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FLUCTUATIONS IN A NONLINEAR REACTION-DIFFUSION
MODEL!

By PETER KOTELENEZ

Case Western Reserve University

A law of large numbers and a central limit theorem are proved for a
locally interacting particle system. This system describes a chemical reac-
tion with diffusion with linear creation and quadratic annihilation of
particles. The deterministic limit is the solution of a nonlinear
reaction—diffusion equation defined on an n-dimensional unit cube. The
law of large numbers holds for any dimension n and arbitrary times,
whereas the central limit theorem holds only for dimension n < 3 and on a
certain bounded time interval (depending on the initial distribution and on
the creation rate). A propagation of chaos expansion of the correlation
functions is used.

1. Introduction. To our knowledge the first rigorous study of stochastic
models of chemical reactions with diffusion was carried out by Arnold [1] and
Arnold and Theodosopulu [2]. In that model the “reactor’” was represented by
a finite interval which was split up into N cells where any particle in a given
cell could react with any other particle from this cell and the cells were linked
by diffusion. Under a high-density assumption (number of particles in each
cell > N), it was shown in [2] that the stochastic particle system converges to
the solution of a certain reaction—diffusion equation [law of large numbers
(LLN)]. In Kotelenez [10] a corresponding central limit theorem (CLT) was
proved under the assumption that the reaction is linear. Both Kotelenez [11]
and Blount [3] are generalizations, respectively improvements, of the linear
model studied in [10]. In Kotelenez [13, 14] CLT’s were proved also for
nonlinear reactions with diffusion under high-density assumptions. In particu-
lar, it was proved in [14] that the density necessarily has to be high both for
the LLN and the CLT if the reaction rates in the stochastic model are the
macroscopic ones given in the reaction-diffusion equation (cf. also our re-
marks in Section 5). In the terminology of interacting particle systems, the
high-density assumption means that the interaction is not local. It should be
mentioned that all stochastic models discussed so far were defined on a grid
(following Arnold). The stochastic models in Dittrich [6, 7] were defined on the
space of point measures on a bounded interval (the ‘“reactor’’). By taking rates
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670 P. KOTELENEZ

different from the macroscopic ones [cf. (5.3)], Dittrich proved in [6] an LLN
and in [7] a CLT under the assumption that the density is low, respectively the
interaction is local. The assumptions in both [6] and [7] are that there is only
killing and that the reactor is one dimensional. (Inasmuch as there is no
creation in [6] and [7], the models herein are related to that considered in Lang
and Xanh [16].) Moreover, in [7] the main tools were the correlation functions
and the propagation of chaos, assuming that the stochastic system is initially
Poisson distributed.

In this paper we essentially generalize Dittrich’s model [7] to an n-dimen-
sional cube where the reaction scheme contains a (linear) creation term. The
result depends on the verification of the propagation of chaos (which we could
not verify for creation or annihilation terms of order higher than 2). Moreover,
we have made full use of the functional analytic methods developed in [10]-[14],
in particular, of convolution integrals using ‘‘variation of constants.” The
advantage of this approach is, for example, that the uniqueness of the
Ornstein—-Uhlenbeck limit in the CLT is obtained for free as a consequence of
the uniqueness of the limits of the coefficients of the rescaled stochastic model
[cf. (2.17) and Theorem 4.2]. We obtain the LLN for any dimension »n and on
arbitrary bounded time intervals. The CLT, however, we can prove only for
dimension n < 3 and on time intervals which are bounded by a constant
depending on the intensity of the initial (Poisson) distribution and the creation
rate (cf. Theorem 3.1; the corresponding result was obtained by Dittrich [7]).
The restriction on the dimension comes both in the verification of the propaga-
tion of chaos (Theorem 3.1) and its most important application in the proof of
the CLT [Theorem 4.2(ii)] and in a speed of convergence result, where the
solution of the reaction-diffusion equation is compared to the solution of an
integro-differential equation associated with the correlation function (Theorem
2.1).

The paper is organized as follows. In Section 2 the deterministic and the
stochastic models are described, and the main result, Theorem 2.1, is pre-
sented. In Section 3 the correlation function is analyzed and the propagation of
chaos is proved. Section 4 contains the LLN (Theorem 4.1) and the CLT
(Theorem 4.2). We only prove the CLT since the proof of the LLN is a simple
consequence of the other proof. In Section 5 we compare this result with the
result of Kotelenez [14].

As far as notation is concerned we use the same symbols c, c(#), c(Z, a) and
so on, for finite constants (depending on 7, resp. on  and a, etc.) which may be
different at various steps in the proof of some statement. Our spatial domain is
the unit cube, denoted by S. When integrating over S we will not specify this,
whereas the integration over time intervals will be specified.

2. The deterministic and. the stochastic models. Set S := {r=
(ry,..,r,)€ER™0<r,<1,i=1,...,n} Let A be the n-dimensional Lapla-
cian, D > 0 a diffusion constant, @ € R and b < 0. Then the concentration of
one particle with reflection at the boundary, linear creation (if a > 0) and
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quadratic annihilation is given by the solution of the following PDE:

2.1) %X(t,r) =DAX(¢,r) + aX(t,r) + bX2(2,T),

3,X(t,r) =0 ifr,e{0,1},i=1,...,n, X,(r) > 0,

where 9, = d/9r;.

We briefly describe some properties of the solution of (2.1) and for the
details refer to Kotelenez [12, 14].

Let

(Ho, <5 20) = (La(8), <5 Do)

be the separable Hilbert space of square-integrable real-valued functions on S,
equipped with the scalar product (¢, ¥)o = [@(r)¢(r)dr, where dr =
dry,...,dr,. Moreover, let C* be the functions from S into R which are %
times continuously differentiable in all variables. For ¢ € C* set

llells:= max [ldpll.
O<|li<k

Here |l =1, + --- +1, for I = (Iy,...,1,), 8" =d",... 8", 9% = 9" /gr} and

Iyl = suply(q)l,

qeS

for those ¢ € H,, where this definition makes sense. Now we denote by A the
closure of A with respect to the homogeneous Neumann boundary conditions
in (2.1) and by Cp, a core for DA whose elements are infinitely often
differentiable. Let (B,, Il - Ill ;) be the closure of Cj, in C* with respect to
ll - [Il .. We make the following hypothesis on X(r).

