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A MEAN FIELD LIMIT FOR A LATTICE CARICATURE OF
DYNAMIC ROUTING IN CIRCUIT SWITCHED NETWORKS'

By V. ANANTHARAM

Cornell University

Simulation studies of circuit switched networks with dynamic alternate
routing reveal the existence of hysteresis phenomena, which suggest that
such networks can admit more than one regime of operation for the same
offered traffic. Such behavior is also suggested by a detailed analytical
model due to Marbukh and a simpler model due to Gibbens, Hunt and
Kelly. In these models, a limit is taken as the network size becomes large,
and one finds a limiting ODE describing the proportions of network links in
different states. The possibility of multiple regimes of operation shows up
through the fact that the ODE has multiple equilibrium points for certain
ranges of parameters.

The kinds of limits considered by Marbukh and Gibbens, Hunt and
Kelly do not take into account the spatial extent of the network. In an
attempt to preserve the spatial characteristics, we consider a lattice model
similar to that of Gibbens, Hunt and Kelly. We derive a mean field limit for
this lattice model. This is an integrodifferential equation which describes
how the spatial distribution of the network evolves in time. The mean field
equation also admits multiple spatially homogeneous equilibrium solutions
for certain ranges of the parameters, which may be loosely thought of as
the different operating regimes. This equation may be particularly useful in
understanding the exchange between the operating regimes, that is, ques-
tions like ‘“‘for what parameter values is a hot spot of heavy loading in the
system likely to take over the whole network by knock-on effects?”

1. Introduction. This paper discusses circuit switched networks with
dynamic alternate routing. The purpose of dynamic routing schemes is to
adaptively adjust traffic patterns in the network in response to demand, so as
to make better use of spare capacity and to provide robustness to failures or
overloads. Such schemes have been the topic of considerable recent interest
[1-5, 7, 11-16, 18-20, 22, 23], primarily because it has only recently been
possible to implement them in practice, and because they offer improved
performance over the traditional hierarchical routing schemes.

A difficulty associated with dynamic routing schemes is the potential for
metastable states. Several simulation based studies of such routing schemes [1,
2,4, 7, 12, 16, 22] have revealed the existence of hysteresis phenomena, which
suggest that the network may have several qualitatively different regimes of
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operation for the same offered traffic, spending long periods of time in one or
the other regime and sometimes moving from one to the other in response to
fluctuations in the demand. Intuitively, a situation where most calls are using
alternate routes is likely to persist for a while because arriving calls will then
find the network close to saturation and will be unable to make their direct
connections. On the other hand, for the same offered traffic, it might also be
the case that if most of the calls in progress are using their direct route,
arriving calls will be able to make their direct connection. Important perfor-
mance characteristics of the network such as blocking probabilities typically
differ considerably between regimes. All the same, the improvement in perfor-
mance over hierarchical routing schemes is such that dynamic routing schemes
are being implemented in real-world networks [12, 23], with control schemes,
such as trunk reservation for directly routed traffic. These, if suitably chosen,
mitigate the effects of the potential multiplicity of operating regimes [1, 2, 4,
11, 12, 16, 23].

The possibility of metastable regimes of operation is also predicted in
analytical models for dynamic routing such as the ones studied by Kelly [15],
Krupp [16], Marbukh [18, 19] and Gibbens, Hunt and Kelly [12]. In [15] and
[16] simple fixed-point approximations for the blocking probability are written,
and it is found they have multiple solutions for certain ranges of the parame-
ters. The models in [12] and [18] and [19] are more detailed. ODE limits are
found for the fraction of network links that are in a given state as the network
size becomes large. This work is briefly discussed in Section 2.

The focus of this paper is on understanding the interaction between the
operating regimes using particle system techniques [10, 17]. To describe the
dynamic exchange between different operating regimes, we need simple equa-,
tions that describe how the spatially distributed network state evolves over
time. Motivated by this, we consider a lattice model in Section 3, which is
analogous to the model of Gibbens, Hunt and Kelly [12]. We find a mean field
limit for this lattice model [8, 9, 24]. This is an integrodifferential equation
describing the time evolution of the spatially distributed network state. This
equation also admits multiple spatially homogeneous time-invariant solutions
for certain ranges of the parameters, which may be loosely thought of as the
different operating regimes. The model described in Section 3 is at best a crude
caricature of the situation in a real network; nevertheless, the resulting
equation may be of some use in understanding the behavior of real networks
with dynamic routing. The main results are stated as Theorems 1 and 2 in
Section 3.

Section 4 is devoted to the proof of Theorem 1, which depends on a dual
particle process. The proof of Theorem 2 is somewhat more technical and is
carried out in Section 5. Some concluding remarks are made in Section 6.

2. ODE limits. In this section we first review the ODE limit of Marbukh
[18, 19], and then we review the ODE limit of Gibbens, Hunt and Kelly [12] in
order to motivate the investigation in the following sections.
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Marbukh [18, 19] analyzes several dynamic routing strategies in large
completely connected networks. In the simplest version of the model of
Marbukh, we are given a completely connected network on n nodes, with a
two-way communication link between each pair of nodes, consisting of C
circuits. Call requests between any pair of nodes a and b arrive according to
independent Poisson processes of rate v. If link (a, ) is not saturated, the call
occupies one circuit in the link. If link (a, b) is saturated, the call randomly
chooses a third node ¢ such that each of the channels (a, c¢) and (c, b) has at
least one circuit free and simultaneously occupies one circuit on each of these
links. If there is no such ¢, the call is lost. Each call holds the circuits it
occupies for an exponential time of mean 1, after which it simultaneously
releases them.

