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A BRANCHING RANDOM WALK WITH A BARRIER

By J. D. BigGINs, Boris D. LUBACHEVSKY, ADAM SHWARTZ
AND ALAN WEISS

University of Sheffield, Technion Israel Institute of Technology,
and AT & T Bell Laboratories

Suppose that a child is likely to be weaker than its parent and a child
who is too weak will not reproduce. What is the condition for a family line
to survive? Let b denote the mean number of children a viable parent will
have; we suppose that this is independent of strength as long as strength is
positive. Let F denote the distribution of the change in strength from
parent to child, and define h = sup,(—log(/e® dF(¢))). We show that the
situation is black or white:

1. If b < e”, then P(family line dies) = 1.
2. If b > e, then P(family survives) > 0.

Define f(x) = E(number of members in the family | initial strength x).
We show that if b < e”, then there exists a positive constant C such that
lim, ., e **f(x) = C, where a is the smaller of the (at most) two positive
roots of bfe’ dF(¢t) = 1. We also find an explicit expression for f(x) when
the walk is on a lattice and is skip-free to the left.

This process arose in an analysis of rollback-based simulation, and these
results are the foundation of that analysis.

Introduction. Consider the following naive model of reproductive
prowess. An individual with a nonpositive prowess value cannot reproduce.
The number of offspring of each individual is chosen independently from a
fixed offspring distribution (regardless of its prowess value, provided only it is
positive). The prowess value of an offspring is computed by adding a random
number (independently, and from a second fixed distribution) to the prowess of
its parent.

This is a standard random walk on a branching process, but with a barrier:
A branch terminates when its value is nonpositive. We describe the model in
greater detail (and greater modesty) in Section 2. The main result of this paper
is simple necessary and sufficient conditions under which, from some genera-
tion on, no more reproduction occurs. We also obtain the asymptotics of the
mean size of the nth generation and, when the process dies out, of the mean
number of members in the family. Additionally, in the case when the random
walk is on a lattice and skip-free downwards, and the branching has integer
mean, we show how to calculate exactly the mean total population.

This model of branching random walk with a barrier arose in the authors’
work on parallel simulations (Lubachevsky, Shwartz and Weiss [15, 16]). We
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conclude this section with a quick description of how this process arises and
the implications of its analysis.

Consider many interconnected processing nodes simulating different compo-
nents of a large system. The nodes are allowed to progress at their individual
speeds, but are related in that a node, completing its tasks up to (simulated)
time ¢, may send a job to be processed by another node. If the second node has
already completed simulating up to a further time, say ¢ + s, it may have to
retract or roll back and reconsider its actions from time ¢. This rollback may
start a chain reaction, where the second node sends a correction message to
other nodes, forcing them to roll back and so on. The size of the rollback (s for
the second node) is modeled as the originating rollback plus an independent
random variable. Rollback clearly stops when it becomes nonpositive, and the
resulting model is the one described above. For a more accurate description,
see [15, 16]. It turns out that the results presented here make it possible to
give sufficient conditions for the efficiency of a class of parallel simulation
algorithms. These conditions are tight for the class under consideration.

Theorems on branching random walks without barriers have been pre-
sented by Biggins [4, 5, 6], Kingman [13], Nerman [18] and others. Our
stability result is very close to Biggins [6]; surprisingly, the barrier adds little
complication for the basic methods (for more detailed proofs of some of these
results see [17]). Kesten [12] studied a branching diffusion with a barrier,
which is also closely related to the present model.

1. Model. Consider a supercritical branching random walk on the real
line started from a single initial ancestor at the origin (see Biggins [4, 5, 6] for
a discussion). We denote by Z(n;x) the number of nth generation people
larger than (—x). For our application it is natural to focus attention on the
special case where each child receives an i.i.d. displacement from its parent.
Let b denote the mean family size and F the displacement distribution. We
are dealing with the supercritical case (b > 1). We assume that F' has negative
mean v but attaches positive probability to the positive half axis, so that a
random walk based on F drifts downwards but may have upward jumps. We
also assume that F has an exponentially decaying right tail; that is, for some
s> 0, we have [ _e**dF(¢) < . In practice we do not expect this final
condition to be burdensome. Without it the results can be expected to be quite
different; see Durrett [10]. We define the Chernoff rate £ = A(0) through

(1) h(a) = sgp(f)a - logf_we‘” dF(t)).

