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THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS

By J. C. LAGARIAS AND A. WEISS
AT & T Bell Laboratories

The 3x + 1 problem concerns the behavior under iteration of the
function T: Z*— Z* defined by T(n) =n/2 if n is even and T(n) =
(Bn + 1)/2if n is odd. The 3x + 1 conjecture asserts that for each n > 1
some £ exists with T®*X(n) = 1; let o,(n) equal the minimal such £ if one
exists and + o otherwise. The behavior of o, (n) is irregular and seems to
defy simple description. This paper describes two kinds of stochastic models
that mimic some of its features. The first is a random walk that imitates
the behavior of T (mod 2/); the second is a family of branching random
walks that imitate the behavior of 7-! (mod 3/). For these models we
prove analogues of the conjecture that lim sup,, _, {(0,{n)/log(n)) = y for a
finite constant y. Both models produce the same constant y, = 41.677647.
Predictions of the stochastic models agree with empirical data for the
3x + 1 problem up to 10!!. The paper also studies how many n have
g{n)="F as k — » and estimates how fast #(n) = max(T®(n): k > 0)
grows as n — o,

1. Introduction. The 3x + 1 problem concerns the behavior of iterates
of the 3x + 1 function
n
2 b
3n +1
2

defined on the positive integers Z*. The 3x + 1 conjecture asserts that for
each n € Z* there exists some iterate k£ such that T®X(n) = 1. This conjec-
ture derives its appeal from the contrast between the simple form of the
3x + 1 function and the apparently complicated behavior of the trajectories
{T®(n): k=0,1,2,...} for different integers n. At present the 3x + 1 conjec-
ture appears to be an intractably difficult problem; Lagarias (1985) surveys
known results. It has been numerically verified for all n < 2 - 10'% and for
many larger numbers.

The total stopping time o n) of n € Z* is the least £ > 0 such that
T®(n) = 1 if such % exists and o(n) = © otherwise. Define also the maxi-
mum excursion t(n) = max,, o(T*®(n)), where t(n) = » if T®(n) is un-
bounded. This paper is motivated by the questions:

if n = 0 (mod 2),

(1.1) T(n) =
, if n=1(mod2),

1. How fast does o(n) grow as n — «, in the worst case?
2. How many n have o(n) =k as k - «?
3. How fast does #(n) grow as a function of n, as n — «?
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These questions can be made more precise. Heuristic arguments suggest
that o(n) should be of order O(log n) in some “average’ sense (see Section 2).
The first question is reformulated as the problem:

1. Determine the 3x + 1 stopping constant

ow(nn? 1o (n) < of.

1.2 = li
(1.2) y = limsup | 5°
This problem seems to be at least as hard as settling the 3x + 1 conjecture. It
is, however, logically possible that the 3x + 1 conjecture is true and yet v = .
To reformulate the second question, define N, = #{n: o(n) = k}.

2'. Determine the 3x + 1 growth constant

log N,
(1.3) 8 == lim sup g .
k> k

The third question is reformulated as:

3'. Determine the 3x + 1 maximum excursion constant

i logt(n)
TS Tlogn
A necessary condition for p to be finite is that there are no divergent
trajectories, that is, £(n) = » never occurs.

One can easily obtain lower bounds for y and p and both upper and lower
bounds for 8. Since T(n) > n/2 it is immediate that o(n) > log n/log2, and
using the oft-discovered fact that T*)(2* — 1) = 3* — 1, one obtains

log2 + log3
(1.4) Y= ———— = 3.72931.
(log2)

This seems to be the strongest rigorously proved result about the constant v;
it is much weaker than the conjectured “average case” size of (g (n)/log n),
which is (3log3)~! = 6.95212; see Section 2. The relation T®(2* — 1) =
3% — 1 also implies that

15 log3 1.58496
(1.5) p= gz U .
Turning to bounds for 8, since an integer n has at most two preimages under
T, one has N, < 2* and hence

d <log2 = 0.69315.
In Section 3 we show that
(1.6) 0.17328 = log2 < & < 3 log3 = 0.54931.

Both of these bounds can be further improved, but apparently not sufficiently
to determine 6.
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Several authors have proposed stochastic models to imitate the pseudoran-
dom behavior of successive 3x + 1 function iterates. These include random
walk models to estimate the average behavior of o(n), which were studied by
Crandall (1978), Rawsthorne (1985) and Wagon (1985), and Markov chain
models to estimate the amount of time trajectories {T®(n): ¢ > 0} spend in
various residue classes (mod M), which were studied by Matthews and Watts
(1984, 1985) and Leigh (1986). In this paper we formulate and study two types
of stochastic processes modelling the behavior of 3x + 1 function iterates,
which possess analogues of the constants v, 8 and p. Such stochastic models
prove nothing about the behavior of iterates of the 3x + 1 function, of course.
However, they make various predictions that can be checked against empirical
data for the 3x + 1 function, and this is done in Section 5.

The first of these models, described in Section 2, is a set of independent
random walks modelling the forward evolution of the process based on the
behavior of iterates (mod 2/). It produces constants ygy and pgy defined in
Theorems 2.1 and 2.3, respectively. The underlying random walk is similar to
those of Crandall (1978) and Wagon (1985). The second of these models,
described in Section 3, is a family of multitype branching random walks that
model the backward evolution of the process (mod 37) using the multivalued
function 77! on Z*. It produces constants ypp and 8gp defined in Section 3.
(Here BP = branching process.)

The constant ygy is determined using basic facts from large deviation
theory for random walks while ygp is calculable using results of Biggins (1976)
for multitype branching random walks. In Section 4 we show that

(1.7) YrRW = YBP = 41.677647 cee o

The equality of these two constants, which we discovered numerically and then
proved, initially surprised us. Both constants depend on “tails” of distribu-
tions, and as such are sensitive to model assumptions. (For example, a simple
random walk having equal step sizes using a biased coin with bias adjusted to
give the same drift as the model in Section 2 yields a constant different from
Yrw-) Also these two models are based on different aspects of the 3x + 1
function, the behavior of T (mod2/) and of T~! (mod 38/), respectively. The
equality ypw = ygp is a theorem of probability theory expressing a kind of
“duality” between certain repeated random walks and branching random
walks; it is proved in Section 4.

The predictions of these two stochastic models lead us to formulate analo-
gous conjectures for the 3x + 1 function. Based on (1.7) we propose the
following.

CONJECTURE 1. 7y = ypw = Vpp-
'This conjecture seems as hard to decide as the 3x + 1 conjecture itself. In

Sections 5 and 6 we show that the available empirical evidence seems consis-
tent with this conjecture.
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The constant dgp = log 5 = 0.28768 is calculable using the basic theory of
multitype Galton-Watson processes (Corollary 3.1). This result plus much
other evidence leads us to propose:

CONJECTURE 2. The limit of log N, /k as k — « exists and is log 3.

This conjecture is almost certainly true. It is related to the problem of
obtaining lower bounds of the form x¢ for the quantity #{n < x: g (n) < «},
which we hope to return to elsewhere.

Using large deviation theory for random walks we show that pgyw = 2
(Theorem 2.3).

CONJECTURE 8. The 3x + 1 maximal excursion constant p = 2.

This conjecture agrees well with the empirical evidence for the 3x + 1
function given in Table 3, but seems unprovable at present.

The final Section 6 describes greedy algorithms to find large values of
v{n) == (afn))/log n by backward search using T~!, as well as probabilistic
models of these greedy algorithms that use the branching random walk of
Section 3. The predictions of suitable greedy branching random walks are in
excellent agreement with empirical data for 7~!. Using a greedy algorithm to
find large values of o (n) was proposed by Vyssotsky (1987), who made
numerical experiments. The desire to explain his empirical data motivated this
paper.