Let N denote |, |. Let X2(¢), 1 < a, b < n, denote the number of circuits
occupied on link (a, b) at time ¢ in the network with n nodes. [Note that (X7,
1 <a,b <n) are not enough to specify the state of the system, because
two-link calls simultaneously release the circuits they occupy.] In Marbukh
[18] the following (as yet unproved) assumptions are made:

1. For any a, b4,...,0a,, b,

l
lim P(X2(#) = k-, Xip(8) = ky) = T lim P(X2,(t) = k;),
Jj= n—ow

n— o

the convergence to the limits being uniform over ¢ in any finite interval
[0,T]. (In particular, the initial conditions are assumed to be of product
type.)

2. lim,, , P(X2(¢) = k) = y,(¢) is independent of a, b.

These assumptions are related to the hypothesis of propagation of chaos in
statistical mechanics [25, 26] and are quite likely true. Under these assump-
tions one finds that (yg,vy,...,7c) satisfy a differential equation on the
C-dimensional simplex. This differential equation takes the form

.

Yo =71 = (¥ + 207¢(1 = v¢) "),

(2.1) Ye=(k+1)vps + (V + 2vyc(1 - YC)_I)‘)’k—1

—(k+v+2vyC(1—yC)_1)yk, 0<k<C,
Ye= —Cvyc + (V + 2vye(1 - YC)_I)YC—D
where the left-hand sides are time derivatives.

When one looks for equilibrium points of (2.1), one finds the following: If
v > C/2, then (y,,...,y:) =(0,0,...,1) is a stable equilibrium. Further, for
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C = 3, there is a value v* > C/2 such that for all » < v* there is another
stable equilibrium (v, ..., y&) given by

_1\ k
. (vr2rmEa-v) et
Y =

(2.2) (v + 2098 (1 - yg)‘l)ck'

Yé = E(v + 2vyé(1 - 7§)_1,C),

where E(v,C) = v¢/C!1/XS_,v'/1\. In particular, for C/2 < v < v*,(2.1) have
more than one stable equilibrium.

Gibbens, Hunt and Kelly [12] consider a simplified model for dynamic
alternate routing which bypasses the spatial features of the network. Consider
a collection of N links, each of which consists of C circuits. At each link, calls
arrive according to a Poisson process of rate ». If its link is not saturated, the
call occupies one circuit on the link. If its link is saturated, the call chooses two
distinct links at random from the remaining N — 1 links, and if neither is
saturated, the call occupies one circuit from each of these two links. Otherwise
the call is blocked and rejected from the system. Each occupied circuit is held
for an independent exponential time of mean 1. (Note that when a call occupies
two circuits after making a successful choice of alternate route, it is assumed
that these circuits are released independently.)

Let yN(t), 0 <k < C, denote the fractlon of the N links that have k
occupied circuits at time ¢. Then (v}, vV, ...,y ) evolves as a Markov process
on the C-dimensional simplex. In [12], an ODE limit is found for the evolution
as N — «. Namely, if the initial conditions (y{'(0), y(0), ..., y&(0)) converge
weakly to a limit (y4(0),y,(0),...,y:(0)), then the process converges to the
deterministic process given by

Yo=71— (V + 2V‘)’c(1 - ‘YC))‘YO,

Yi=(k+ 1Dy + (v +2vy0(1 = v0)) V-1
—(k+v+20y:(1 = v))y,, O0<k<C,

(2.3)

Ye= —Cyvc+ (v + 2vyc(1 = v¢))ve-1s

with the appropriate initial conditions.
When one looks for equilibrium points of (2.3), one finds the following: The
equilibrium points are given by the solutions of

(V + 2vy¢(1 - Yc)) C!
(V + 2vyé(1 — ‘Yc)) k'
v =E(v + 2vy8(1 — 7§),C).

When C is large enough, one finds that there is a range of v in which (2.4)
admit three solutions, two of which are stable. To the left and right of this

*

(2.4)
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range, there is a unique stable solution. For a graph of the solution set of (2.4)
see Figure 1(i) of [12].

3. Lattice caricature. In this section we analyze a lattice caricature for
dynamic alternate routing which has the virtue of preserving spatial features
of the system. We find a mean field limit for this lattice model. This is an
integrodifferential equation which describes how the spatially distributed net-
work state evolves over time; see (3.1). The main results are Theorems 1
and 2.

Let Z?/M denote the lattice in R? consisting of points all of whose
coordinates are rational with denominator dividing M. The points of 7Z¢/M
are called sites. Let W denote {0, 1, ..., C}. We consider a Markov process (n}¥,
t > 0) on W2/ which caricatures a circuit switched network with dynamic
routing (the statements below are true for any d, but the situations d = 1 and
d = 2 are likely to be of most interest). We use 7 to denote a generic element

of WZ/M and call n(x) the value at site x. Let M* denote ((2M + 21)d - 1)‘ The

Markov process is described by the transitions
n(x) »n(x) -1 at rate n(x),
n(x) »n(x) +1 at rate v if n(x) # C,

(n(x),7(y),n(2)) = (n(x),n(y) + 1,m(z) + 1) atratev/M*

if x,y, z are distinct sites with
n(x) =C,n(y) <C,m(z) <Candy,zex + [—1,1]°.

There is no difficulty constructing such a Markov process even though the
number of sites is infinite. See Liggett [17], Chapter 1, Section 3, for details;
Theorem 3.9 of that section applies directly.