Denote by 6 the maximizer in (1) and set 6* = 6§ (these are unique and
positive for a > v, by convexity; see [19]).

We will use the sample paths of this branching random walk to construct
realizations of our model for rollback, which is a branching random walk with
a barrier. We do this by deleting all people smaller than (—x) and all their
descendants. Any line of descent remaining is then just a random walk, started
at 0, with a barrier at (—x). Denote by z(n; x) the number of nth generation
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people remaining after the deletion (we assume throughout that x > 0).
Obviously z(n; x) < Z(n; x). We could now shift the origin to (—x), so that the
initial ancestor is at x and the barrier is at 0, to obtain the model for rollback
as developed in [15, 16].

2. Stability conditions.

THEOREM 1. (i) lim, _, (1/n)log E2(n;x) =logb — h.
(i) If logb — h < 0, then P(lim, _, 2(n;x) = 0) = 1.
Giii) If log b — h > 0, then P(lim, _, z(n;x) = ©) > 0.

Note that the condition log b — h < 0 depends on the offspring distribution
only through its mean b. Also, the condition does not depend on x and so is
independent of the location of the barrier.

Proor. Note first that, as n — o,
1 1
Py log Ez(n;x) < ;log EZ(n;x) > logb —h

using Theorem 1 of Biggins [6]. This, and a Chebyshev bound, show that
P(2(n;x) > 1) decays geometrically when log b — h < 0, proving (ii). Let w, be
ii.d. with distribution function F and let

J
Q. (x)=P| inf Y w,> —x|,

l<j<n i=1

which is the probability the random walk fails to get below (—x) in n steps.
Then it is clear that

Ez(n;x) =b"Q,(x) > 0"Q,(0).

By a well-known variant of Chernoff’s theorem (see [14], Lemma 2.1),
lim, , (1/n)log @,(0) = —h, completing the proof of (i).

To establish part (iii), construct a lower-bounding supercritical Galton—
Watson process. Let n* be large enough that Ez(n*;0) = 5*'Q,.(0) > 1. The
first generation of the new process is now given by z(n*;0) (< z(n*; x)), with
(independent) copies of z(n*;0) being used to construct subsequent genera-
tions. This process grows exponentially fast with positive probability and can
be constructed so that its sample paths are below those of z(n; x), proving the
result. (More detailed examples using this technique can be found in Kingman
[13] and Biggins [4, 6] for example.) O

Let B, denote the largest member of the nth generation in a branching
random walk starting at 0, and let Y, denote the largest member of such a
process, but starting at x and with a barrier at 0. Let y = sup{a: log b > h(a)};
then it is known ([6], Corollary to Theorem 2), that lim, B, /n = y almost
surely on the survival set. To simplify the discussion of the first part of the
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next theorem, we will rule out the possibility that there is a finite maximum
displacement that has probability at least 5. With this proviso vy is the
unique solution to h(y) = log b greater than v (there may be another below »)
and 0 < 6 < . In the excluded case, on which more information can be found
in Bramson [7], B, < ny always, so part (i) of the theorem will hold, rather
trivially, in this case also.

THEOREM 2. (i) There exists a constant C > 0 such that the random
variable sup,(B, — yn — C log n) possesses an exponential right tail.
(ii) Suppose log b — h < 0. There exists a constant D > 0 such that

P(Y, —x >t) < De ",

Proor. Let x(n) have the distribution of the size of a typical person at
level n. For any deterministic sequence s, and any 6 > 0,

P(sup(Bn -s,) > t) <Y P(B,—-s,>t)
< Y b"P(x(n) >t +s,)

< Z bne—H(t+sn)EeBx(n)
n

= E bne—o(t+sn)([eor dF(r))

using Chebyshev’s inequality. Take s, =ny + Clogn and 6 =65 > 0 to
obtain (i). For (ii), set s, = 0 with 6 = 6* > 0 and note that the largest
member of the process without a barrier exceeds the largest member of the
process with a barrier. O

It is probably worth noting that in part (ii), * can be replaced by ¢
provided that ¢ € {6: bfe® dF(¢) < 1}. (Of course D changes.)

Part (ii) immediately gives lim sup, _, (Y, /x) = 1 w.p.1. This is important in
our application since the size of a rollback also represents the amount of
memory required to support the rollback. Now the design of a rollback-based
simulation has to take memory limitations into account and our analysis says
that if a (large) initial rollback can be supported, then so can the whole
rollback tree it generates.