In order to keep the results accessible to the widest possible audience
interested in the 3x + 1 problem, we have used elementary arguments when-
ever possible, at the expense of occasionally not obtaining the sharpest avail-
able error bounds. For example, Section 2 uses the ballot theorem and
Chernoff bounds rather than martingale arguments and the full machinery of
large deviation theory.

2. Random walk model. One of the first observations made about the
3x + 1 function was that the parity of its successive iterates behaves like
independent flips of a fair coin. Given n € N define the kth parity bit
b,(n) €{0,1} by

bi(n) = T®(n) (mod2),
and the kth parity vector v*X(n) by
. v®(n) = (bo(n),...,b,_1(n)).
The basic result is due independently to Terras (1976) and Everett (1977).



THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS 233

PROPOSITION 2.1. The kth parity vector v**X(n) is a periodic function of n
with period 2*. Each vector v € {0, 1}* occurs as the parity vector v*(n) for
exactly one n with 1 < n < 2%,

Now the value T'(n) is either n/2 or approximately 3n/2 according to the
parity of n, and after % iterations one has the approximation

(2.1) T(k)(n) =~ oo+ = +by ()9 -k

Thus {log T®(n): k > 1} can be approximated by a walk on the real line which
starts at log n and which takes a jth step of log 1 if the parity of TV ~(n) is
even and log 3 if the parity of TVU~(n) is odd. The approximation (2.1)
becomes less and less accurate as k increases, but it is reasonably accurate for
the first log n steps. Proposition 2.1 states that if an integer n is drawn
uniformly from the interval [1,2*], then its parity vector has the uniform
distribution on {0, 1}%, so that, aside from its starting point, this walk then
behaves like a simple random walk (with unequal size steps) for the first &
steps.

These observations motivate modelling the 8x + 1 iteration process using
independent random walks for each value of n separately. For each n, we
model log T*)(n) by a random walk Z*(n, k):

Z*(n,k) —log2, with probability %,
Z*(n,k + 1) = (n. k) R
Z*(n,k) +log;, with probability 3,

Z*(n,0) =logn.

For this model we define w(n) as the level crossing time to the set {Z < 0}.
The process Z*(n, k), as a function of k, has drift — 3 log %, so w(n) < » a.s.
(i.e., the 3x + 1 conjecture is true for this model). Furthermore,

(2.2) E(w(n)) = (3log %) log n ~ 6.9521210g n.

Now we formalize the model we just described. Actually we use an equivalent
random walk process more convenient for analysis: Z(n, k) = log n — Z*(n, k),
which starts at 0 for all n, and has positive drift.

Independent random walks process. Given an ii.d. set {X(n,k): n > 1,
k > 0} with

define Z(n,0) = 0 and

) Z(n,k) = Zk', X(n,i).
i=1
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From this model we extract two sets of random variables analogous to o.(n)
and #(n). Define for n > 1,

ou(w,) = min (k: Z*(n, k) < 0)
= min (k: Z(n, k) = log n)
t(w,) = :lzlg{exp(z*(n,k))}
= :glg{nexp(-z(n,k))L

These quantities are set equal to + « if they are otherwise undefined; however,
they are each finite almost surely.

The distribution of large values of (0,(w,))/log n can be analyzed using
large deviation theory.

THEOREM 2.1. The independent random walks process has
o (w,

(2.3) lim sup (—)
now logn

where y = ygy is the unique solution with y > (% log 2)~! of the equation

= YRrw @.S.,

2.4 (i) =1

(2.4) ve|Z ] =1

where

(2.5) g(a) = ::g[ao - log((%)(zﬂ + (%)0))]

Numerically one finds that ygpy = 41.677647.

Proor. To prove (2.3) it suffices to show that for any ¢ > 0,

(2.6) f Prob[oy(w,) > (v + €)log n] < o,
n=1

(2.7 i Prob[o(w,) > (v — &)logn] = .
n=1

To establish these, we begin by noting that
(2.8) Prob[o(w,) >Blogn] =Prob[Z(n,k) <logn:0 <k <pBlogn].
We use the bounds of Chernoff (1952), Theorem 1.
CHERNOFF’S THEOREM. Let S, = L7, X, be the sum of m i.i.d. random
,vari('zbles with distribution X. Set.
g(a) = sup{0a — log( E[exp(6X)])}.
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Then if a > E(X),
(2.9) Prob[S,, > ma] < exp(—g(a)m).
Furthermore if a > E(X) and ¢ > 0, then

(2.10) lim SR (8(@) T )m)

m-w  Prob[S,, > ma] 0.

We will use the following sharpening of the second part of Chernoff’s
theorem, which is easily derived from the ballot theorem.

LEmMMA 2.1. Ifa > E(X) and ¢ > 0, then

. exp(—(g(a) +&)m)
A1 1 =0.
(2.11) e Prob[S; > jafor1 <j < m| 0

Proor. For any sequence of m ii.d. random variables and any real a one
has

1
Prob[S; > jaforl<j<m| > —”:Prob[Sm > mal.

This is a consequence of the observation that at least one of the m cyclic
permutations (X;, X;,,, ..., X, Xq,..., X;_;) of any set of m real numbers
with Z7 X, = mB has jth partial sum at least j8 for 1 <j <m. Indeed
start at that i which minimizes {S; — iB: 1 <i < m} [see Takacs (1977),
Chapter 1]. Now (2.11) follows from the inequality above, using (2.10) with 1e
replacing ¢. .

Before continuing the proof we note that stronger versions of the Chernoff
bounds exist, one of which asserts that

Prob[ S,, = ma] = exp(—g(a)m — 3log(m) + O(1));

see Ney (1984), Equation (2). Using this bound one can prove that (2.7) also
holds for ¢ = 0.

The random walk Z(n, k) has steps that are either log 2 or log(3). A single
step has positive drift E[X]= jlogs, and moment generating function
(Laplace transform)

(2.12) M(8) = E[exp(6X)] = 3(2° + (2)°).

We define the quantity ygy by the condition ygyw > E[X 17! and
1

(2.13) Yg(;) =1

The existence of a unique solution to (2.13) is proved in a standard way.
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LEmMMA 2.2. The function
(2.14) g(a) = sup (Oa - log(%(2" + (%)0)))

is finite, nonnegative and strictly convex for log(%) < a < log2. One has
g3 log3) =0.

Proor. The function log M(6) in (2.12) is strictly convex on R since
d*M/d6* > 0 on R. Because g(a) is the conjugate convex function (Legendre
transform) of log M(6), it is strictly convex where it is finite; see, for example,
Roberts and Varberg [(1973), page 34]. By choosing 6 = 0 one sees that
g(a) > 0 everywhere. Now a calculation shows that

d 37
(2.15) d0( log M(6)) log2 + log3( 1+ 39 ),
which is a monotone increasing function of 6 with limit log 2 as § > — and
log2 as 6 — ». Consequently equation (d/d0Xa6 — log M(6)) =0 has a
unique solution 6(a) for log 2 < a < log 2, which achieves the maximum on the
right side of (2.14). One finds that (3 log %) = 0 by substituting § = 0 in
(2.15), which shows that g(3 log 2) = 0.

Lemma 2.1 shows that g(0) > 0 and that g(a) is strictly decreasing on the
interval [0, ;log%]. Hence yg(1/y) is a strictly increasing function on
[(7 log 3)~*, ») with range [0, ®), so (2.13) has a unique solution y > (3 log £)~1.

To continue proving Theorem 2.1, we apply Chernoff’s theorem (2.9) with
Y = ygw to obtain

Prob[o(w,) > (v + ¢)log n] < Prob[Z(n,(y + ¢)logn) < log n]
(2.16) < exp(—g((y +¢) 7")(v + £)log n)
<exp(—(1+¢)logn) =n"17¢,

for some & > 0 depending on ¢, since yg(1l/y) is strictly increasing. This
proves (2.6). Since the random walks w, are independent, for different n,
using the Borel-Cantelli lemma and letting ¢ — 0 gives

lim ofw,)
e logn

To establish (2.7) for y = ygyw, we use Lemma 2.1 to obtain for 0 < ¢, <
g(y — &) that

Prob[o(w,) > (v + ¢)log n]

< vgw 4a.s.

