, i = 1,2,...,n. Then u = L} ja;u; + @, .18, If we can
show that each u; majorizes the order n Erlang distribution of the same
mean, which we call v;, then Lemma 3 implies that u majorizes L7_,a;v; +
a,.10,. But the latter is a scale mixture of Erlangs of order n and so by
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Lemma 2 it too majorizes an order n Erlang. From this it follows that u
majorizes the order n Erlang of the same mean, as required. By relabeling
states, we see that it suffices to prove that u, majorizes an order n Erlang
distribution. This we do as follows.

Let Z be an absorbing Markov chain with generator S on its transient
states {1,2,...,n} which is initialized in state 1 and let T denote its time to
absorption. Thus T has distribution u,. Let T, denote the time Z spends in
state 1 and T'.; the time Z spends in states {2, 3, ..., n}, before absorption. Of
course ) + T, = T, but T, and T., are not independent in general. Let N
denote the number of visits Z makes to state 1, not counting the last visit. Let
X, denote the time Z spends in state 1 on its ith visit and let Y; denote the
time Z spends in states 2,3, ..., n between the ith and i + 1st visit to state 1
for 1 <i < N. To clarify, if N > 1, then X is the time Z first leaves state 1,
whereas if N = 0, then X, is not defined. We write U for the length of the
final visit to state 1 and V for the time from the last exit from state 1 until
absorption. By the strong Markov property, given N =% > 0, X, X,,..., X,
are iid, Y, Y,,...,Y, are iid. and the X;’s, Y’s, U and V are all indepen-
dent, with distributions not depending on k. Let us extend the sequence X; to
an infinite i.i.d. sequence, independent of the Y;’s, U, V and N, enlarging the
underlying probability space as needed. We have

N
T=Y (X,+Y)+U+V.
i=1
N is independent of the X,’s and Y;’s and U and V are independent of all of
these. Therefore, Theorem 5 may be applied to the summation on the right-
hand side (using Lemma 3 in the process), to conclude that w, is majorized by

N N
,/(EXi+ ¥y Yi+U+V),

i=1 i=1
where we have introduced a random variable N’ which is independent of all
variables introduced up to now and which has the same distribution as N.
This distribution is the convolution

N N’
/(2 Yi+V)*,/(ZXi+U)
i=1 i=1

by independence. Now the expression

N
YY+V
i=1
is precisely the time T, that Z spends in states other than state 1. Similarly,
the distribution of
N
Y X, +U

i=1
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is the same as that of T, the time spent by Z in state 1. We conclude that
(3) py > L (Ty)* L(Tsy).

It is elementary that the time Z spends in a given set of k& transient states is
phase type, with an order k representation: this is because when we excise the
time spent by Z outside of the given % states, the result is again a Markov
chain but on % transient states. Thus, .#(T,) is a PH-distribution with an
order 1 representation, while (T, ,) is a PH-distribution with an order
n — 1 representation. It follows from (3) that w, majorizes the convolution of a
Pi-distribution with an order 1 representation and one with an order n — 1
representation. By Lemma 3 and the induction hypothesis, this majorizes the
convolution of an exponential distribution and an Erlang of order » — 1. But
Lemma 1 implies that this in turn majorizes the order n Erlang of the same
mean. In sum, u, majorizes an order n Erlang. This establishes, as we saw
before, that u itself majorizes an Erlang of order n and the proof is complete
by induction.

Is the Erlang the least variable distribution with rational transform of a
given degree? We answer this question in the negative, as follows. Consider
the probability distribution p with density function proportional to

(x2 — 2ex + 2e%)e™*, x20,

where ¢ is a small positive number. By computing the transform of u, we find
that it has degree 3. Since its density is positive for x > 0 and its transform
has only one pole, being —1, u is a PH-distribution by Theorem 1. So, if
Aldous and Shepp’s result extends as proposed, its coefficient of variation
should be at least that of the order 3 Erlang distribution, which is 1/v3.
Elementary computations lead to the following expression for the squared
coefficient of variation:

Variance (2 — 2¢ + 2¢%)(24 — 12¢ + 4¢?)
mean” (6 —4¢e + 2.92)2

1 2
1=§—§8+0(£).

Thus the conjecture fails for ¢ sufficiently small and positive. We remark that
the order of u must exceed its degree, by Aldous and Shepp’s inequality.
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