We think of each site in the lattice as representing a link in our network,
which consists of C circuits. We think of the value at a site as giving the
number of occupied circuits in the corresponding link. Occupied circuits
become free at rate 1. At each link there is a Poisson process of calls with rate
v. Each call occupies one circuit on its link if available; if the link is saturated
the call randomly picks two other links which are in its [— 1, 1] neighborhood,
and uses one circuit from each of these links if possible. Otherwise the call is
blocked and rejected from the system. Note that because we have a compressed
lattice, the interaction actually has range M on the scale of links.

For x € 7%/M, let u,(t, x, k) denote P(nM(x) = k), 0 < k < C. We extend
the definition of u (¢, -, k) to R? by setting u (¢, x, k) = u,,(¢,[x],,, k) for
x € R%, where [x];, denotes the minimum element in Z? /M which dominates
x in the usual partial order on R?. Let u(0,x, %), 0 <k < C, be continuous
functions with bounded derivative and with ©§_,u(0, x, k) = 1. Let u(¢, x, k),
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0 < k < C, denote the solution of the integrodifferential equations

du(t, x,0) Wit %1
T CueeD
—pl1+ 2172 u(t,x +q,C
g f’[],re[—l,lld ( 2.0)
X(1-u(t,x+q+r,C))dqgdr|u(t,x,0),
du(t,x, k)
———=(k+ Du(t,x,k + 1)
at
+v|1+ 2172 t,x +q,C
Y '['/t;,re[-l,l]du( ,€)
X(1-u(t,x+q+r,C))dgdr|u(t,x,k—1)
(3.1)
—|&+ |1+ 212 u(t,x+q,C
v ffq,re[—l,ud ( .0)
X(1—-u(t,x+q+r,C)) dqdr])u(t,x,k)
for0 <k <C,
du(t,x,C)
T = —Cu(t,x,C)

+v(1+21‘2dff u(t,x+q,C)
q,re[-1,1]

X(1-u(t,x +q+r,C))dgdr|u(t,x,C—1).
Then we have the following theorem.

THEOREM 1. Fix T < . Suppose that we start (nM), with initial configu-
ration the product measure having P(n{f(x) = k) = u,(0,x,k), 0 <k < C. If
u (0, x,%) = u(0, x, k) as M — « uniformly on compact sets, 0 < k < C, then
Uyt x, k) > ult,x, k) forallt €[0,T], x €R? and 0 <k < C.
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Taking the limit as M — « can be visualized as replacing the network by a
continuous family of links, so that it makes sense to talk about the probability
that the state of the link at spatial location x at time ¢ is k. Theorem 1 is a
statement about pointwise convergence of such probabilities. There is a corre-
sponding functional limit theorem. This functional limit theorem allows us to
describe the limit behavior of an arbitrary choice of spatial integrals
oD, ..., ¢"™ at times ¢,,...,¢, €[0,T]as long as the ¢ decrease sufficiently
rapidly. This allows us, for example, to describe the evolution in time of spatial
averages of the state over compact regions of the lattice (which caricatures
compact regions of our network with dynamic routing). Let C*(R¢) denote the
space of infinitely differentiable functions on R?. For f € C*(R%), let

| flle,s = sup lx*DPf(x)l,

xeR?

where a = (ay,...,ay), B=(B,...,By), %= l—[;-i=1xj% and DPf=[(6" +
o +B,)/(@Pix, -+ Pax ] f. Let #(R?) denote the Schwarz space of rapidly
decreasing functions on R? and ./*(R?) the space of Schwarz distributions,
which is its topological dual. We recall that . (R?) consists of precisely those
f € C*(R?) such that ||fll, s < for all @, . Further, /(R?) is a locally
convex topological linear space with topology given by the family of seminorms
| £lla, - The underlying functional analysis is clearly discussed in the book of
Yosida [27]; see especially page 146 ff. Then we have the following theorem.

THEOREM 2. Given ¢, € A (R?),0 <k < C, let

1 C
XM(p) = e Y X du(x)1(nf(x) = k).

xez/M k=0

View XM as an element of D([0, T],(#*(R))C*1). Then XM = X ., where =
denotes weak convergence in D([0, T],(*(R¥)¢*!) and

C
X($)=X [ du(x)u(,x,k)dx.
k=0 xR

When we look for spatially homogeneous solutions of (3.1) which are time
invariant, we are led to the same equations (2.4) found by Gibbens, Hunt and
Kelly. Thus we see that for large enough C, there is a range of v over which
(3.1) admit three spatially homogeneous solutions. These may be loosely
thought of as different phases associated to the network. The exchange
between the phases can be studied by numerically integrating the equations
from the appropriate initial conditions. Such work is currently in progress [5].
Similar equations can also be written for more complicated dynamic routing
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schemes, including trunk reservation, using the techniques of the next section.
The study of these equations may also be useful in making comparisons
between schemes.

4. Proof of Theorem 1. In this section we prove Theorem 1. The proof
of Theorem 2 will be completed in Section 5.

The key idea is to consider an evolving system of particles, from which we
can construct processes which are in some sense dual to the processes (n},
t > 0)on [0, T]. Given x € R?, we construct a process (Z*,0 <s <T). ZX isa
triple (£, 2., F,). &, is a set of particles which are alive at time s. A particle
alive at s stays alive on [s,T]. 2,: & — R? gives the location of the live
particle p. Once a particle becomes alive, its location does not change, so for
simplicity we write x(p) € R? for the location of particle p.

We think of a space-time picture R? X [0, T'], with time increasing as we go
toward the top of the page. See Figure 1. Each live particle p has associated
with it independent Poisson processes, D(p, k), 1 < k < C, of rate 1, A(p) of
rate v and Q(p) of rate 2v. If a particle p becomes alive at time s at location
x(p), we draw the vertical line {x(p)} X [s, T] and place marks on the line as
follows: At the times of D(p, k) we write a (8, k) on the line and at the times
of A(p) we write an a.