'Osks(y—s)logn]

y—¢

(2.17) > Prob[Z(n,k) <

> exp(—(g((v — &) ") + &1)(v — e)log n),
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for all n > n (e, &,). Choosing £, > 0 small enough, one has
Prob[o(®,,) > (v —&)logn]| > exp(—(1 — ¢')logn) = n=1**,

for some ¢ > 0 and all sufficiently large n, which proves (2.7). Using the
Borel-Cantelli lemma and letting ¢ —» 0 shows

" o(@,)
m sup
now logn

= Yrw a.8. O

We next give a density result on the occurrence of large deviations.

THEOREM 2.2. For the independent random walks process, with

(Alog%) ™" <a <ypw

one has
oo, 1\)7?
(2.18) E[#{n <x: (@) > a}J < (1 — ag(—)) xl-eg/a)
logn a
For any € > 0 one has
(2.19) E[#{n <x: % @) > a}] > xl-e81/a)—e
log n

for all sufficiently large x > x(¢).

Proor. Using Chernoff’s theorem, one derives similarly to (2.16) that for
any fixed n,

Prob[o(w,) > alogn] < exp(—ag(é)log n)
E[#{n <x: % > a}]

from which (2.18) follows.
One derives similarly to (2.17) that for any &' > 0,

M= M=
A

[y

Prob[o(w,) > alogn]

a8/,

IA

k
Prob[o(w,) > alogn] > Prob[Z(n,k) < Ik 0<k<alog n]

, cof-{o(2) e

holds for all sufficiently large x > x(¢’). Choosing ¢ small enough, summing
over all n < x gives the lower bound (2.19). O
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TABLE 1
Large deviation density ag(1/a) and density ratio r(a) for event »,, > alog n

Density a ag(l/a) Density ratio r(a)
6.952119 0.000000 0.500000

10 0.031883 0.539906

15 0.148531 0.570247

20 0.293284 0.585418

25 0.449402 0.594520

30 0.611249 0.600588

35 0.776375 0.604923

40 0.943568 0.608173

41.677647 1.000000 . 0.609090

Some specific values of these densities are given in Table 1. This table also
gives values of the density ratio
1/a + log2
r(a) logd
which is the ratio of the number of steps of size log(2/3) to the total number
of steps in a random walk having ,{(w,) = a log n. [This ratio corresponds to
the fraction of iterates T*)(n) = 1 (mod 2) occurring in a trajectory having
o(n)=alogn.]

Large deviation theory also predicts that ‘“most’ trajectories of the random
walk with y(w,) near the constant ygy when plotted logarithmically will
appear roughly linear with slope (ygw)~ ! = 0.02399 for their entire length
(see Figure 3 in Section 5). A precise version of this assertion can be formu-
lated following Wentzell (1976) or Azencott and Ruget (1977).

Now we analyze the behavior of large values of (log #(w,))/log n.

THEOREM 2.3. The independent random walks process has

log t(w,)

= a.s.
log n PRW

n—>w

(2.20) lim sup
where ppw = 2.

Proor. This is proved similarly to Theorem 2.1. Here we indicate only how
the constant pgy is determined. We will use Chernoff’s theorem applied to the
original random walk, which has moment generating function

T ] ] .
(2.21) M(6) =1log3((3)’ + (2)°) = M(=-9).
Now pgpw = 1 + 7 for that value of n > 0 for which

’ (2.22) Prob[8,, = nlogn for some m > 0] = exp(—(1 + o(1))log n),
as n — «. These trajectories of a random walk having negative drift that
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maximize the probability of reaching a given positive height H are approxi-
mately straight lines with a constant slope @, and Chernoff’s theorem gives

Prob[S,, > am] = exp(—g(a)(1 + o(1))m)

as m — «, where
(2.23) g(a) = sup(0a — log M(96)).
. R

[Here g(a) = g(—a) for the function g(a) of Lemma 2.2.] The trajectory takes
H/a steps to attain height H, and to maximize exp(—((g(a))/a)H) we must
minimize (g(a))/a. If 6 = 6(a) attains the supremum on the right side of
(2.23), then

. d _ P _
(2.24) Z.8(a) =6(a) + —-(6a — log M(a))‘

=8
=0(a).
To minimize (g(a))/a we find the stationary point
d (&(a) 1/
R e R CORE

a

dg(a) )

Any stationary value a* satisfies

dg(a)
da

using (2.23) and (2.24). The strict convexity of log M(6) guarantees that 6(a*)
is unique, and by inspection of (2.21) we see that 6(a*) = 1. Furthermore
(2.25) gives

(2.25) 0=5(a*) —a*

= log M(6(a*)),

2a*)  dge) - ,
o  da =0(e") = 1,

and this is easily checked to be a minimum for (g(a))/a. Taking H = log n,
one obtains 7 = 1 and pgy = 2. One can also verify that the optimal slope is

a* = 2log3 — log2 = 0.1308. O

It can be shown that nearly all trajectories with #(w,) > n®~¢ will appear
roughly linear with slope B; = 2log3 — log2 = 0.1308 for their first
Brllogn = 7.6445log n steps, and then roughly linear with slope B, =
(Llog2)~* = —0.1453 for their next B;'(2logn) steps, and thus have
‘(@) = B + B3 = 21.5487 (sée Figure 3 in Section 5).

We also estimate the number of trajectories w, having #(w,) > n®>~® for
O<a<l
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Fi16. 1. 3x + 1tree 9 and pruned tree I * for depth < 1.

THEOREM 2.4. For the independent random walks process

log t(w,,)

E[#{n <x:
log n

1+o(1
zz—a}]  etto

as x — o, almost surely.
Proor. This is proved similarly to Theorem 2.2. We omit the details. O

3. Branching process models. The backward evolution of the 3x + 1
function from 1 can be represented by an (infinite) rooted tree 7~ with root
node labelled 1, whose nodes at level 2 from the root are labelled by those
integers n having o(n) = k, with edges from n to T'(n). The root node makes
up level zero; see Figure 1. Associated to this tree are the quantities N(k),
which counts the number of vertices at level %, and H(%), which equals the
minimum label of a node at level %, that is,

N(k) = #{n:on) = &},
H(k) = min{n: o (n) = k}."
It is easy to see that the 3x + 1 growth constant

. k
3.1 =l —
@ 7 “,:‘jgp{logﬂ(k)}
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The tree .7 can be recursively constructed from its unique node at level 2
(having the label 4), using the multivalued operator 7~ ! on the domain Z*,
which is given by

{2n}, if n =0,1 (mod3),

“1(p) = 2n - 1
" (r) {2n,—3—}, if n = 2 (mod3).

The elements at level £ + 1 in this tree are produced from level k£ using T 1.

More generally one can apply T~ ! starting from any m > 1 to obtain an
infinite rooted tree 7 (m), where T~! applied to the labelled nodes at depth %
gives labelled nodes at depth % + 1. If the root node m is in a cycle, then 7!
“unwraps’’ the cycle so that the same label appears repeatedly at different
levels of the tree. If m is not in a cycle, then all node labels in the tree are
distinct. [We regard the tree J as corresponding to 7(4), rather than 7(1).
Note J(4) is obtained from 7 by deleting its first two levels.] The labelled
nodes in level & of the tree .7 (m) are the kth generation of descendants of m;
they have labels {n: T®(n) = m}. Let Z,(m) denote the finite labelled tree
consisting of the first £ levels of 7 (m) and let 7,(m) denote t : tree with all
node labels 0 and 1 obtained from Z,(m) by replacing e2 ". node label n with
its patity bit 6(n) = n (mod 2).