H.1(k).

(@) 0<Xy(r)<p for all r € S, where p is some number such that ax +
bx2 <0 forall x > p.

(i) X, € B,,.
H.1(k) implies the existence of a unique global mild solution X of (2.1) such
that:

(1) 0<X(,r)<pforall (t,r)e[0,o) XS,
(i) X € C([0,x); B,),

where C([0,»); B) are the B-valued continuous functions on [0, ) with B

being a Banach space.
We will assume H.1(k) for some fixed 2 > n/2 + 1 throughout the paper
without explicitly stating it in the theorems.
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Now we introduce the stochastic model following Dittrich [6, 7].
Let ¢ >0, Ey:={ZXN _188,, r; € S}, where ¢8, are Dirac measures with

weight &, and set
= U Ey
N=0

(E, = {abstract point}). We can define a metric d, on E (derived from the
Prohorov metric) such that (E, d,) is a locally compact separable metric space
(cf. Ethier and Kurtz [9], page 408, Problem 6). Furthermore, let R°: S X S —
R, be continuous and symmetric such that

fRe(q,r) dg=1 forallreS,
(2.2)

c;R(r,q) < G(e¥",r,q) <cyR(r,q), 0<c;<cy<o,

where G(¢, r, q) is the fundamental solution (or Green’s function) to /¢ £(¢)
= D A&(¢), that is,

(2.3) G(t,r,q) = l_[G(t, ri,q
with

2
— “1/2 —(r; — q; + 2k)
G(t7 wqi) ’ (4tD77) k:Z_w {exp( 4¢D

—(r; + q; + 2k)®
+exp 4tD .

On a fixed probability space we define a Markov process X° with state space E
as follows. If X° belongs to E, the process consists of N independent
S-valued Brownian motions w;(¢) with generator DA, that is, X°(¢) =
L/ ,£8,, The transition from Ey to Ey,, occurs Wlth rate a (if a > 0).
Finally, any pair x‘, x’/ disappears with intensity —beR*(x’, x7) resulting in a
jump of X° from EN to Ey_,. Condition (2.2) implies that typically only
particles at a distance less than or equal to & disappear, that is, that the
interaction (annihilation) is local.

Denote by vy, the canonical mapping from S¥ (the Nth Cartesian product
of S with itself) to Ey and let f € C,(E, R) (continuous bounded from E into
R) such that f -y, is twice continuously differentiable and satisfies homoge-
neous Neumann boundary conditions on S¥. Denote the corresponding closed
Laplacian [on C(S¥,R)] by A, and the operator induced by yy vi Ay. Then
the generator is as follows:

(AfNZ) =y8DANF(Z) +aZ [F(2+ ed,0) — f(2)]

i=1

+b E [F(Z) = (24, ;)| R (%, x7),

kaﬁ]

(2.9)
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where =L 66 €Ey and 2, j= LN, .4 »;60, €Ey_5 (e, 2, ; is
obtained from 2 by deleting the kth and the jth particles). Dynkin [8],
Chapter 10, Section 6, and Ethier and Kurtz [9], Section 4.2, ensure existence
and uniqueness (in distribution) of a Markov process X° € D([0,x); E) (the
Skorohod space of E-valued cadlag functions) with generator A°.

Dynkin’s formula yields

<Xs(t)’ ‘P>

NS
(2.5) =(X& ¢ + f(:ds{<Xe(s),(DA +a)p) + bszkz‘qo(xf)Re(xsk,xg)}
#j

+ /A M(t), ),

where ¢ € B,,{ -, - ) is the dual pairing (extending { -, - )o), and N; is the
number of particles at time s and x* is the position of the kth particle at time
s (x/ is correspondingly defined). { M*“(?), ¢) is a real-valued martingale whose
Meyer process is given by

+ a<p2>

N¢ kY 4+ 12
_21,822 ﬂ(xL)_iL(x_sll Rs(xsk,x;)}.

(Me(t), ) = fotdS{<Xe(s), [20 i (9,0)
(2.6) o

k+l

In order to compare X° and X we need more state spaces. We use the setup
by Kotelenez [10, 14].
Define for y € R,

(H7,< T, )Y) := the closure of Cj, in H, with respect to { -, - )y,

where (¢, ), = {(I — DAY, )¢, ¢, ¥ € Cp,. Here I is the identity operator
on H, and (I — DA)" is the yth power of the positive self-adjoint operator
(I - DA). (H,,{-,"),) is a real separable Hilbert space. Set ® := N,-oH,
and endow @ with the locally convex topology defined by {lel, =
(o, 0)¥% ¢ € d, y € R,}. Let @' be the strong dual of ® and H_, C &' the
strong dual of H,. Identifying H, with H;, we obtain the chain of (dense)
continuous inclusions:

(2.7) ®cH,cHy=HycH_,c®, yeR,

where ® is a nuclear Frechet space. Let I = ({,,...,[,) be a multiindex, where
1; € N U {0}, and set for r; € [0; 1],

\/gcos(li'ﬂ'i), li >
4’1,("1') = 1 1
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Then {¢;, = I1}_,¢,} is a complete orthonormal system (CONS) of eigenvec-
tors of DA in H, with eigenvalues

—p, = —D( Z l?’sz).
i=1

Setting A, == 1 + u,;, we obtain

&7 =A%,
is a CONS for H,, v € R. As a consequence,
(2.8) loly = X Ae, 6,02,
1

where ¢ € H,, y € R. Moreover, if T(¢) is the semigroup generated by DA + a
on H,, then

(2.9) T(t)e = Zl'. exp((—u; + a)t) b (e, d:)0.