ExTENSIONS. The general model of branching random walks allows for
correlations between the step sizes of siblings and their number [6]. Further-
more, if the random walk is modulated by a Markov chain, then the variant of
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Chernoff’s theorem used above would be replaced by

1
lim lim — log P(_inf w, + -+ +w, + en > 0)

el0n—oon l1<i<n

1
= lim —log P(w, + - +w, > 0)
n—o N
and results on Markov modulated random walks could be applied (e.g. [9D.
Finally, a more realistic model of rollback should allow for the distribution F
to depend on the current size of the rollback; Azencott and Ruget’s large
deviation theory applies to this case [3].

3. Examples. In studying rollback, we found random walks on binary
trees to be important. They model very closely the rollback process on a
shuffle-exchange network [15, 16]. It turns out that the stability region as
computed by naive stationary considerations is wrong by almost an order of
magnitude (see below). Since our analysis is in very close agreement with
simulation results, we work out some simple examples below. Consider a
binary tree (b = 2) with P(w =1)=q, P(w = —K) =1 —q. Then for K = 1,
consider a naive one-step stationary analysis: both children of a node will have
smaller prowess than the parent with probability (1 — ¢)?. Hence we might
expect that the tree is finite when (1 — ¢)? > % or ¢ < 0.3. This naive analysis
is off by more than a factor of four; elementary calculus yields that the
stability condition b < e” is satisfied when q < (2 — V3)/4 = 0.066987.

When ¢ = 4, then Ew = (1 — K)/2 and h = —InGKYE*1(1 + (1/K))).
So be " = KY/X+1(1 + (1/K)) > 1. That is, this way of adding negative drift
is ineffective in stabilizing the process. In fact, it is easy to show that as
K — o, the critical value of q is about 3(1 — (In K/K)).

The following are some values of the critical value of g, calculated numeri-
cally.

K 1 2 5 10 20 50 100 200 500 1000 o
q 0.0670 0.147 0.270 0.348 0.405 0452 0472 0484 0493 0496 0.5

4. Growth rate of the process. It is possible to find asymptotic expres-
sions for the expected number of nodes in the tree (when log b — h < 0 so that
this number is finite), and for the total weight of the tree, and exact expres-
sions in special cases. The results presented below range from most general
(and least informative) to most special (and most informative).

4.1. Asymptotics. In this section we assume that log b — h < 0 so that, for
some s > 0, bfe** dF(t) < 1. Therefore there is a smallest « (necessarily > 0)
such that

(2) bfe"" dF(t) =1

(by convexity there are at most two solutions to this equation). If F were



578 J. D. BIGGINS, B. D. LUBACHEVSKY, A. SHWARTZ AND A. WEISS

concentrated on (—, 0) this would be (essentially) the classical definition of
the Malthusian parameter for the branching process. The case of general F
has not often been considered, but some information relevant here can be
found in Biggins [5]. In particular note that

3 db st dF (¢ <0
(3) b aF(®)| <o
Let
Ez(n;x), ifx>0,
@ flxy = | & Be(n3%)
0 ifx <0,

so f(x) is the mean total family size when the initial prowess is x.

THEOREM 3. Suppose log b — h < 0 and that F is nonlattice. Let a be the
smallest positive root of (2). Then for some C > 0,lim,, _,, e **f(x) = C.

REMARK. A similar result holds in the lattice case.
ProoF. Since the mean number of nodes in a tree starting from root size x

is one plus the mean number of children times their subtree’s mean size, f
satisfies

_1+of f(x+0)dF(r), ifx>o0,
0, if x < 0.

(5) f(x)

This can be viewed as a renewal equation with a barrier. If the constant 1 were
removed in (5) the resulting equation (of Deny type) falls within the study of
Alzaid, Lau, Rao and Shanbhag [1]. Our discussion of the asymptotics of f has
some features in common with that study.

Define H(x) = e **f(x) and du(t) := be** dF(¢). Note that, by the defini-
tion of a,  is a probability measure. Let {Z;, i > 1} be i.i.d. random variables
distributed according to u and let Z, =S, =0, S, :=X7_,Z;. Note that by
(3), EZ; < 0. Let U denote the renewal measure corresponding to {Z;}. Now

H(x) =e f Ez(n;x) <e™** i EZ(n;x)

n=0 n=0
(6) e L [ em ur(dr)
n=0""%

= ["emeerou(ar),

which is bounded, using Theorem 1 (iii) of VI.10 in Feller [11].