Particles become alive by the following mechanism: Suppose p is already
alive. At the times of Q(p) the particle p chooses z(1), 2(2) € [—1,1]? inde-
pendently and uniformly and places one new particle at x(p) + z(1) and one
new particle at x(p) + 2(1) + z(2). We refer to these as p(1) and p(2) respec-
tively and also as respectively the first and second particle generated by p, at
the point of @Q(p) in question. (Note that each live particle may actually
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generate several new particles over its life.) We draw a horizontal line between
p and p(1) and between p(1) and p(2) at the time p generated p(1) and p(2).
Thus, in our space—time picture, there is a branching tree growing from a root
at {x} X 0 and consisting of vertical and horizontal lines.

We have now specified (Z7, 0 < s < T), except to say what F, is. We now
think of each particle as capable of supporting any of the C + 1 values in W,
and of the value of a particle as changing with time. We have

F:W— 2",

k € W% is such that k € F,(k) iff when we assign value k(p) to each p € &,
and run backwards from s to 0, the resulting value at the root is k. Running
backwards consists of the following rules: A (8, k) is interpreted as a potential
death and decreases the value of the corresponding particle by 1 if its current
value is less than or equal to 2 and not already 0. An « is interpreted as a
birth and increases the value of the corresponding particle by 1 (unless it is
already C). When we meet a horizontal line p—p(1)-p(2), we think of p(1) as a
link checking p and p(2) for alternate routing. Namely, if p(1) has value C
and p and p(2) both have values less than C, the value of p increases by 1,
whereas if either p(1) has value less than C or if any one of p and p(2) has
value C, the value of p remains unchanged. Note that we need only be
concerned about the value of p, because running backwards in time, p(1) and
p(2) are no longer present immediately after we cross the p-p(1)-p(2) line. At
the end of running backwards, we have a single value at the root particle.

Given x € Z%/M, from (Z%, 0 <s <T) we construct a process (Z>™,
0 < s < T) by moving particles to lattice sites. Z* is a triple (£, 2, F,)
with &, and F, exactly the same as in Z*. Then 2M: & — 7¢/M gives the
location of the live particles. Since this does not change with time, we let
x™M(p) denote the location of particle p in Z*™. The determination of x(p)
is somewhat ungainly; the key features necessary are that particles should not
be moved by too much, and they should be placed on lattice sites with the
correct distribution. x™(p) is determined at the time of birth of p by looking
at the particle ¢ which gave birth to p. Let 2(1) = x(q(1)) — x(g) and 2(2) =
x(q(2)) — x(q(1)) at the time that q gave birth to p.

Suppose p = g(1). To determine x™(p), we split the [—1,1]% cube around
xM(q) into (2M + 1) — 1 regions and associate to each region a unique lattice
site in {xM(q) + [—1,1] N Z¢/M} — {xM(q)} in such a way that no point is
more than Vd /M away from its assigned lattice site. We let x™(p) be the
assigned lattice site of x™(q) + 2(1). The required splitting of [— 1, 1]¢ can be
done in several ways. The specific technique adopted is not important; it is
enough to observe that it can be done, as the reader can easily check.

Suppose p = q(2). To determine x™(p), we first determine x(g(1)) as
above. Then we split the [—1,1]¢ cube around x™(g(1)) into (2M + 1)¢ — 2
regions and associate to each region a unique lattice site in {x™(q(1)) +
[-1,11¢ N Z2¢/M} — {xM(q), x™(q(1))}. The splitting of [—1,1]% should be
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done in such a way that no point is more than Vd /M away from its assigned
lattice site. We let x™(p) be the assigned lattice site of x™(g(1)) + z(1). Once
again the required splitting can be done in several different ways. Now each
particle lives on a lattice site. Note that more than one particle may be alive at
a site.

Finally, given x € Z¢/M, we construct a process (Z*™, 0 <s < T) from
(Z3 Mo<s < T) by prohibiting more than one particle to hve at a lattice site.
z» M a triple (#, ZM, F,) with &, ¢ &, and ZM: & — 7%/M the restric-
tion of M to 9" Thus we continue to let xM( D) denote the location of
particle p € &. (Z»M, 0 < s < T) differs from (Z>™, 0 <s < T) in that if a
particle attempts to be born at a site that is already occupied, the birth is
aborted. Note that when p gives birth, p(1) and p(2) are treated individually,
that is, it is poss1ble that one of them gets aborted while the other does not.
F:W- 2%% is once again defined so that k € W% is such thatk € F (k) iff
when we assign the value k(p) to each p € & and run backwards from s to
0, the resulting value at the root is k. Runmng backwards proceeds according
to the same rules as for (Z*™, 0 < s < T') when we encounter an « or a (8, k)
or when we encounter a horizontal line of the type p-p(1)-p(2). If we
encounter a horizontal line of the type p—q-p(2) or p—-p(1)-q or p—q-r, we
once again interpret the central element as a link making a virtual attempt to
carry out alternate routing at the end links, but we now have to maintain the
values of all the particles that continue to be alive when we cross this
horizontal link, working our way into the past.

The main use of the dual process is that it yields the following duality
relation:

(4.1) P(nd(x) = k) = P([nd(x™(p)), p € &] € F(k)).

This is seen because, by definition, the particles 977 are sitting at precisely
those sites whose values at time 0 potentially 1nﬂuence the value of site x at
time s, and because F.(k) consists of precisely those configurations of values
at these sites which result in the value % at site x at time s. See Figure 1, and
think of the process (n}, t > 0) as starting at the dual time plane s and
running toward the bottom of the page, the aim being to determine the value
at site x at the dual time plane 0.