A more general object than a semigroup is an evolution operator L(%,s),
0 <s <t (strongly continuous, cf. Curtain and Pritchard [4]). If L(¢ s) is
defined on a separable Hilbert space H, then L(¢, s) is by definition of
contraction-type or
if there is a B > 0 such that

|L(¢,8) sy < P79,

“where | - | sy is the usual bounded operator norm (here with respect to H).
Note that T'(¢) can be extended (and restricted) to any H, such that
T(t) e £(1,B) withB=aVO0
on H,, where V denotes ‘“maximum.” [We will not make any notational
distinction between T'(¢) on H, and T'(¢) on H,vy+ 0.] Since E c H_,, for
y>n/2, X°(t) e H_,if y > n/2,(2.6) and the separability of H, imply that
the “weak” martingale (M°(¢),¢) defines a strong H__-valued martin-
gale, where y > n/2 + 1. Thus we can compare X° and X in H_, for y >
n/2 + 1.
We now define another deterministic model (depending on &) which is

“closer” to (2.5) and compare it to (2.1). Define an operator B on B,
(= continuous functions from S into R) by

B*(¢)(r) = [e(q)R(r,q) dq,
and consider
d
210y 3l (6T =LA +a) (6 r)
+of(t,r)B*(f*)(¢t, r), f°(0,r) =0, f°(0) € B,.
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The existence of a unique mild positive solution f¢ of (2.10) such that
¢ € C(0,»); B)) can be shown by the same means as the existence of a
unique X for (2.1) (cf. Kotelenez [12], Appendix).
We will now compare X with f*, first in sup-norm and then in distributior
norm.

LemMA 2.1. For any t there is a finite constant c(f) such that

(2.11)  sup 1X(¢) = Fo() Il < c(E)(I1X(0) = F(O) Il + &/™).

O<t<t
Proor. (i) By “variation of constants’’ we obtain

(2.12) X(t) = T(t) X, + ['T(t - 5)bX*(s) ds,
0

(2.18)  f(O) = T(O)f + [T(t = 9)bf"(s)B*(f*(s)) ds,
whence
X(8) = f7(¢) = T(t)[ X, - £3]
+B[T(t = 5){X(s)(X(s) - B'(X(5))
+[X(s) - F()] BY(X(5)) + () B[ X(s) — f*()]} ds.
(ii)) Let ¢ € C!. Then by elementary calculations,
(2.14) [le(r) = e(a)|R*(r,q) dg < cll¢llle"/",

whence
| X(s,7) = BX()](r)] < e(B)e"/"  [by HA()].

(iii) Consequently, |T'(#)|_+g,) < e** [T(¢) considered as a bounded operator
on B,] implies that for ¢ < ¢,

INX(t) — ()l < c(f){lll Xo—fll + /™ + fotlll X(s) —f(s)ll dS}-
By the Gronwall lemma we obtain (2.11). O

Unfortunately, the bound of O(¢'/") provided by (2.11) is not good enough
for a central limit theorem scaling in dimensions greater than 1, where we
have to consider ¢~ 2(X® — X) [cf. (2.5) and (2.6)]. Moreover, this bound
seems to be quite sharp by step (ii) of the previous proof. On the other hand,
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we can considerably improve on this bound by computing the difference
X—-f¢in H_,, a>n/2 + 1. To this end we make the following assumption.

H2 X, —fEll < ee?™

THEOREM 2.1. Assume H.2. Then for any a > n/2 + 1 and any f there is a
finite constant c(f, @) such that

(2.15) sup | X(2) = F5(¢)|_a < c(, a)e?/™.

O<t<i

Proor. (i) Note that H.1(k) with 2 > n/2 + 1 implies that the multiplica-
tion operator defined by multiplication by X(s, r) is extendible to a bounded
operator on H_, for a €[0, k] such that for any £> 0 there is a finite
constant c(f) and

(2.16) sup |X(s)lrw_p < c(f)

O<s<t
(Kotelenez [12]). Assume for this proof a € (n/2 + 1, k].

(i) X*(s) = f*(s)B*(f(s))
=X(s)[f°(s) — B[ f(s)]] +2X(s)[X(s) — f*(s)]
+[X(s) = f(s){B°[ f(s) — X(s)] + B°[X(s)] — X(s)}.
(iii) Let ¢ and ¢ be in H,,. Then by the properties of R®,
(*) ¥ =B W), 0o =3 [[6(r) — w(@]le(r) ~ o(a) R*(r, q) dgdr.

(V) |X(s)[F(s) - B[ Fo(s)]] L2
< c(8)| f*(s) - B[ F(s)][2. [by (2.16)]
= eI AT(F () ~ B[ (o], ¢ [by (2.8)].
Furthermore,
(fe(s) = B[ F*(5)], 80
3 [1X(s,r) = X(s,0)][$:(r) — $:(@)]| R*(r, q) dgdr

I

+1f [1X(s,0) ~ F*(s,9) — X(s,7) + F*(5,7)]

X [¢u(r) = di(@)] R*(r,q) dgdr
' =A+B
[by (#) and adding and subtracting quantities under the integral]. Similarly as



FLUCTUATIONS IN A NONLINEAR REACTION 677

in step (ii) of the proof of Lemma 2.1 we obtain

[ [1X(sr) = X5, )l 67) - i@ R (r, ) dar

<e® el [lir - ql*G(s*",r,q) dg

~c(t)ll g, lll,e® ™.
Note that [l ¢, Il1 < cA}/% Thus
Al < c(£)AY/ 22/,
By (2.11), H.2 and (2.14), |
| 1Bl < c(B)AV 22/,
Hence

X(11°() = BN, s D D aiete

W) I{X(s) — FE(UBL fe(s) — X(s)] + B[ X(s)] — X(sHI < e(D)e? ™ by
(2.11), H.2 and (2.14).
(vi) [2X(s)X(s) — Fo(s)]l—a < (DX (s) — f4(8)| —o by (2.16).
(vii) Since |T(®)l_sz_y<e*and || -l = |- |_q, we obtain from (2.12) and
(2.13), the previous steps and H.2,

|X(8) = (D))o < e(F@)e® " + e(B) [ ‘| X(s) = £*(s)|_q ds.

Hence Gronwall’s lemma implies (2.15) for « € (n/2 + 1, k]. Since | - |, <
|- |_q if ¥y 2 @, (2.15) holds for all « > n/2 + 1. O

We abbreviate
Ve =¢ V3 X* - X),
7o = e 1/2( X0 - £°),
£ = e V2(f° - X)),
that is,
Ye=Y° + &8,
By Theorem 2.1, |¢5(¢)| —, — 0 uniformly on compact intervals, provided « >

n/2 + 1, n < 3, and if H.2 holds. We will assume H.2 throughout the rest of

the paper.