BRANCHING PROCESS 579
Define 1(x) := 1 if x > 0, and zero otherwise. From (5), H(x) satisfies
H(x) = e 1(x) + [ H(x + 1) du(t)1(x)

=e **1(x) + EH(x + Z,)1(x).
Recursive substitutions yield
H(x) = e **1(x) + Ee™***21(x)1(x + Z;)
1 + EH(x + Z, + Z,)1(x)1(x + Z))

©

Y e **E _]—[Oe"’zfl(x +8;)
e

n=0

+ lim E(H(x +8S)TT1(x+S,)|.
n—ow i=0

Since EZ; < 0, dominated convergence implies that the final term is zero.
Define for an interval I,
(1))=Y P(S;,+x>0for0<i<n;S,+xel).
n=0
For each x, ¢, is a positive measure, and it is finite for bounded intervals I
since Z; has negative mean. By (7), we have

H(x) = [:e-afd.px(t) - af:e_“‘d/x([O,t]) dt,

using integration by parts. Consider now a random walk starting at x > ¢ and
with steps Z;, and let L, denote the location of the first step below ¢. Then by
standard renewal arguments, L, converges weakly. But ¢,([0, ¢]) is precisely
the mean number of steps, starting at L, that fall between 0 and ¢ before first
crossing 0 downwards. By the nonlattice assumption, this depends smoothly
on the distribution of the starting point L, hence ¢,((0,¢]) has a limit as
x = » for each ¢. Since ¢,([0,¢]) < C,;¢ + C, for some constants that are
independent of x > 0, dominated convergence applies to prove that, for some
constant C, H(x) » C. O

Estimates on C are easily obtained as follows. Recall that U is the renewal
measure for the random variables {Z,} and let V be the renewal measure for
the descending ladder variables associated with {Z,} (see, e.g., Feller [11], page
391). Then U is not restricted to have all partial sums above (—x), while V
counts only decreasing partial sums. Hence

V([—x, —x +¢]) <¢,.([0,¢]) < U([—x, —x + ¢])

for all x > ¢ > 0. But ([11], page 381) U(—x, —x + t]) — ¢/(EZ,), so that an
application of dominated convergence as above yields C < («EZ,)™!. Since the
probability of an upward jump is strictly positive, this inequality is in fact
strict. Similar considerations provide a lower bound on C in terms of the mean
of the descending ladder variables.
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The same analysis gives a related interesting result. With a slight shift in
notation, let z(n;x) now denote the point process of all nth generation
persons in a branching random walk started at x with a barrier at 0. Let g be
the total weight, that is,

g(x) = | EE[ y2(nin)dy), itz>0,

Then Theorem 3 holds with g in place of f. In the context of rollback, g

represents the total memory, over all processors, used by one rollback tree.
This is of interest if rollback is supported by memory servers.

4.2. Exact calculations. We can find exact expressions for f(x) in the
following particular case:

1. b > 1is an integer.
2. F is supported on —1,0,1,2,... .

It is easy to see that f(x) depends only on the mean of the branching factor.
Thus, in deriving an expression for f(x), we assume without loss of generality
that branching is deterministic, each person having exactly & children. Now
f(x) need only be calculated for x = 0,1,2,... since f(x) = f(x]) where [x]is
the “round up” or ceiling function.

Let n* be the number of live people, that is, they and all their ancestors are
above the barrier. Let n~ be the number of immediate children of these
individuals that are below (or, more precisely, as F is skip-free downwards, on)
the barrier. These children are therefore not alive, but they will be if the
barrier is moved down one step. It is easy to see that bn*=(n"— 1) + n".
Recall f(x) = E(n™| initial prowess = x), so, by moving the barrier down one
step, we see that

f(x+1) =f(x) +E(n7) - f(1) = f(x) + [(b - 1) f(x) + 1] f(1)
=f(x)(1+(b-1)f(1)) +f(1).
This recursion can be solved easily. Let ¢ = 1 + (b — 1) f(1). Then

c* -1
®) f(x) = == £ (D).
But by (the comment following) Theorem 3, f(x) ~ e**, so
(9) c=e*=1+(b-1)f(1).

We solve (2) for a, then find ¢ and (1) by (9) and so find f(x) using (8).
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