Let A denote the event that & = &, 0 <s < T. Note that F, = F, on A.
Then we have the following lemma.

LemMaA 1. lim, . P(A) = 1.

ProoF. Let us condition on {| ;| = m}. Then, at the time that any particle
gives birth, the probability in (Z*™, 0 < s < T') that it places any one of its
children at a site already occupied is bounded above by m /[(2M + 1)¢ — 1].
Clearly, on the event {|#;| = m}, each particle can give birth to a total of at
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most m particles. Thus the probability that some particle places some one of
its children on a site that is already occupied is bounded above by m?/(2M)<.
This gives

P(A) < 5 T P(%] = m)
< —_— ol =m).
mo1 (2M)*

Now |Z;| is the same in distribution as the total number of particles alive at
time T in a continuous-time branching process in which particles have birth
rate 2v and the number of offspring is 3 and starting with one particle alive at
time 0. We observe that this has bounded third moment. Letting M — o yields
the lemma. O

We also need the following lemma.

LEmMA 2. If z,29,...,2, and uq, Uy, ..., U
less than or equal to 1, then

are nonnegative numbers

m

2125 " 2, — Uty " U

ml =< Z |zi - uil'

Proor (Lemma 2.3 of [24]). The proof is by induction on m using the
identity

212y 1 Z —Uslhg T Uy = (21 T UL) 2 0 2y,
tu(2zg 2, — Uy Up). ]

We are now in a position to show that lim,, _, , u (s, x, k) exists. In fact, we
will show that for each x € R? the limit exists uniformly over s € [0, T] and
0 < k < C. We write

(s, x, k) = P(n(x) = k)
= P([nd'(x™(p)), p € &] € ()
< (1= P(4)) + P([nd(+¥(p)), p € &] € F(h); 4)
= (1= P(4)) + P([nd'(="(p)), p € Z] € F(k); A)

=(1-P(A)) +E

(z 1 1(n é"(xM(p))=k(p)))1(A))

keF,(k) PEZ,

=(1-P(4)) +E(( z n uM(O x(p), k(p)))l(A))

keF,(k) PEZ

<(1-P(a) + B[ T TTuw(0#(p),k(p)).

keF (k) PEZ
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Here the sequence of steps is as follows: The first equality is by definition. The
second equality comes from the duality relation (4.1). The third inequality is
elementary. The fourth equality is because &2 = & on A. The fifth equality
comes from spelling out the configurations that result in the value % at site x
at time s. The sixth equality comes from independence of the initial conditions
from site to site and because the event A is independent of the initial
conditions. The last inequality is obvious.
By Lemma 1, it suffices to show that

fm B T TT uu0,2(0). k()

M- \ypepk) PES

exists uniformly over s € [0, T']. This is the content of the following lemma.
LEMma 3.

lim E(
Moo

Y TT un(0,2¥(p),k(p))

keF(k) PEL

- T TLu0x(), k(p))[)

keFy (k) PEZ,

uniformly over s € [0, T].

Proor. For any N > 0, we have

E|Z,?
NZ

P(2; >N) <

where | ;| denotes the number of particles alive at T. Let K denote E |9”le.
Using Lemma 2, we write

d

(4.2)  <P(ZJd>N)+E| ¥ ¥ lupy(0,x"(p),k(p))
keF (k) peZ,

> H uM(O «M(p),k(p)) - X ﬂ u(0 x(p), k(p))‘)

keF(k)Pe keF(k)Pe

—u(0,2(p), k(p)) 1Pyl < N))
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K
<= +(C+ I)NE( sup ). luy(0,2(p),k(p))
N keF(k) pe P

—u(0, x™(p),k(p))I1(1Zyl < N))

+(C + l)NE(ksgl()k) Zglu(O,xM(p),k(p))

~u(0,2(p), k(p))I1(Z] sN))‘

Given ¢ > 0, we first select N so that (K/N?) < (¢/3), thus bounding the first
term in (4.2). Next, we select M, so that for all M > M, we have

€
|y (0,5, k) — u(0,5, k) < ———
uy(0,y, k) —u(0,y, k)l SN(C T )"

forally ex +[—N, N]? and all 0 < £ < C. We can do this by the assumption
of uniform convergence of initial conditions on compact sets. Now we observe
that on {|#;| < N} the maximum number of jumps that can occur between
the initial position x and the location of any particle at time s is N.
Consequently, the above inequality can be used to bound the second term in
(4.2) by (¢/3) for M > M,. Further, we also learn that the difference between
x(p) and x¥(p) for any particle p alive at s is at most ((NvVd )/M). We have

lu(0, 2™ (p),k(p)) — u(0,x(p),k(p))l

NVd
< sup sup IVu(0,y, k)l,
M k yex+[-N,N?

where Vu denotes the spatial gradient of . Hence we can find M, so that for
all M > M,,

(0, x™(p),k(p)) — u(0,x(p),k(p))l < 3N(Ce—+1)N

for all p € &. This bounds the third term in (4.2) by ¢ /3. Letting ¢ — 0 gives
the lemma. This completes the proof of the existence of lim,, ., u (s, x, k)
uniformly over s €[0,T]and 0 <k <C. O
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Let lim,, ., u, (¢ x, k) be denoted v(¢, x,%k). To complete the proof of

Theorem 1, we need to show that v(¢, x, k) satisfies (3.1). First we need the
following lemma.

LEMMA 4. For any x,y,2 € Z%/M and 0 < ky, ky, ks < C, we have
P(nf”(x) =k, "‘Iiw(y) =ky, 17;”(2) = k3)
= P(n"(x) = k1)P(n'(y) = k3) P(n}'(2) = k3) + 0(1)

uniformly for s € [0, T] and uniformly over x,y,z and ky, ko, k5.