Let U(t, s) be the evolution operator generator by DA + a + 2bX(s), where
2bX(s) acts as a multiplication’ operator. Since T'(¢) € £(1/B8) on H_, for all
@ with B = a V 0 and X(s) satisfies (2.16) for & € [0, k], k > n/2 + 1, U(¢, s)
is extendible to an evolution operator € £(1/B)to H_, for all « € [0, k] with
B = B(¢t, @) depending on ¢ and a for a # 0. We will use the same symbol for
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the extended evolution operators. From (2.5) and (2.10) we obtain by “varia-
tion of constants”

Te(t) = U(t,0)Ts + [O’U(t, s) dM*(s)

(2.17)
+f0tU(t,s)bs‘1/2{175(s) +27%(s)} ds,
where
N;
<775(s)’ ¢> = €2Z‘Rs(x;, x’s’)@(x;)
1#]
A i
(2.18) —2 Y fff(s,q)[“’(q) J;‘”(xs)]Re(x;,q)dq
i=1
+[[fe(s, @) F*(s,r)R*(a, r)e(q) dgdr
and
(£°(s), @
N¢ i
= sglffs(s,q)[w}m(xé,q)dq
(2.19) -

_/[fs(s’ q)f°(s,r)R*(q,r)e(q) dgdr

+ [X(s,7) fo(s,)e(r) dr.

Our aim is to show that n° + 2¢° — 0 (suitably) and M¢ = M, where M is an
H_,-valued Gaussian martingale (@ > n/2 + 1) whose covariance is obtained
from (2.6) by substituting X for X° and letting £ — 0, that is,

E(M(z), ¢)*)

(2.20) = /tds{<X(s), [ZD i (0p¢)2] + a¢2>
0 ol

(cf. Kotelenez [14] and Dittrich [7]). Then the limit of ¥*, respectively of Y* if
n < 3, would be the generalized Ornstein-Uhlenbeck process Y which satisfies
the following Langevin equation:

(2.21) dY(t) = [DA + a + 2bX(¢)]Y(t) dt + dM(¢)
and has an explicit representation (through ‘variation of constants” if Y, e
‘H_,fora>n/2+1)

(2.22) Y(£) = U(,0)Y, + [0 ‘U(t, s) dM(s).

- 2b<X2(s)’ ‘P2>0}

0
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It follows from Kotelenez [13, 14] that for all « > n/2 + 1,
c*([0,»); H_,), as.forall u <3,
C((0,00); H—a+1)’ a.s.,

where C*([0,x); H_,) are the H__-valued Hélder continuous functions with
Holder exponent .

The most difficult part in the proof Y* = Y is showing that n° = 0. To this
end we will now analyze the correlation functional and show that a propaga-
tion of chaos hypothesis is satisfied if X, is Poisson distributed.

(2.23) Ye

3. Correlation function analysis. Let ¢ € C(S% R), £ > 1. Then the
kth correlation function F*¢(¢,y,,...,y,) is defined by

f...f¢(y1’-..1yk)Fk,€(t,y1,..-,yk) dyl N dyk

(3.1) N¢ , .
=E Y, crp(xf,...,x),
i1 esin
(diff)
where y; € S and “(diff)” under the sum sign means that the i,,...,7, have

to be all different from one another (cf. Dittrich [7] and Lang and Xanh [16]).
Let us now assume that on some interval [0, ] the correlation functions can
be written for all £ € N as

Fee(t,x,,...,x;)

k
= I:[lfs(t:xi)
(3:2) k k k k
— €& de(t’xi’xj) IT et %) + X he(t7xi)l—[fs(t:xj)
i<j l#i,j i=1 J*i
+ @k (t,xy,..., %),

where g¢, h® and ©% ¢ are real-valued functions satisfying the conditions given
below. Denoting by |||l - [II also the sup-norm for functions from S* — R,
k € N and setting

(t+82)1/2—8, n=1,
(3.3) p(e,n,t) = {In(t + &) — In(¢), n=2,
g@/m-1 (t + 82/")1_(n/2), n>2,

we assume on g° and h°,
i

(3.4) sup sup [p(e,n, )] {llg=(e) ll + As(£) ll} < eo.

e>0 0<t<?

Concerning 0% ¢ we make two different propagation of chaos assumptions.
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H.3(L). Assume in addition to (3.2) and (3.4) that for all k € N,
e sup [1@%(¢)ll >0 aselO.

O<t<i

H.3(C). Assume in addition to (3.2) and (3.4) that for all k € N,

sup [1@*°(¢)l >0 ase=0.
O<t<i

H.3(C) obviously implies H.3(L) if the 7 is the same in both conditions. It
turns out that H.3(L) implies the law of large numbers (LLN—Theorem 4.1)
and H.3(C) implies the central limit theorem (CLT—Theorem 4.2). The as-
sumptions on the initial conditions in the following theorem are by H.2
trivially satisfied if X is Poisson distributed with intensity f§(y)dy (cf.
Neveu [18]).

THEOREM 3.1. Assume that for any k € N, sup, . [F*%0,x,,...,x,) -
I1%_, Xo(x;,)l > 0 as € = 0. Then H.3(L) holds for all t < =, and if n < 3 in
addition to (), then H.3(C) holds for all  such that

Iblte*tsup Il £l < 1.
£

Proor. To simplify the notation we will drop the superscript “c”’ when-
ever possible.

() If H*(x,,..., x;) is a sequence of functions we define
k
PHH* Y(xy,..,2,) =0 Y [H**(xy,..., 2, 9) R(%,,9) dg
=1
and
k
Q*(xy,..., %) = b)Y R(x;, %)
i<j

acting as a multiplication operator.

Set A*(t,x,,.:.,x,)=1TI1%,f(¢t,x;) and denote by T,(¢) the semigroup
generated by DA, + ak and by V,(¢) the semigroup generated by DA, + ak +
£Q* [both on C(S*, R)]. Then Dynkin’s formula applied to

Ny
I(s,Z5(s)) =¢e* Y, Tu(t—s)p(xlr,...,xx), 0<s<t,
i "
" yields

(3.5) F*(t) = T,(t)F*(0) + jo‘Tk(t — 5){P*F**(s) + cQ*F*(s)} ds,
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which is equivalent to
(3.6) Fr(t) = V,(t)F*(0) + /O’Vk(t — s)P*F*+1(s) ds.
It can be easily verified that A*(¢) satisfies
(3.7) Ak(t) = T, (t) A*(0) + j:Tk(t — 5) P*AR*+1(s) ds.