The pattern of branching of the tree Z(m) at a node n is determined by n
(mod 3) according to the formula (3.1) for T!. Similarly the branching pattern
to depth & of such a tree is entirely determined by m (mod 3*%); if m, = m,
(mod 3*), then Z,(m,) is identical to Z,(m.,).

The trees Z(m) have very different branching behavior depending on
whether m = 0 (mod 3) or m # 0 (mod 3). If m = 0 (mod 3), the tree I (m)
never branches, and has nodes {2/m: j > 0}. We will show below that if m # 0
(mod 3), then the number of nodes N(k; m) at level % of the tree .7 (m) grows
exponentially in k.

In fact the nodes m = 0 (mod 3) in the tree 7 do not have significant effect
on N(k), H(k) and vy, and we obtain a simplification by eliminating them. Let
I * be the pruned tree obtained from .7~ by deleting all vertices with labels
n = 0 (mod 3) in 7. Since all descendants of n = 0 (mod 3) are themselves 0
(mod3), I * is a tree (see Figure 1). The tree I * may be recursively
constructed from its unique node at level two (labelled 4) using the operator
(T*)~! on the domain Z*, given by

{2n}, if n=1,4,50r 7 (mod9),
32) (T%) (n) = {2n,2n_1}, if n = 2,8 (mod9).

3
The analogues of the quantities M(k) and N(k) for I * are
N*(k) = #{n: o(n) = k and n # 0 (mod 3)},
H*(k) = min{n: o(n) = k and n # 0 (mod 3)}.
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The following lemma shows that there is essentially no loss in generality in
considering I * instead of J.

LEMMA 3.1. Forallk > 1,

(3.3) %N(k) < N*(k) <N(k),
(3.4) H(k) <H*(k) <4H(k).
Consequently

. k
@0 »= i ey |

Proor. The upper bound in (3.3) and lower bound in (3.4) are immediate.
To prove the lower bound in (3.3), let N(k) ={n: o{n)=% and n=3
(mod 6)}. Since T'(n) = (8n + 1)/2 # 0 (mod 3) for such n, one has

N(k) < N*(k —1).
Next

k
N(k) = N*(k) + ¥ N(j),
j=1
since any n = 0 (mod6) with o(n) =k is the unique descendant of some
m = 3 (mod 6) at a lower level. Hence

N(k) < f N*(k) = kN*(k).
j=1

To prove the upper bound in (8.4) suppose H(k)=n =0 (mod 3). Set
n =27 with /i = 1 (mod 2). Then TV*+Y(n) = (87 + 1)/2 and m* = 2/(37 +
1) also has o (m*) =% so

H*(k) <m < 2/(4A) = 4H(k).
Finally (3.5) follows from (3.1) and the upper bound in (3.4). O

One constructs pruned trees  *(m), Z;*(m) and J3*(m) in exact parallel
with the construction of the trees J(m), Z,(m) and Z,(m), using the
operator (T*)~! in place of T~1. The trees 7 *(m), J;*(m) are obtained from
the trees J(m), Z3(m) by deleting all nodes with labels n = 0 (mod 8); they
are nonempty only for m # 0 (mod 3).

The branching pattern of a tree J *(m) at a node n is specified by n

' (mod 9) according to the definition of (7*)~!. Similarly its branching structure
to depth % is determined by m (mod 3k+1). if m, = m, (mod3**?), then
T*(m,) is identical to J,*(m,).



THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS 243

For any m # 0 (mod 3) the number N*(k, m) of depth % nodes in 7 *(m)
satisfies

N*(k,m) > 2k/4,
This follows because the recursion (3.2) shows that any path in .7 *(m) must
encounter a branch at least once in each four levels, because if n # 0 (mod 3),

then at least one of {n,2n,4n,8n} is congruent to 2 or 8 (mod9). As a
consequence

(3.6) N(k) = N*(k) = N*(k — 2,4) > 2¢-2/4,
In similar fashion we obtain for m # 0 (mod 3) the upper bound
N*(2k, m) < 2+/2

because every tree ,*(m’) of depth 2 has at most three branches. Conse-
quently, using Lemma 3.1

N(k) < kN*(k) < k3*+D/2,
This bound and (3.6) imply that
(3.7 $log2 <6 < ;log3.

The actual growth rate of N(k) is probably log3. Evidence for this is
provided by the following result showing that the average size of N*(k, m) as
m varies is (3)*.

THEOREM 3.1. The pruned trees 7,(m) have
(3.8) Y  N*(k,m)=2-4*

m (mod 3%+1)

m #0 (mod 3)
Hence if a residue class m (mod 3**1) with m # 0 (mod 3) is picked with the
uniform distribution, the expected number of leaves in ,*(m) is (3).

PrOOF. View an edge from level j to j + 1 in a tree J,*(m) as being
labelled 0 or 1 by the parity bit of its node n at level j. To each leaf n
of a tree Z,*(m) we assign the parity sequence of its edges
v(k,n) = (b(n), b(T(n)),..., b(T*~9(n))) to the root m. No two leaves in a
fixed tree Z,*(m) have the same parity sequence. We ask: How many leaves
over all these trees have a given parity sequence v = (vy,...,v,) € {0, 1}*?
Answer: It equals the number of different residue classes (mod 3**1) possible
for T®(n), for those n (mod 2*) having parity sequence v. Now

k-1
sz(k)(n) =gttty 4 Z Vi3v1+ +v,-2i’
i=1
and reduced (mod 3*) this equality shows that n (mod 3**1~¢1*  +¥») deter-
‘mines T®(n) (mod 3**1). Then the condition n # 0 (mod 3) implies that there
are exactly 2 -8*%~¢1* " +"» choices of such leaves. Now the number of
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ve{0,1}* withv, + -+ +v, =j is (f.), so the total number of leaves is

B .
y ( .)2 -8k~ = 2(1 + 3)%,
= \J

j=0

which is (3.8). Since there are 2 - 3* residue classes m (mod 3**') with m = 0

(mod 3), the expected number of leaves in a uniform draw of Z,*(m) is (3)*.
O

One can prove similarly that if N(k; m) denotes the number of leaves in the
tree J,(m), then

Y  N(k;m) = 4%,

m (mod 3%)

so the expected number of leaves in a randomly drawn tree ,(m) is also (3)*.
But if m = 0 (mod 3) it has one leaf, while if m # 0 (mod 3) it has the expected
number 3(3)* leaves.

Now we describe a family of branching processes called multitype branching
random walks that mimic the behavior of all trees 7 *(m) for m # 0 (mod 3),
and in particular 9 *. A multitype branching random walk describes the
evolution over time of a population consisting of a finite number p of types of
individuals sitting on the real line R, starting from a single individual located
at 0. Each individual of type i produces offspring distributed at locations on R
(measured from its position) described by a (multitype) point process &;, and
does so independently of all other individuals. The point process &, produces
a total of n = (n,,...,n,) offspring of the various types with probability
distribution {P;(n): n € NP} in which each of these m :==n; + ny+ --- +n,
individuals have locations ({,...,7,,) drawn from a distribution on R™ de-
pending on n. The locations of the offspring of one individual may be corre-
lated in this model; see Biggins (1976). [In the special case that all locations are
nonnegative, locations are called birth times, and individuals are viewed as
being born and living forever. Such processes are called Crump-Mode pro-
cesses, after Crump and Mode (1968, 1969).]

Associated to any branching random walk is a simpler branching process
that assigns to each individual the number n of progeny of each type and gives
all individuals unit lifetimes; this process is a multitype Galton—Watson pro-
cess; see, for example, Athreya and Ney (1972).