(4.3)

Proor. Starting with a single particle at x, y and z respectively, we
construct independent processes of particles (Z¥, 0 <s < T),(Z2,0<s<T)
and (ZZ, 0 <s < T) as described earlier. We write (£*, 2%, F¥) for Z* and
similarly for Z? and Z?. We also think of the three processes together as a
single process (Z}7%, 0 < s < T), with ZX’* a triple (2%, 2 %%, F*¥?), where
Pz = PEYPYU P2 and F7% WX WX W - 2" is given by

[k(p), p € F] € Fi(ky),
k € F77(ky, kyy kg) iff { [k(p), p € 7] € F(k,) and
[k(p), p € ]| € Fi(k3).

Since the position of a particle does not change once it is born, we let x(p)
denote the position of particle p. From the above processes we construct
(Z3M,0<s <T),(Z)™, 0 <s <T)and (27", 0 < s < T) by moving parti-
cles to lattice sites. These three processes can be thought of together as a
single process (Z¥>M (0 <s <T). We let x™(p) denote the position of
particle p in this process. Finally, we construct the process (Z¥>¥ 0 <s < T)
from (Z¥*»M 0 <s < T) by prohibiting more than one particle to live at a
lattice site. Namely, when a particle is born in Z¥>M and attempts to occupy
a site that is already occupied, the birth is aborted. Z¥>M is a triple
(‘ésxyz’ Q'/;xyz, M, F'sxyz) yVlth (@;xyz c %xyz and F'sxyz: WX WXW — 2W~¢Sxyz de-
fined so that k € W is such that k € F**(k,, k,, k) iff when we assign
the value k(p) to each p € £** and run backwards from s to 0, the resulting
value at the roots x, y and z are &, k, and k; respectively. Further, positions
in (Z*M, 0 <s < T) are the same as in (Z*>™, 0 <s < T), so that we
continue to let x¥(p) denote the position of particle p.

Let B denote the event that there is no site which supports more than one
particle in (Z?>M, 0 < s < T), that is, B is the event {F#*? = 2%}, Suppose
we can show that

(4.4) lim P(B) =1

uniformly over the choice of x,y, z. Then we can write the left-hand side of
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(4.3) as
P(’ﬂ (x) =k, M(y) = kz,né”(Z) = ks)
M (x) = ki, n)(y) = ka, n)(2) = kg; B) +0(1)
[ '(x™(p)), p € 9"”] € F**(ky, ky, k3); B) +0(1)

p
p
P

[ M(xM(p)), p € P*| € F**(ky, ky, kg); B) + o(1)

Il
F:l

l(n (xM(p)) = k(p)))l(B))+0(1)

I
&

+ 0(1)

[T w(0,%(p), K(p)) J1(B)
keF"y‘(kl koo k 3)1769”‘”

E T, (@ 5*(p), K(p))| +0(1)

(s
(
(
(
|

keF"yz(kl ka, k) pe?"’z

B[ T T w04 15p)))

k*eFX(k) PEFT

xB T TT uw(0,5"(p) K (p)))

kYE€FX(ky) PEF

XE( Yy I1 uM(O,xM(p),kz(p))) +0(1).

k*cFXky) PEF
On the other hand, we have

P(n¥(x) = ky) = P([n¥(x™(p)), p € £| € F3(k,); B) + o(1)
= P([nd(x™(p)), p € #*]| € Fi(ky); B) +o(1)

E(( o TL ) - K(p)|1(B)

k*eFi(k,) pPEZ,

+ 0(1)

E(( ) nuM(o,xM(p),kx(p)))uB))+o(1)

k*eF (k) PEF

=E( Y I uM(o,xM(p),k"(p))) +o(1),

k*cF(k,) PEF

and similarly for P(nM(y) = k,) and P(n¥(x) = k;). From this, the lemma
follows directly because the o(1) terms are all uniform in s €[0,T] and
uniform over the choice of x,y, z, &y, ks, k3.

It remains to show (4.4). The argument for this is similar to that for Lemma
1. We condition on {|#5%| = m}. Then, at the time that any particle gives
birth, the probability in (Z*>M, 0 <s < T) that it places any one of its
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children at a site already occupied is bounded above by m /[(2M + 1)? — 1].
On the event {|25?%| = m}, each particle can give birth to a total of at most m
particles. Thus the probability that some particle places one of its children on a
site that is already occupied is bounded above by m3/(2M)¢. This gives

3

Z=1 (2M)? o a P12 = m).

Finally, observe that |#7”?| is the same in distribution as the total number of
particles alive at time T in a continuous-time branching process in which
particles give birth at rate 2v and the number of offspring is 3, and starting
with three particles alive at time 0. This has bounded third moment, so we
may let M — « to prove (4.4). The estimate is clearly uniform over the choice
of x,y,z. O

Let & denote {e, e, € (—1,11°N Z%/M): e; # 0, e; # 0, e; + e, # 0}. A
simple generator calculation gives

ou 4 (t, x,0
M(TZ =upy(t,x,1) —vuy( x,0)
(nM(x) =0, nM(x +e)=C
nM(x + e, +ey) <C),
dup(t,x, k)
— = (B + Dupy(t,x, b+ 1) +vuy(t,x, k—1)
M*ZP(mM(x)—k—ln (x+e)=C
45) nM(x + e, +e5) <C)
—(k+v)uy(t,x, k)
14
—M*ZP( M(x) =k, nM(x+e)=C
&
"7tM(x+e1+ez)<C)
for0 <k <C,
duy(t,x,C)
— = —Cup(t,x,C) + vuy(t,x,C —1)
ZP(ntM(x) =C-1,7/(x+e) =