(i) We now define the functions g€ =: g and h° =: h for the decomposition
(3.2) as solutions of the following integral equations:

g(t.r.q) = [[dsTy(t = ) {be(s,7,0) [£(5,2) [ R(q,2) + R(r,2)] ds

+bf (s, q)/g(s, z,rYR(q,2) dz

(3.8)
+bf(s,7) [&(s5,q,2) R(r, 2) dz
+1(5,a) f(5, 1) R(0.7),
h(t,r) = fo‘ds T(t - s){bh(s,r)ff(s,z)R(r,z) dz

(3.9) +bf(s, r)fh(s,z)R(r,z) dz

+b/g(s,r,z)R(r,z) dz}.

The existence of a unique solution—first for (8.8) in C(S?% R) and then for
(3.9) in B,—is no problem in view of the linearity and the boundedness of
R(r, q). Let us now derive an estimate for g. Note that for any ¢ > 0 there is a
c(t) < «© such that

sup sup ll fe(s)ll <e(t), fe=f

e O<s<t

[by Lemma 2.1, H.2 and the boundedness of ||| X(s)[l|]. Hence for s < ¢,

/:duTz(s —W)R(-,") H}

< Cp(b‘, n,t)’

lleg(s)lll < c(t){f:dulllg(u) Il +

From (2.3) we obtain

(8.10) ”lfotffG(t —-s,q,u)G(t —s,r,v)R(u,v)dudvds

with p(e, n,t) defined in (3.3). Consequently, using the kernel representation
of T,(¢), (2.2) (3.10) and Gronwall’s lemma imply that for any ¢ > 0 there is a
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¢(t) < « such that for any ¢ > 0,
(8.11) sup llg*(s)ll <c(t)p(e,n,t), g° =g.

O0<s<t

Using (3.11), we obtain by the same argument for any ¢ > 0 a c¢(¢) < © such
that for any ¢ > 0,

(3.12) sup llA5(s) Il < c(¢)p(e,n,t), h® = h,

O<s<t

that is, (3.4) holds on any bounded interval. Setting for 2 € N,
B*(t,x,,...,x,) = A¥(t,xq,...,%,)

k k
—e|l Y gt,x;,x;) T1 F(¢,
(3.13) = (b 7o) 1) 62

k k
+ 2 h(t,x) [11(2 %)),
i=1 J#i
it can be verified by an elementary calculation that for any &,
(3.14) B*(t) = T,(t) A¥(0) + ftTk(t - s)[PkBk”(s) + erAk(s)] ds.
0

Note that (3.14) is similar to (3.5). By adding and subtracting on the right-hand
side of (8.14) [¢T,(t — s)eQ*B*(s) ds, we obtain by * variation of constants”

B*(t) = Vi(t) A*(0) + [V,(t — s) P*B**(s) ds
0

(3.15)
+ &2 [Vi(t — 5)Q*L*(s) ds,
0

where
L*(s) = e [ A*(s) — B¥(s)].
(iii) Denoting
O4(t) = F*(t) - BH(1),
we obtain from (3.5), (3.14) and (*) for any ¢ > 0, a ¢(#) < o such that for any
ke Nand ¢ > 0,

(3.16) sup [|@%=(s)lll <c(t)k%e™, Ok = O

O<s<t

Moreover, (3.6) and (3.15) imply for 0 < s < ¢,

O*(t) = Vy(t = 5)04(s) + [Vi(t — u) P*O** () du
(3.17) t °
+ 82/8 Vi(t — u)Q*L*(u) du.
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Using this equation for ®**(x) on the right-hand side and repeating this
procedure, we obtain for any m > 0,

Ok (t) = V(¢ — 5)O%(s) + f; I(t,s,k,i,c)
i=0

+ &Y J(¢, 5, k,i,e) + K(t, s, k,m, €),
i=0

where

I(¢,s,k,i,¢) :=j

S

e fti—lvk(t —t)PE o PR, (8 - 8)
S
XOF*i(s)de; -+ dty,
J(t,s,k,i,¢) = [t o fti_lvk(t —t)P* - PRI (8 = biy)
s s
XQFILI (1) dtyq -+ dby,
K(t,5,k,m,e) = [ ["Vy(t = t) P* - PRW, (2, = )
s s

><Pk+m(::)1Hm+1(75m+1) Aty gy o0 diy,

to=tand L?_; =0.
By the second inequality in (2.2) there is for any € > 0 and ¢ > 0 a j(c, &)
such that

(3.18) ol +eQ <0 foralll>j(c,e).

On the other hand, setting V,(t) = V,(t)e*’ and denoting by S,(#) the semi-
group generated by DA, then with ¢ € C(S',R) and 0 < s < ¢,

(3.19) Vi(t)¢ = S,(¢)¢ + [O‘S,(t —u)|al + Q" + cl|V,(u)¢p du.

The semigroups are positive, and assuming ! large we get [al + Q" + cl] < 0.
Since C(S!,R) is a Banach lattice, this implies |V,(¢)| < 1, where for notational
convenience we drop the reference space for the bounded operator norm [cf.
Davies [5], Lemma 7.1—V,(¢) is a bounded operator on C(S’, R)]. Consequently
[taking ¢ + a instead of ¢ in (8.18)], there is for any £ > 0 and ¢ > 0 an i(c, ¢)
such that

(3.20) |Veii(2)| < exp[—c(k + 1)t] forall I > i(c,e).
) Segond, we obviously have for any j,
IP/| < jlbl

[P/ is a bounded operator form C(S7*! R) into C(S/, R)].
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For ¢t > 0 choose ¢ > 0 such that In(c) > at. Then by (3.16) and (3.20)
(choosing m large),

MKt s, k,m,e)lll
<c(t)(k+m+ D2 - [, ki
c(t)(k+m )/O /0 c(t, k,i)

X[[‘i... ft'"e—c(k+ix1,~—t,-+1) et @SR E Mty =ty )
0 0

m

K@k +m+ 1ty dt,., - dt;,|dt - dtlH (E+1)

<c(t,k,i)(m —i)’exp[(~In(c) + at)(m —i)] >0 asm — .