Any realization w of a multitype Galton-Watson process starting from a
single individual may be represented as a rooted tree with edges indicating the
“offspring of” relation, and nodes are labelled by type of individual. Those
nodes at depth % from the root form the kth generation of descendants of the
root individual. Any realization of a multitype branching random walk may be
represented by a similar tree, where in addition each edge of the tree is

" assigned a label giving the location of the offspring corresponding to that edge.

The family of multitype branching random walks {#(3/): j = 0,1,2,...}

that we study models the behavior of the multivalued function (T*)~! (mod 3/).
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Branching random walk %[1]. There is one type of individual. With
probability 2 an individual has a single offspring located at a position log2
from its progenitor, and with probability 3 it has two offspring located at
positions shifted log 2 and log(2/3) from their progenitor.

Branching random walk %[3’] (j = 1). There are p =2 -3/~ types of
individuals, indexed by residue classes m (mod 3/) with m # 0 (mod 3). The
distribution of progeny of an individual of type m (mod 3”) is determined as
follows: Regard m (mod 3/*?!) with probability 3 each as being one of the three
residue classes 7 (mod 3/*1!) with m = /2 (mod 3/). The tree 77() given by
(T*)~Y(m) has either one or two progeny, and their labels are determined
(mod 8/). An offspring 27/ (mod 3/) has location shifted log2 from that of its
progenitor and an offspring (2 — 1)/3 (mod 37) has location shifted log(2/3)
from that of its progenitor.

These locations are chosen to approximate the logarithm of the growth in
size of inverse iterates of the 3x + 1 function.

Let o denote a realization of the branching random walk #[3/] that starts
from a single individual denoted w, ; located at 0, and let 7 (w) denote its tree
of progeny. The number of individuals of the various types in the kth
generation of o is represented by the vector

M, (o) = (N{’(®), ..., N{P(w)).

We denote the total number of individuals (of all types) in the kth generation
by N,(w) =X N{P(w). The collection of progeny of the kth generation is
denoted {w,, l' "1<i < N,(w)}, ordered as explained below. L(wk ;) is the
location of w,,; on R. Let w, ;[I] denote the ancestor of w,; in the I/th
generation (for 0 <! < k), so that w,, [0] = w, ;. Assign to w, ; the parity
b(w,, ;) = 0 or 1 according as the quantity L(w, - L(w, [k — 1)) is log 2 or

log 3. Now assign to w, ; the parity vector

v(wg ;) = (b(wk i(11),..., (o, i[k])).

For fixed & no two w, ; have the same parity vector, and we order them so
that the vectors v(w,, J) are in increasing lexicographic order. T(w, ;) (mod 3/)
denotes the type of the individual o ki

We also define quantities d1rectly analogous to the 3x + 1 process. The
density ratio r(wy ;) of w, ; is

k
(3.9) "(“’k,i) = lglb(“’k,l)-

N

The size

¥

S(wpg,;) = exp(L(w,,;))
is analogous to a node label in the 3x + 1 tree . The density ratio r(w, ;)
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and location L(w, ;) are related by
(3.10) L(w, ;) = k(log2 — r(w; ;)log3).

The evolution of the process #[37] starting from a single individual of type
4 (mod 37) provides an analogue of the tree 7 *. We study the behavior as
k — o of analogues of 3x + 1 quantities. The first birth among member of the
kth generation,

f() = min{L(w, )i 1 <i < Ny(@)),
and the asymptotic first birth for o in %#[3/],

. 1
BY(w) = lil;l sup -k—(L’,‘;(w)).
The analogue of the 3x + 1 stopping constant y [given by (3.1)] for the
process #[37] is the quantity

7P w) = limsup

(3.11) ke
- (B0 ) ™
The analogue of the 3x + 1 growth constant & for #[37] is

. log N (w
8P (w) = limsup —g—kil .
k—> o

The transition matrices for #[1], £[3] and #[9] are given in Table 2. The
rows give the individual’s type and the columns represent the type of offspring.
Separate transition matrices Eg.”) are given for the two possible birth times of
offspring, corresponding to parity b = 0 or 1. Using classical results in branch-
ing processes it is easy to show that for the process #[3/] the counts of
individuals M ,(w) grow geometrically like (£)*, as follows.

_k
i(0)

THEOREM 3.2. For all j > 0, the branching process H#|37] starting from a
single individual of type m (mod 3’) has counts of individuals M, (w) satisfy-

ing
(3.12) lim M, (0)(2)" = eW, a.s,

where e = (1,1,...,1) is the uniform distribution on the individual types and
W, is a scalar-valued random variable with

Prob{a < W,, < b} = [‘w,(x) dx,
A ;
where w,,(x) is strictly positive on (0, ©).

Proor. Let E{”) represent the transition matrices for the branching proba-
bilities of offspring having parity b = 0 or 1 for the process #[3’]. The mean
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TABLE 2 .
Branching probabilities for branching processes #[3’], j = 0,1,2

Hi«» Hi( 1
(@ #1)
H® =[1] H =[1/3]
(b) #(3]
1 2 1 2

H®=1| 0 1 H®=1] 0 0

2l 1] o 2|1/3|1/3
© #[9]
1 4 7 2 5 8 1 4 7 2 5 8
1 1 0 0 1
4 0 0 0 1 4 0 0
7 0 1 0 7
H®=2|0 1 o0 H»=2|1/3 1/3 18| 0 0 0
51 1 0 0 0 5| 0 0 0 0 0 0
gl o o 1 g8l o o o0 |1/3 1/3 1/3

matrix of the underlying multitype Galton—-Watson process is
E; = E? + E®;

that is, E[%,[] is the expected number of offspring of type k& from an
individual of type .

Cramm. For each j, E; has maximal eigenvalue %, which is simple and has
left eigenvector e = (1,1,...,1).

PrOOF OF cLAIM. The matrix E{” is a permutation matrix sending m — 2m
(mod 37), hence has a left eigenvector e with eigenvalue 1. The matrix E has
all column sums equal to 3 because the equation m = (2n — 1)/3 (mod 3*)
has exactly one solution # (mod3/*!) for each m (mod3’) with m # 0
(mod 3). Hence it has e as left eigenvector with eigenvalue 1+ and E ; thus has
the left eigenvector e with eigenvalue 3.

It now suffices to show that E; is strictly positive (also called primitive),
that is, some power of E; has all entries positive. For if so, then
Perron-Frobenius theory guarantees that E; has a simple real eigenvalue of
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maximum modulus, that this eigenvalue has a positive real eigenvector and
that it is the only eigenvalue having a positive real eigenvector. Thus § must
be the simple maximal eigenvalue.

To show that E; is strictly positive, one first uses the fact that the
permutation in E” is cyclic because 2 is a primitive root (mod 3-) for all ;.
Second, E{" has the fixed point —1 (mod 3/). Consequently (E{” + E{")" has
all positive entries for L=4-3/"1, O

This claim and its proof show that for all j the process #[3/] is supercriti-
cal, positive regular and nonsingular [in the terminology of Athreya and Ney
(1972)]. Now Theorem 3.2 follows directly from Athreya and Ney [(1972),
Theorems 1 and 2, page 192]. O

COROLLARY 3.1. For all j > 0 the branching process #[3’] has
log N,(w)
Jim ———— = ogp a.s.,

where dgzp = log 5.

Proor. This follows from Theorem 3.2 since the density w,(x) has no
mass at 0. O

What is the expected location of members of the kth generation? By (3.9)
this is determined by the expected density ratio. We prove a result suggesting
that the expected density ratio is about  for #[1].