M*

nM(x +e, +ey) <C).
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Using Lemma 4, we observe that
uy(t,x, k uy(t,x+q,C)Y1 —uy(t,x+q+r,C))dgdr
ute ) [[ wa(tx @, O - uy(tx +q+r,0))dg

_ M—Zdé P(nM(x) = k)P(nM(x +e;) = C)

(4.6) XP(nM(x + e +ey) <C)+o(1)

=M P(n(x) =k m (5 + e) = Cyn(x + ey + ) < ©)

+0(1)

uniformly over ¢t € [0,T],0 <k < C, and x € Z%/M. Note that the integrand
in (4.6) is uniformly bounded and that we have pointwise convergence of u
to v. From Lemma 3, for any x € R¢, the right-hand sides of each equation in
(4.5) converge as M — « to the corresponding right-hand sides of (3.1) (with v
written instead of u) uniformly over ¢ € [0,T] and 0 < k£ < C. To complete
the proof, it therefore suffices to show that for every 0 < & < C,

dupy(t,x, k)  dv(t,x, k)
-
ot at

as M — o. Writing

10U (s, x, k)
uM(t’ka)_uM(o,x’k)'i_j;T )

we see that it suffices to prove that du (s, x, k) /ds converges uniformly over
s€[0,T]and 0 < k < C for any fixed x. Namely, it suffices to prove that for
any ¢ > 0, we can find M(e, x) so large that

ou (s, x, k) auN(s,x,k)‘
- <eg
ds as

for all s €[0,T],0 <k < C and all M, N > M(e, x). Defining
Su(t,x, k) = (2M) L P(nf(x) =k, nM(x +e) = C,
&

n (x4 e+ eg) < C),

straightforward algebra on (4.5) shows that it is enough for us to show that for
any ¢ > 0, we can find M(e, x) so large that

(1) lup(s,x, k) —upn(s,x, k) <e
and
(ii) 2 (s,x,k) —3pn(s,x, k)l <&
for all s €[0,T], 0 <k <C and M, N > M(e, x). Part (i) follows from the
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triangle inequality and Lemma 3. Part (ii) follows directly from writing
EM(t’ X, k) - 2N(t’ X, k)

= [2_2duN(t,x,k)
X t,x +q,C)(1 - t,x+q+r,C))dqd
/'/;,re[—l,l]duN( q )( un(t,x+q+r )) qar

—25(2, %, k)]

+

Su(t,x, k) — 2728w, (¢t x, k)
<[ e, ¢, C)(1 —up(t,x +q+ r,C))dqdr]
q,rei—1,

+|272dy,, (¢, x, k)

X Uy(t,x +q,C)(1 —uy(t,x+qg+r,C
f'/;],re[—l,lld m( q )( Ml q ))
—272y (¢, x, k)

Xff i 1]du(t,x +q,C)(1 —u(t,x +q+r,C)) dqdr]
q,r -4

+ u(t,x +q,C)(1 —u(t,x +q +r,C))

2724y (¢t, x, k)[/
q

_2_2duN(t, x, k)

,re[—1,11¢

Xj/ cl-1 UduN(t,x +¢,C)(1—uy(t,x+q+ I‘,C))dqdr].
q,r ]

The first and second terms on the right converge to 0 uniformly over ¢ € [0, T']
and x € R%, as we argued earlier using Lemma 4. The third and fourth terms
converge to 0 uniformly over ¢ € [0,T] and 0 < % < C for fixed x € R%. It
follows that (ii) holds, and we have completed the proof of Theorem 1.

5. Proof of Theorem 2. In this section we prove Theorem 2. The proofs
are somewhat technical.

To begin, the tightness of the laws of XM in the space D(0,T],
(#*(R?)C*1)) follows from the tightness of the laws of X¥(¢) in D([0, T'], R%)
for each ¢ = (¢, ..., dc) € A (RC*L. This follows from a general result of
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Mitoma [21]. The result we are appealing to is Theorem 4.1 of Mitoma [21].
This theorem is couched in the language of probability distributions P, on
D([0, T1, E*), where E is a nuclear Frechet space and E* is its dual space. To
apply this result in our context, it suffices to observe that A(R%)¢*! is a
nuclear Frechet space and (#*(R%))°*! is its topological dual. This follows
from the facts that #(R¢) is a nuclear Frechet space ([27], page 293), the
topological vector product of nuclear Frechet spaces is a nuclear Frechet space
([27], page 293), and the topological dual of a product of topological vector
spaces is the product of their topological duals. It will therefore suffice to fix
¢ € A(R)C*! and prove that the laws of XM(¢) are tight in D(0, T'], R%)
and to identify the limit as being the one given in Theorem 2. From Theorem
5.3, (2) of Mitoma [21], the latter will be accomplished if we can show that for
any ¢t; € [0,T], 1 <i < n, and for any ¢, ..., ™ € A(R?)C+,

C
(5.1) lim P(lXtM((ﬁ(")) —f Y o) u(t;,x, k)dx|<eV1<ix< n) =1.
Mo ' Rék=0

(5.1) follows easily once we verify

C
(5.2) I&igle(X;"(m) =]de§0¢k(x)u(t,x,k)dx
and
(5.3) lim B(X(¢) ~ E(X¥(4)))" =0

for all ¢ € A(R*)C*1. To verify (5.2), we write

lim E(XY(¢))
Moo
LYY
= lim — br(x)uy(t,x, k)
M—monxezd/Mk=o k M
C

lim | Y Y f

[br(x) = u(9)|un(t, v, k) dy
M- xezl/M k=0 yeR?: [yly=x

(o}
+ X [ ) un(ty, k) dy|.
k=0 yER

The first term on the right clearly goes to 0 for any ¢ € A~ (R?)°*! whereas
the second term on the right converges to L§_, [ped,(x)u(t, x, k) dx by the
pointwise convergence of u (¢, x, k) to u(t, x, k) and the dominated conver-
gence theorem.
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To prove (5.3), we write