Therefore, for any 0 < s < ¢t and any &,

(3.21) O*(t) = V,(t — s)Ok(s) + f I(t,s,k,i &) + &2 f J(t,s,k,i,¢).

i=1 i=0
(iv) By (3.7) and (3.11)-(3.13) there is for any ¢ > 0 a c(¢) < « such that
for any ¢ > 0 and j € N,
(3.22) sup I L7(s) Il < c(t)j%e*p’p(e,n,t),
O<s<t

where p = sup, ||l f5(0)|ll. We will first estimate the innermost integral in
J(t, s, k,i,e). From (3.22) we obtain

H u
s

[ Vi(u - v)Q/L’(v) dv

[s Vi(u — v)e®*Q’ dv

<c(u)j’p’ p(e,n,u)

“Sy(u - v)R(-,") du
/

[Similarly as in (3.19)—with V(t) V(t)e“”‘ —we obtain V(t)IQJI <
S (t)IQJI Here |Q’| is the function (xl, N D 1@/ (x,, .. DN
Thus, using the kernel representation of Sz(t) and (3. 10),

< c(u)j*ples® p(e,n,u).

< c(s) j4/e® [ p(e,n,u)]%.

‘["Vj(u — 0)Q’L(v) dv

By the estimate |V;(#)| < e in the other integrals of J(¢, s, , i, ¢), we obtain
now

(3.23) NI (t, s, k,i,e)lll <c(t)(k+ i) ok p(e,n, )]

Xea(k+l)t(eat(t _ S)plb')i.
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Finally, for any ¢ > 0,
e[p(e,n,t)]? = 0(eV?) if n <3,
e2[p(e,n,t)]” = o(1) for all n.

(v) As in the second part of the last step, we obtain by (3.16)

(3.24)  WI(t,s,k,i,e)ll <c(s)(k +i)2 Feakt(e(t — s)lb])".

Assume now that the first statement of Theorem 3.1 holds for all s < ¢ < o (it
holds for 7= 0 by H.2). Then we choose s so close to 7 that (e (f — s)
(p + 1)) < 1, whence there is a 8 > 0 such that for all ¢ € [s, + 8] both series
on the right-hand side of (3.21) are dominated by absolutely convergent series
(independent of &!). Thus the first statement of our theorem holds on [0, ¢ + 3]
by Lebesgue’s dominated convergence theorem (applied to =, [l I(¢, s, &, i, ) I]).
These arguments and the estimates in step (iv) imply the second statement. O

4. Limit theorems. In this section a will be some arbitrary fixed real
number greater than n/2 + 1, and D([0, f]; H__) denotes the Skorohod space
of H_ _-valued cadlag functions defined on [0, £] for some £ > 0. “ = " denotes
“weak convergence.” Y, is an H__-valued square-integrable random variable
defined on the same probability space as M [given by (2.20)], and supposed to
be independent of M.

THEOREM 4.1 (LLN). Assume |X§ — X,l_o — 0 stochastically in addition
_to H.3(L) for anyt > 0, H.1(k) with k > n/2 + 1 and H.2. Then foranyf > 0
and 6 > 0,

(4.1) P{ sup | X*(t) - X(1)|_q > 5} 50 aselo.

O<t<t

THEOREM 4.2 (CLT). Assume Y§ = Y, and Y, is independent of M [de-
fined by (2.20)] in addition to H.3(C) for somet > 0, H.1(k) with k > n/2 + 1,
H.2 and n < 3. Then

(4.2) Ye=Y onD([0,f];H_,), Y°=¢V2(X~X),

where Y is the Ornstein—Uhlenbeck process given by (2.21) and (2.22) with
Y(0) = Y,.

First, we will derive an inequality needed in the proofs of the theorems,
whose proof follows from the inequality

3n—-2 p

Z la; — bi|21

c— 1,5

(*) la,l* <

for real numbers a,, b, with a, =0, |b,] <cla,_,l and ¢ > 1, n € N. [(¥) is

n»“n
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shown by induction: (i) It holds for n» = 1 since our assumption implies b, = 0.
(i) If it holds for n — 1> 1, then (a,)® <(a, —b,)? +[1/(c — D] X
(@, = b,)>+ (c — Db2 + b2 <(a, — b)) c* 2/(c — D] + c¥a,_,)? < the
right-hand side of (*) by assumption.]

LeMMA 4.1. Let Z be an H_ -valued square-integrable process, t <t and
m € N. Set

N(t) = ’/:U(t,u)Z(u) du, p=1t2"", N(kp):=U((k+ 1)p, kp)N(kp)

and B :=p(f, a).

Then
2m _ 2
(43) E max |[N(kp)|Z, <c(f) 2" ¥ E|[N(kp) - N((k - )p)|-..
sk= k=1 ,

ProOF. We set c := eP? "¢+D with B = B(£, a) from the definition of the
bounded operator norm of U(t,s) on H_,. Furthermore, we set a, =
INCkp)| -4, b), = IN((k-1)p)| _., apply the triangle inequality to | - |, and use
the monotonicity of the right-hand side of (*). Then we take

e3B+D)

c(t) =c(t,a): G+ DB
Proor oF THEOREM 4.2. Let us denote by c(e) finite constants such that
(p(e, n,t))"lc(e) is bounded uniformly in & on finite intervals [cf. (3.3)]. The
first step of the proof is a direct generalization of Dittrich’s proof in [7] to our
setting. Nevertheless we will give the most important steps.
(i) Take a smooth ¢, abbreviate

@y = 2D o,

Q(u,x,y) : fquer(r,q)G(u,q,x)G(u,r,y)e2“"

and define

N¢ N;
(n°(s,u), @) = |2 Q(u,xi,x)) — 26 L [daf(s,q)Q(u,xq)
i#j i=1
(4.4) !
“+ [ [dadrfe(s,q) f*(s,r)Q(u,q,7)|.