THEOREM 3.3. For the branching random walk (1] let

Nk(&))
Vi(w) - & Z "(“’k,i)’
i=1

which is the sum of parities over the paths to all leaves in the tree I,(w). Then
E[N,] = (3)",
E[V,] = $:E[N,] = $k(3)".
Proor. Look at the root node of the tree ;(w). With probability 2 it has a
single edge of parity 0 attached to a tree .7;,_(w,), while with probability 3 it

has two edges of parity 0 and 1, respectively, attached to two trees 7, _(w;)
and 7, _(w,). This gives the recursions

E[N,] = 3E[N,_,] + 5(2E[N,_,]),
E[V,] = 3E[V,_.] + 5(2E[V,_,] + E[N,_,]),

which when solved give E[N,]=($)*, E[V,]= 31k(3)*, using E[N,]=1,
E[Vo] =0. 0
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It can be shown for #[1] that all but an exponentially small fraction of
{r(w; ;): 1 <i < Ny(w)} are in an interval [} — ¢, § + €], by using a Chernoff
bound for branching random walks; compare with Biggins (1977). (A similar
result undoubtedly holds for all #[3/].)

Kingman (1975) showed that any realization o of a single-type Crump-Mode
process almost surely has an asymptotic first birth which is a constant B
depending on the process. Biggins [(1976), Section 6] extended this result to
multitype branching random walks. Applying Biggins’ method, we obtain the
following result.

THEOREM 3.4. There is a constant Bgp such that for all j > 0 the branch-
ing process #[3’] has asymptotic first birth

(3.13) hm kL *(0) = Bgp a.s.

This constant Bgp = 0.02399 is determined uniquely by Bgp > 0 and
(8.14) &(Bgp) = 0,

where

(3.15) g(a) = - §1<113 (aﬂ - log(2" + %(%)O))

This theorem shows there is a branching process stopping constant ygp,
analogous to vy, which is defined by
" k
vpp = limsup ——— a.s.
(3.16) BF koo :(w)

= (BBP)_I

Proor. The proof of Theorem 3.2 showed that the process #[3’] is
supercritical and positive regular, hence the main result of Biggins [(1976),
Section 6] applies and shows that (3.13) holds with a constant 8; depending on
the process #[37].

To compute B;, we follow Biggins [(1976), equation (2.5)] and associate to
#[3’] a Laplace transform matrix ®Y)(0) depending on a parameter 6 > 0, as
follows. Let Z! denote the point process for births by an individual of type n
and E,[-] the expectation for individuals of type m. Then ®“)(9) has entries

oY) = Em[f° e dz,}(t)]
= exp(—(log2)0)E{” + exp(—(log2 — log3)0)(E{” + EP).
The proof of Theorem 3.2 showed that E{ and E{’ both have eigenvector

e =(1,1,...,1) with eigenvalues 1, 3, respectlvely It is then easy to show (as
in the cla1m in Theorem 3.2) that for all 6 > 0, ®(8) is a strictly positive
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matrix having a simple maximal eigenvalue
#(0) = exp(—(log2)6) + 3 exp(—(log2 —log3)8) = 27°(1 + 33%)

with associated eigenvector e. The constant B; is solely a function of ¢(6), and
since ¢(0) is independent of j, B; does not depend on j, so is a constant Bgp.
Biggins defines

(3.17) p(a) = inf{e®?¢(6): 6 > 0}
and shows that
(3.18) Bgp = inf{a: u(a) = 1}.

On taking logarithms, we obtain
g(a) =logu(a) = inf{af + log $(6))
=

= —sup{—af — log ¢(9)}

8>0
= — sup {00 — log M(O)},
0<0
where
(3.19) M(6) = exp((log2)6) + 3 exp((log §)6) = ¢(—6)

is the moment generating function of the locations of the progeny of an
individual of #[1]. It is easy to check that g(a) is continuous and strictly
increasing on the 1nterva1 —logd<a < 3ilog’, and has constant value
g(a) =1log$ for log¥<a <. On choos:nga—Oand0—1+s one sees
that Z(0) < 0; hence there is a unique value B > 0 with g(B8) = 0. Then
w(B) = 1; hence by (3.18), B = Bgp. O

One can consider more complicated branching random walks #[3/, d] that
perfectly mimic the 3x + 1 inverse map for trees of depth d. Given a residue
class m (mod 3/), choose uniformly with probability 3¢ a residue class m
(mod 3/*%) with /2 = m (mod 37), and assign the tree (T'*)~%(sn), which has
all its leaves (offspring) specified (mod 87). Leaves are uniquely specified by a
sequence (%, X, . . ., X;) of parity labels read from the root of (7*)~%(%) and
are assigned the locations d log2 — (x; + - +x,)log3. It is possible to prove
that the Laplace transform matrix of such a process has largest eigenvalue
()4, and the associated eigenvalue function ¢,(8) = [¢$(8)]%, so that the
analogue of Theorem 3.4 holds for these processes as well.

The trees produced by branching processes #[3’] differ from the trees
produced by the 3x + 1 function in that they have more variability. Any
3x + 1 process tree Z;*(m) is determined by the congruence class of m
(mod 3%*1) so that there are at most 2 - 3¢ distinct edge-labelled trees ;*(m)
. that are possible. By contrast, the total number of trees of depth d that can be
reahzed by the branching random walk #[3/] is at least exp(exp(c;d)) as
d — o, for some positive constant c;.
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The “last birth” in generation & of the branching random walk #[3/] is
analogous to the logarithm of the quantity H*(%k) = max{n: o(n) = k} = 2*
for the 3x + 1 function. It is easy to check directly that this analogy is perfect:
For each #[3/] the “last birth” in the kth generation is at location % log2.

4. Relationships between random walk and branching process
models. The independent random walks model represents enumerating
3x + 1 starting values n in order of increasing n, while the branching random
walks model represents enumerating 3x + 1 starting values n in order of
increasing g (n). These orderings are quite different. For the first ordering,
the density ratio in the trajectory of a ‘“random” n for the independent
random walks process is about 3, while for the branching random walk models
#[3’] with the nodes ordered by increasing depth % [corresponding to o (n)]
the expected density ratio in a trajectory to the root node is about 3 (Theorem
3.3). Besides the difference in their ordering of instances, the branching
process model incorporates dependencies between different individuals while
the independent random walks model does not.

Nevertheless, the two models are related in a way that makes them exhibit
the same asymptotic behavior ygzy = ygp. This relationship is on the level of
their moment generating functions. A step X of the independent random
walks model has the moment generating function

(4.1) My (6) = E[e"X] = 3(3)° + 3(3)",

while the point process Z! for birth locations in the branching random walk
model #[1] has moment generating function

(4.2) Myp(6) == E[e®%'] =1-2° + L(2)’.

[The validity of (4.2) for #[3/] depends on the fortuitous fact that Myp(6) is
the largest eigenvalue in the moment generating matrix ®V(9); see (3.19).]
The duality relation is

(4.3) Mgp(6) = Mgw(—6 —1).

This is a duality in the sense that the map § > —1 — 0 is an involution. More
generally, one may define two point processes to be dual in this sense if their
moment generating functions are related by (4.3).

We use the duality relation to derive the following result.

Proor. The formulae for ygy and ygp derived in Sections 2 and 3 are

expressed in terms of Legendre transforms of suitable moment generating
functions. Theorem 2.1 asserts that ygy > (3 log 3) ™! satisfies

| [w) 7
) gl—\=—,
YRrRW Yrw
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where
~ g(a) = sup(afd — log Mgy (—9)),
a€eR

since M(0) = Mgzy(—0). Theorem 3.4 asserts that ygp > 0 is the unique
positive solution of

1
)
YBP
where
(4.4) §(a) = — sup(ab  log Map(6)),
a<

since M(8) = Mgp(8). On the range 0 < a < 1log % we can replace (4.4) by
the Legendre transform

(4.5) &(a) = ~ sup (at ~ log Myr(0)),

aE
using the expression (4.2) for Myp(0) to verify this. The duality relation
MRW(O) = MBP(_o - 1) now gives
(4.6) &(a) = —g(a) +a,
for 0 < a < }logf. Since 1/ygw and 1/ygp fall in this interval and g(a) is
monotone increasing there, (4.6) implies that 1/ygy = 1/ygp. O

Next we use the duality relation to show that when the individuals produced
by a realization of the branching random walk model #[1] are ordered by
increasing size, their distribution resembles that of the starting positions
exp(Z*(n, 0)) of the independent random walks process, which consists of one
individual at each of n = 1,2,3,....