E(XM(¢) - E(XM(4)))°

1 2
—El3 L Y n(o)[1(n¥(x) b )—uM(t,x,k)])
x€2¢/M k=0
1 c c
=E M2 )y Y X X du(x)di(y)
x€2%/M yez¢/M k=01=0

X[L(nM(x) = k) = up(t, 2, B)][1(0M () = 1) — up(t,y, l)]),
and we note that
E([1(nM(x) = k) = up(t, %, B)|[1(nM(¥) = 1) — up(t,5,1)])
= P(nM(x) =k, n}(y) =1) = P(n)(x) = k)P(n}(y) =1)
=o(1)
uniformly in x, y, %k, and /. This last can be proved in a manner directly
analogous to the proof of Lemma 4. Then (5.3) follows easily.

It remains to verify the tightness of the laws of X™(¢) in D(0, T'], R?%) for
each ¢ = (¢, by, - .-, Do) € AR To do this, it suffices to verify that

(5.4) supE( sup (X;”(¢))2) <o
M 0<¢<T
and that for each ¢ > 0, we can find 6§ > 0 and M; so that
(5.5) sup P( sup IXM(p) — XM(p)l > s) <
M>M, 0<s,t<T;|t—s|<d

see Billingsley [6], Theorem 15.6. Condition (5.4) can be verified by writing
1 c c
2
(XtM(¢)) = M Z Z Z Z dn(x)d,(y)

x€2%/M yez¢/M k=01=0
X1(nM(x) =k, 7} (y) =1)

1 c :

<\37@ Y X ldu(x)l

x€7%/M k=0

_ (Md Y z lbu(0)| + 775 2 Z ENES]

|x|<1 k=0 lx|>1%k=0
where |x| denotes sup1<, <alx; | Now

C
T T @) < X Iglao <
k=0

lx|l<1 k=0
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where |l¢,llo0 = supxeRdM)k(x)I and

el ? ()|

dZ Z|¢k(x)|= dZZ d+1
M lx|>1 k=0 M lx|>1 k=0 el
llballis1,0
< > Z
d Tod+1
M |x|>1k 0 |+1
SKZ ”¢k”>2+1,0’
k=0
where
llulli+1,0= sup sup lxd* 1, (x)

1<i<d xeRr?

and K < « is a constant.
To verify (5.5), we first choose N so large that

2 %

|lx|>N k=0

||¢k||d+1 0 < 2
|x|d+1 4 .

This ensures that even if all the sites outside [~ N, N1¢ were to change state,
the change in X(¢) would be bounded above by /4. Next, we select r > 0 so
that rX¢_ 0||¢k||0 o < &/4. Note that

IXM($) — XM(9)
1 C
= Y XL du(x)(1(nM(x) = k) — 1(n¥(x) = k))

x€7%/M k=0

1 C
i L T a@l(1nM(x) #n¥(x)))

x€7/M k=0

C
<=5 L ldlloe X (1(nM(x) + nM(x))).
M® =,

xez2%/M

IA

Hence, in order for the event in (5.5) to occur, there must be some interval

=[n(8/2),(n + 1)5/2] such that at least rM? of the sites in [-N, N]¢
change value during this time interval. Since at any point of any of the Poisson
process associated to the sites in [-N — 1, N + 1]¢ at most two sites in
[—N, N1 can change value, there is an upper bound to the overall rate of such
changes. Let u = (3v + C)M%(2N + 3)?6 /2. Then we have

P(J, >rM?) < P(N, > rM?),

where o, denotes the number of sites that change value during I,, and N,
denotes a Poisson random variable of mean . From this, one eas1ly gets

o
P(J,>rM?) < exp|(3v + C)M?(2N + 3)d(§) - er).
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Selecting 6 so small that
af ® r
(31/ + C)(2N + 3) E < E

gives

T

T ) ( er)
= + 1|exp| ———|,

-

+1

P|J, >rM? forsomen =1,...,

o 2

which goes to 0 as M — «. Thus we can choose M; so that for M > M, the
event in (5.5) has probability less than e. This completes the proof of
Theorem 2.

6. Concluding remarks. We have studied a lattice caricature of circuit
switched networks with dynamic alternate routing using particle system tech-
niques. The main result of the investigation is to prove the existence of an
integrodifferential equation which describes in a law of large numbers sense
the behavior of large-scale networks with long-range routing. The model is
highly simplified and structured; nevertheless it captures an essential feature
of such schemes observed in simulations, namely the existence of multiple
operating regimes for certain ranges of parameters. In a spatially distributed
network, there will typically be regions where one or another of the regimes is
in effect. We are currently investigating the equations both analytically and
numerically to see if they provide insights into the nature of the exchange
between the different regimes of operation.

The technique of proof is quite general and can be directly carried over to
write mean field limits for other models, including models with trunk reserva-
tion, which are of considerable practical interest. A problem of particular
interest seems to be to introduce distributed control and revenue ideas into the
model. This should lead to a set of controlled integrodifferential equations,
using which problems of distributed steering of the network to maximize
revenue can be formulated and studied using classical deterministic tech-
niques. We are at present investigating distributed trunk reservation control
with such applications in view.
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