Note that 7°(s,0) = n°(s). Applying Dynkin’s formula to the functional.
(n(s + u,t — s — u), ¢y of the Markov process (X7, ,,u), 0 <u <t —s, we
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obtain
“5) n°(t) = n°(s,t —s) + fot"sduHS(Xe(s +u), f5(s +u))
+ mf(s,t —s),
with
(He(X*(s +u), f(s+u)), o

Novu
= —2be Z fqutirfe(s + u,Q)fa(S + u,r)Rs(qyr)
i=1

XQ(t —s —u, X,,r)
+ 26 [ [dgdrdyfe(s +u,q) f*(s +u,r) f*(s +u,7)
XR°(q,y)Q(t —s —u,q,r)

3 Nse+u N:+u
+ b'g Z Z Q(t -$§ - u’x;+u’xg+u) Re(x:+u’xé+u)
k+#l i#j
G, jIn{k, l}+0
Niyu
— 2be® ), /des(s +u, Q)Q(t -8 = U, XSy, Q)Re(x:+u7x£+u)
k+l1

and m*(s, u) a family (in s) of H__-valued square-integrable F,,, martingales
[F,,, = 0o(X v <s+u)] such that m*(s,0) = 0 and {m°(s, ), ¢) is (s, u)-
measurable.

By elementary calculations using (3.2), we obtain for 0 < u,s,v <t < £,

E[(n*(u), U(t, u)¢)?] + B(CH (X*(s), f*(5)), U(t,0) )
< ce(B)ec(e) Nl

Consequently, for 0 <s <t <,

B (@), Ut )9 du)2

(4.6)

- 2E{/s‘[s”[<nf(u),v(t,u)<p><n8(u,v —u), U(t,0)0)
+{(n°(w), U(t,u)¢>[0"_“<He(X€(u +w), F(u + w)), U(t,v)¢) dw
(), Ut w) e} m(u,v — u), U(t, v)¢>o] dudv}

< c(f){/s‘[s”E<n8(u), U(t,u)oXn*(u,v — u), U(t,v)¢) dudv

+(t - s)3SC(e)} lell?
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by the properties of m®(u,v — u) and (4.6). Another calculation using the
propagation of chaos hypothesis shows that for 0 <s <s +u <t <,

E<778(3)’ U(t7 3)‘P><778(3’ u)’ U(t’ s+ u)¢>

~[fff e e

X {e0%%(s,2y,...,2)Q(21, 2,) @1y, 21, 25)
—2e0%¢(s, 2y, 25, 23) [5(5, 24)

X [@(21, 22) @y, 23, 2) + @(uy, 21, 2,)Q( 23, 24)
+4e0%°(s, 21, 2,) (8, 25) F°(8,2.)Q(21, 25) Q(u, 23, 2,)
+£0%4(s, 21, 25) (8, 25) F5(s, 24)

X [@(21,22)@(u, 25, 24) + Q(u, 21, 2,)@(23, 2,)]
—2e01¢(s, 21) f°(8,25) f°(s,23) f°($,24)

X [@(z1,22)Q(w, 25, 24) + Q(u, 21, 2)Q(25,24) | }

+ 4eff[dz1 dz, dzg
X {eF®2(s, 2y, 25, 23) Q(21, 25) Q1,2 5, 23)

_8F2’8(37 21, zz) f"’(s,z3)

X [Q(zh Zz)Q(u’zz, 23) + Q(u’ 217‘22)6(‘22’ 23)
+eF 15 (s,2,) f¥(5, 25) F*(5, 23)@(21, 22) @1, 21, 25) |}
+ 232[fd21,dz2 Fz’s(S,zl,22)6(21’32)6(u731’32),

with

Q(x,y) — bRe(x,y){ U(t,$)¢(x) ;‘ U(t,s)gp(y) }’

Q(u,x,y) = f[dzl dzz{ U(t,s +u)e(z) ;’ U(t,s +u)e(z,) }bRe(Zl,Zg)

X G(u,z,x)G(u,zg,y)e2"

and

k
SFk’e(S,zD'"!zk) = Fk’e(s,zh'”’zk) - l—[lfa(s’zj)'
Jj=
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Hence, for 0 <s <u <v <t <f{,
E(n®(u),U(t, u)o)n"(u,v — u),U(t,v)¢)

(4.7) < c(f)[O(S) + 820(82/" + (U - u)_n/2)] ”|¢”|2

Let p,q € N U {0} U {}, p < g, and define the projection operator 7] on H_,
by

17';,14) = Z <¢7 ¢l_a>—a¢l_a1 Where d) € H—a'
p<lll<q
(4.7) implies by (2.8) and ||| ¢, Il 2 < 27,
2

E

g [‘U(t, u)n*(u) du

(4.8)  <c(da){o(e)(t —5) + [e2(t — s)e(e) Ae(t —5)7]
+(t = 5)%ec(e) ) El;l PP
pr=<lll<q

where ‘“A”’ denotes minimum.
(ii) We apply inequality (4.3) with Z := £¢~1/2»® and obtain for # < f [with
p=1t2""",s=(k—1p and ¢t = kp and 7 in (4.8)]:

2

(4.9) E‘/:U(Z,u)s_l/zne(u)du

<c(f,a)t?{o(1) + c(e)e2™ +c(£)2™™} >0 ase 0

and m = m(e) ~ —In(e)/21n(2) — . In particular,
t
N(t) = [U(t,u)e™"*n"(u) du
0

is compact on H_,, for any ¢ < £.
We will now show that N(-) satisfies a ‘““modulus of continuity’’ condition
on D(0,%]; H_,) given in Kurtz [15], Theorem 2.7. Define for 8 > 0 and

r € (0,1),

v4(8) =2 sup |(U(¢t + 8,t) —I)N(2)|°,
O<t<t

+ 6 sup

" O<s<t<ft

= A_(8) + B,(9).

JTU(t u)e 20" (u) du] DN

s

Note that sup, E(sup,_;.; A4,(8) < c(f) < » by taking the monotone limit in
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(4.3) and using (4.8) with p = 0 and q = ». Furthermore,
A(5) <4 sup |(U(t+8,t) — I)m=N(t)|".