THEOREM 4.2. For a realization o of the process #[1] let

I*(t,0) = #{w, ;: S(wy,;) <t}
count the number of progeny of size < t. Then almost surely
4.7 I*(t,w) =t1*°W gst - o,
Proor. To estimate I*(¢, w) we consider the sets
I} (t,w) = #{w, ;: k fixed and S(w, ;) < t}.
Set a = k/log ¢t. First observe that for a < 1 log 2 one has the estimate
k(L +0(1)
(4.8) Ilf(t, w) < Nk("-’) < (%) e

. 'S ta,_.(1+o(1)) ast — o,

where a, = ;(log ¥)log 3) = 0.120393, by using Theorem 8.2. These individu-
als contribute negligibly to (4.7).
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For the remaining range a > §log %, the quantity I(¢, w) measures a
“tail event” which can be estimated using the Chernoff bound of Biggins
[(1977), Theorem 1]. We obtain

(4.9) IF(k, 0) = (“(%))Muou»

= tag"(l/a)(1+o(1)) ast o o

almost surely, where wu(a) is given by (3.17). Using the duality relation
embodied in (4.6), one has for a > § log % that

1 1 1
(4.10) ag(—) =a(— —g(—)) <1

a a a
and equality holds exactly for a = (;log3)~! by Lemma 2.2. Then k =
(3 log %) 'log ¢ and one has

I*(t,w) 2 I} (¢, 0) 2 t1*°D ast -
almost surely, by (4.9). Finally one has
I*(t,w) < (60log t)max{I (¢, ®): 0 < k < 50log ¢}
< tl +o0(1) as t = ©

almost surely, using (4.8)-(4.10). [Actually one applies (4.7) for a <

(5 log 2®) + 0.001 and notes that (4.8) and (4.9) can then be made uniform in %
ast—- o] 0

One can also check that the individuals near a given size produced by the
branching process model #[1] have the density ratio 1 expected for samples
from the independent random walks model. Indeed the value a = (3 log 3)™*!
corresponds to the density ratio r(a) = 1, and one can prove that the density
ratio

m)— ]gj {r(wk,j): S(wk’j) < t}
has r*(¢, ) > § almost surely as ¢ — o,

There are analogues of Theorems 4.1 and 4.2 for an arbitrary pair of dual
branching random walks, provided that they satisfy some extra boundedness
and sign conditions on their expected step sizes. The extra conditions are
needed to complete those parts of the proof that go from (4.4) to (4.5).

r*(t,w) =

5. Empirical results for the 3x + 1 function. We compare predictions
of the stochastic models of Sections 2 and 3 to the actual behavior of the
3x + 1 function iterates using tables of the successive maximum values of #(n)
and on) for n < 10! computed by Leavens (1989).

Table 3 gives the largest value of (log #(n))/log n attained on each interval
10* < n < 10**! for 1 < k < 10. The data seem in excellent agreement with
the random walks model’s prediction that pgy = 2. Table 3 also gives data on



254 dJ. C. LAGARIAS AND A. WEISS

TABLE 3
log t(n
Largest value of lgog(n) for 10 <n <10%*1,1 <k <10
. logt(n) Omax(n) (n)
" logn logn vn

1 27 2.560 13.65 21.24
2 703 1.791 7.32 16.48
3 9,663 1.790 2.83 12.86
4 77,671 1.819 3.46 13.14
5 704,511 1.788 2.75 11.59
6 6,631,675 1.976 5.86 23.05
7 80,049,391 1.903 5.06 19.84
8 319,804,831 2.099 4.65 19.10
9 8,528,817,511 1.909 5.20 20.03
10 77,566,362,559 1.897 6.86 19.02
Random walks model 2.000 7.645 21.55

(0(n))/log n and (o,,,,(n))/log n, where
Opax(n) = min{k: T®(n) > T®(n) for all [ > 0}.

Recall that the random walks model predicts that o(n) ~ 21.55log n and
Opax(n) ~ 7.645log n (asymptotically) for those n having #(n) = n2*°® ag
n — o, Furthermore the trajectories of such n plotted logarithmically should
(asymptotically) approach two line segments of prescribed slopes. Figure 2
gives scaled logarithmic plots (% /log n,(log T*)(n))/log n) of the trajectories

2.5

1.5
log height

0.5—

0 T — T T — 1
0 5 10 15 20 25
Fic. 2. Scaled trajectories of n, maximizing (logt(n))/log n in 10* < n < 10*+* (dotted for
1 < k < 5; solid for 6 < k < 10).
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: TABLE 4
Maximal value of y(n) in intervals 10% <n < 10%*+1,1 <k < 10

k n ofn) v(n) r(n)
1 27 70 21.24 0.5857
2 703 108 16.48 0.5741
3 6,171 165 18.91 0.5818
4 52,527 214 19.68 0.5841
5 837,799 329 24.13 0.5927
6 8,400,511 429 26.91 0.5967
7 63,728,127 592 32.94 0.6030
8 127,456,254 593 31.77 0.6020
9 4,890,328,815 706 31.64 0.6020

10 13,371,194,527 755 32.38 0.6026

Random walks model 41.68 0.6091

for those n in Table 3; those trajectories for 1 < k < 5 are dotted and for
6 < k < 10 are continuous. The limiting trajectory predicted by the random
walks model is indicated by dashed lines; it seems to be in good agreement
with the data.

Table 4 gives the largest value of y(n) = (o(n))/log n attained on each
interval 10* < n < 10**! for 1 < k < 10. Excluding the small value n, = 27
there is a steady increase of the values of y(n) followed by a possible leveling
off around a value of 32, which is somewhat less then Conjecture 1 predicts. Is
this evidence in serious conflict with Conjecture 1? Large deviation theory
predicts that “extremal’ trajectories will exhibit a graph that appears roughly
linear, with a slope —0.024. Figure 3 gives scaled logarithmic plots of the
trajectories for those n in Table 4; those trajectories for 1 < 2 < 5 are dotted
and those for 6 < 2 < 10 are solid. The limiting trajectory predicted by the
random walks model is indicated by a dashed line.

We call the predicted extremal straight-line paths “train tracks’ following
Vyssotsky (1987). It is well known that for constant coefficient random walks
the easiest way to do something improbable is to take a moderate pace, like a
train climbing a mountain. In this train analogy, the trajectories going highest
(as in Figure 2) are not the longest (Figure 3) because they expend their energy
climbing and then must plunge down rapidly while a more conservative path is
able to stay up longer. The actual extremal trajectories in Figure 3 seem to
exhibit three regimes of behavior: an initial rise, a long ‘““‘train track’ portion
and a final rapid plunge. This differs from the predicted ‘““train track’ in
explicable ways. Since these trajectories are extremal, they must have an
initial rise, since otherwise some trajectory with a lower starting point would
be better. The final plunge comes from the nonrandom behavior of small
(< 10°) numbers; none of these has g(n) > 24.151og n. For these reasons we

think that the data of Table 4 are consistent with Conjecture 1.
'We examine “train track’ trajectories further in the next section, using
backwards iteration.
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25—

1.5+

log height
1%

0.5

0

I
0 10 20

Fic. 3. Scaled trajectories of n, maximizing y(n) in 10* < n < 10**! (dotted for 1 <k < 5;
solid for 6 < k < 10).

6. Greedy algorithms to find large stopping times. Vyssotsky (1987)
suggested that one search for large n having large values of (.(n))/log n by a
backwards search using a “greedy”’ algorithm.

GREEDY ALGORITHM ;. Recursively find {m,;: k > 0} by setting m, = 4
and choosing m ,, to be the smallest member of (T*)~%(m,_,),); that is, the
smallest leaf label in the tree T;*(m g, _1)4).

The trajectories located by such an algorithm exhibit ‘‘train track’ behavior
with a characteristic slope depending on the depth d of the tree search.

We can model the behavior of this greedy algorithm by an analogous greedy
algorithm for the branching processes of Section 3.

GREEDY ALGORITHM %[3’]. Given a realization w of the branching random
walk #l37), find {w},: k > 0} by taking w} to be the root and w},; to be that
node at level kd of the tree 7 (w) of minimal height among all descendants of
o, _1)a- (In case of ties, choose w}, to be first in the ordering w4 ; of nodes at
level kd.)

The performance of these algorithms can in principle be analyzed exactly,
for any fixed values of d and ;.

THEOREM 6.1. For the algorithm <,[1] there are constants {B(d): d =
- 1,2,...} such that .

1
(6.1) lim - L(0}s) =B(d) a.s.
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One has
(62) lim B(d) = Bap-

Proor. We establish (6.1). Each step of the process {w},} consists of
independently drawing a depth d tree generated by £[1] with root at w,_;)4,
then choosing w}; to be at the end of that branch from wf,_;,;, having
minimal value of L(w}y) — L(@{_1)3). The central limit theorem shows that
B(d) exists and is the expected value of the minimal location ratio for this
random variable. The existence of the limit (6.2) and the assertion that its
value is Bpp follow from Biggins [(1976), Theorem 4]. O

An equivalent form of Theorem 6.1 is that there are limiting density ratios
{r(d):d =1,2,...} such that

(6.3) lim r(w}q) =r(d), as.

and lim, _,, r(d) = rgp = 0.60909. The equivalence follows from the relation
(8.10), which also shows that
(6.4) B(d) = log2 — r(d)log3.

There is a simple recursion for computing the value of r(d). Set

Pa,; = Prob[ 7;( ) has no branch with > + 1 ones].

TABLE 5
Limiting densities for probabilistic greedy algorithm for (1]

Depth d Ones ratio r(d) Y4
1 0.33333 3.0586
2 0.33333 3.0586
3 0.33882 3.1161
4 0.34649 3.2001
5 0.35508 3.2999
10 0.39811 3.9095
20 0.45790 5.2606
30 0.49179 6.5420
40 0.51291 7.7126
50 0.52729 8.7825
100 0.56114 13.0438
200 0.58183 . 18.5376
400 0.59387 24.5634
600 0.59832 27.9213
800 . 0.60069 30.0124
1000 0.60216 31.6471

L 0.60909 41.6776
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Then
d d
(6.5) r(d) = Zj(pd,j_pd,j+1) = Zpd,j
j=1 j=1
because p; 4., = 0. The definition of the process #[1] implies that the Pa,;
satisfy the recursion

(6.6) dpy ;= 3(d - Vpg_q,; + 5(d - 1)2pd—1,jpd—1,j—1'

Using py,o = 1 we can use this recurrence to evaluate all p, ; and hence r(d)
for small d. Table 5 gives values of r(d) and the associated stopping time
estimates y; = B(d)~! obtained in this fashion. (These values were computed
using 100 digits precision, which was necessary to allow for the effects of
roundoff error.)

The values r(d) are apparently strictly increasing for d > 3, but we have no
proof of this fact. Now r(d) does have the subadditivity property
6.7)  dr(d) 2jr(j) + (d-j)r(d—-j), ls<jsd-1,
and one can use this and the data for d < 68 to show r(d) > 1/2 for all
d > 34.

The predicted densities of the greedy algorithm Z,[1] in Table 5 may be
compared with the actual 3x + 1 data given in Table 4. The largest value n in
Table 4 takes 755 iterates and has y(n) = 32.38, while the “greedy’ search to
depth 800 using Z[1] predicts a constant of 30.01.

TABLE 6
Greedy algorithm Markov chains ford = 1

12
1] 0 | 1
2|2/3|1/3

(2) #I3) Markov chain, v = (2,3)

(

1 4 7 2 5 8
1 1o o
4 0 o] o1
7 o[ 1o
2[1/3]1/3]1/3[ o [ 0 |0
5/ 1 oo o] o] o
8] o [-0o [ o [1/3]1/3]1/3

(b) #I9] Markov chain, v = (37, %, %, 2, 7,7)
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TABLE 7
Empirical densities for greedy algorithm £;*

k 1 2 4 5 7 8 B
700 0.2379  0.2792  0.0997  0.1496  0.0912  0.1425  4.27
7000 0.2395  0.2863 00954  0.1418  0.0934  0.1435  4.52
Predicted { 0.2381  0.2857  0.0952  0.1429  0.0952  0.1429  4.498
density o Z h 7 b 7

The greedy algorithm #[1] does not, however, give a completely accurate
model of the behavior of the algorithm ;*. This is because when we choose
sequences {w},;} having many parity 1 terms, the distribution of their values
(mod 37) cannot be uniformly distributed, which the model #[1] assumes.

In consequence we study the greedy algorithm #,[3/] that does a depth one
optimization by always choosing a node w} of parity 1 if possible. This node
choice creates a Markov chain in which all states are not equally probable. The
resulting Markov chains for j = 1 and 2 are given in Table 6 along with the
associated left eigenvector giving the steady state probabilities. The density
ratio for Z[3] is r(1) = Z= 0.40000 and for Z[9] is ry(1) = 2= 0.42857.
Nothing new happens for #,[3/] for j > 3. The steady state vectors for the
class m (mod 3/) are 3-U~? times that for m (mod9) and r;(1) = § for all
Jj=3.

It appears that #[9] gives a qualitatively accurate model of the one-step
greedy algorithm & for the 3x + 1 problem. Table 7 gives statistics for 7000
iterations of &;* showing excellent agreement with this Markov chain.

One can construct more complicated Markov chains that simulate the
behavior of the greedy algorithm . It appears likely that the ‘“‘correct”
model is the Markov chain (mod 3¢*?) arising from the algorithm that chooses
the branch with the largest density ratio of a depth d tree generated by the
process #[3?*1, d] (defined at the end of Section 3). These models are so
complicated that it may be easier to study < directly.

Table 8 presents empirical data on the densities of greedy algorithms <;*
for d = 5, 10, 15, 20, 25 used to construct values m gyo, Whose 6000th iterate
is 4. The values of y(mg,) in this table may be compared with the values for

TABLE 8
“Greedy” algorithm £ appliedtom, = 4

Search depth d log(mggeg) . v(mggeo)
5 1116.28 5.38
10 . 1043.29 5.75
15 849.93 7.06
20 808.20 7.43

25 745.56 8.05
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&,;[1] made in Table 5. Note that the depth d’ needed in %,[1] to attain the
same density as observed for d = 25 in & is about 45.

Vyssotsky (1987) used a “greedy” algorithm to find a number n, = 9.823 X
10'%°, which has o(n,) = 6000, so that (o.(n,))/log n, = 16.186. For the
random walk model, Theorem 2.1 asserts that the probability a “random” n
in e < n < %" has such a large value of a is < e 3%. Thus backwards
search is apparently much more efficient than “random” search for finding
extreme values of (g(n))/log n.

Acknowledgments. We are indebted to V. S. Vyssotsky for describing his
computations to us and to A. M. Odlyzko for warnings about possible numeri-
cal instability of computations using the recursion (6.5). We are indebted to a
referee for simplification of some proofs in Section 2.
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