O<t<t

+4 sup [(U(t+6,t) — I)mEN() [,

O<t<?
= A, (7),8) + A, (m§,9).
Since A (7, 8) = 2A,(8) we may by the above argument for arbitrary y > 0
choose a p = p(y) so that
Y
supE sup A (7;,8) < =,

£ O<s<? 2

by Dini’s theorem and the monotone convergence theorem.
Similarly we obtain

supEA,(m2,8) <c(f) ¥ sup |(U(t +5,t) — o[,

lll<p O<t<t
-0 asdl0,

by the strong continuity of U(¢, s). Therefore there is a = §(y) > 0 so that
sup, EA,(8) < y. Hence, sup, EA_(8) — 0, as § | 0. Estimating B_(5), we get
(using the notation of the statement of Lemma 4.1) for j < k,

| N(kp) = B((j = Dp)Lal (R - )p) ™"
k—1 2 _
<e® ¥ [N(ip) - N((i - )p)[~u((k =j)p) ™"
i=j

+2e%! Y |N(ip) - N((i - )p)|_a

J<i<l<k
x| N(ip) = N((1 - 1)p)|_o((k —j)p) ™"
2" P
< c(f){ Y. | N(ip) = N((i - 1)p)|-ap“‘}

i=1

¥ c(f){ Y |NGp) - N((i - Dp)] .

l<i<l<2™
X|N(p) = N((1 = 1p) | o = 1)p) ")

—edler + oyl
The inequality (4.8) yields
ECM™ < c(H)2m®™ D[1 + 2 ™c(e)] >0 as m — o,
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Again from (4.8) we obtain

gm

ED;n<c(t)2 9-m 2 27m((1 = §)27™) M1 + 277c(e))
i=1 l=i+1

~¢(t) 1

1
—{1 + 27"c(e)}
m

—>c(f)1_ as m — .

Consequently, by monotonicity

supEB (%) = sup8“2 lim £E max |N(kp) -~ N((j - 1)P)‘2-a((k -ip) "

m-oo  1<j<k<2™

.1
< 8te(t) =

Altogether we obtain [setting n°(x) = 0 for u > £]
2

j’tJraU(tJI-ﬁ,u).sfl/2 “(u) du —fU(t w)e Y2 (u) du
0

(4.10) ca
< 7/(8)
and
(4.11) lim lim sup Ey(8) = 0.
310 .10
This implies by (4.9) that
- (4.12) jO’U(., uw)e V2 (u)du =0 on D([0,]; H_,).

(iii) We will now deal with the ¢*-term in (2.17). Let ¢ be smooth and
denote y(¢, u, q) = U(¢, u)p(q). Then by (2.19),

E({5(u), Ut u)e)’
=E{<X‘“’(u) e [ g DD TR e, -)dq>

2
—(X*(u) = f(u), X(u)d(t,u, ‘)>}

= E(X(u) — (), 1°(u))"®
[With () = [F4Cra) (W(t,u,q) ;r w(t,u, .))Rg(q’ ) dg

_X(u)%ﬁ(t, u, )]

= effﬁ2'f(u, r,g)l(u,r)l*(u,q)drdq
= 2e(F (), I(u) (), 1°(u))o.
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By elementary calculations using the smoothness of X (which implies the
smoothness of (¢, u, - ); cf. Kotelenez [12]), we obtain for # > 0 a c(f) < =
such that for u < ¢,

Mic(u)ll < c(B)e' "l ellls.

Hence

E(X*(u) = fo(u),15(u))* < c(D)ec(e)e¥ o lI7,
and thus for 0 <s < ¢ < ¢,
2

(4.13) E <c(l,a)(t - s)’c(e)e¥/ .

ftbe“1/22U(t, u){f(u)du

Applying (4.3) with Z(u) = 2be " /%*(1) and passing to the monotone limit
yields for any & > 0,

[be122U (2, u) ¢ (u) du

(4.14) P{ sup
0

O<t<?

28}—)0 as €]0.

(iv) M*¢ = M. Comparing (2.6) and (2.20), it can be easily seen that for any
t <t and smooth ¢,

(4.15) E((Me(t), @) —((M(t), )" = o(1) ll ol .

Moreover, we have

sup KMe(t),¢) —(M(t =), 9|

O<t<t?

=& /% sup (X*(t),0) ~(X°(t ), )

O<t<t?
< 2eV2|lelll > 0 aselO.
This implies by Lipcer and Shiryayev [17] that
(4.16) (M*(-),¢) =(M(:),¢) on D([0,{];R).

Denoting by , the projection of H__, onto the space spanned by all ¢, * such
that |l| < k, (4.16) implies

(4.17) m,M*=m,M on D([0,{];H_,).
On the other hand, we obtain from (2.6) and Doob’s inequality with 7} =1 —
7Tk,

Esup|7r,jME(t)|2_a_<.c(f) Y oAt
(4.18) t<i Ll>k

— 0 (uniformly in ¢) as £ — .

From elementary manipulations with a suitable metric on D([0, ]; H_,) (cf.
Kotelenez [10]), we obtain from (4.17) and (4.18) that

(4.19) M¢=M on D([0,{];H_,).
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Hence by Kotelenez [11] (cf. also [10] and [14]),
(4.20) f.U(',s) dM¢(s) = f.U(-,s) dM(s) on D([O,f]; H_ﬂ).
0 0

(v) Note that our assumption on Y, and (4.19) imply that Y{ and M* are
asymptotically independent (the proof is the same as that of Lemma 4.12 of
Blount [3]). Now (4.2) is obtained from (4.12), (4.14), (4.20) and Theorem 2.1
by using the metric d, on E. O

The proof of Theorem 4.1 easily follows from the proof of Theorem 4.2.

5. Remarks. The CLT implies (at least for some finite time) that (in
distribution)

(5.1) X=X+ e/2Y + o(£'/?),
where X° formally satisfies
(5.2) dX® = [(DA +a)X* + bX*(X° — 1)R| dt + '/ dM*

[cf. (2.5) where R* is appropriately defined as an operator]. Since R*(q, r) is
close to the delta function, (5.2) is (roughly speaking) a perturbation of the
macroscopic equation (2.1) by a semimartingale with a small martingale part.
As mentioned in the introduction, (2.1) (with a more general polynomial
interaction) was obtained in Kotelenez [14] as the limit of a system of particles
X, n (defined on a grid) where the interaction was not local. In that model N
is the number of grid points (~ 1/¢) and v is proportional to the number of
particles interacting with one another. The evolution equation for X,  is

(5.3) dX, y=[[DAw, +a]X, n+bX2y]dt + (uN) *dM, y,

where M, y is a martingale similar to M* and Ay, is the discrete Laplacian.
The assumptions in [14] were: v — © as N — o« for the LLN, and v/N — « as
N — « for the CLT [they were also proved to be necessary for polynomials of
second degree, i.e., for our macroscopic equation (2.1)]. Hence a perturbation
of (2.1) by a small martingale is possible if the interaction is nonlocal.
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