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A LIMIT THEORY FOR RANDOM SKIP LISTS!

By Luc DEVROYE

McGill University

The skip list was introduced by Pugh in 1989 as a data structure for
dictionary operations. Using a binary tree representation of skip lists, we
obtain the limit law for the path lengths of the leaves in the skip list. We
also show that the height (maximal path length) of a skip list holding n
elements is in probability asymptotic to ¢ log; ,, n, where c is the unique
solution greater than 1 of the equation log(1 — p) = log(c — 1) — [¢/(c —
D] log ¢, and p € (0, 1) is a design parameter of the skip list.

Introduction. A skip list is a fast probabilistic data structure for dictio-
nary operations (insert, delete, search, member, sort) introduced by Pugh
(1989). The object of this article is to analyze the expected time behavior of the
data structure. We first describe a random tree that could be of interest in its
own right. We will then see how it relates to the skip list.

The basic random tree holding n elements is defined as follows. Each
element in the tree can be visualized as “living”’ at one of the grid points in
the integer grid consisting of {(i, j)I0 <i < n, j > 0}. Edges in the tree only
run horizontally or vertically. The randomness is introduced by generating n
iid. geometric (1 — p) random variables G,...,G,, that is, each G; is dis-
tributed as G, where

P(G=i}=p‘(1-p), i=0,

and p € (0, 1) is a design parameter. The nodes alive in the random tree are of
the form (i, j)with1 <i <n,0 <j < G;,or (0, j)) with 0 <j < max, _;_, G;.
We say that node (i, j) lives at level j. First, we introduce all the edges
between nodes (i, j) and (i, j + 1) if both nodes exist in the structure. These
vertical edges constitute all the “left’” edges in a binary tree. The “right”
edges are obtained by horizontally connecting (i, G;) with (k,G,), where
0<k<i, and % is the largest integer less than i (if it exists) with the
property that G, > G,. If such a k does not exist, (i,G,) is connected with
(0’ Gi )-

As shown in Figure 1, the G,’s can be considered as upright poles. Each top
of a pole is connected horizontally to the left to the nearest pole that is at least
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Fic. 1. Binary tree representing a skip list.

as high. All horizontal connections are stopped, if need be, at a pole with first
coordinate 0. In binary tree lingo, a horizontal edge corresponds to a
father—right child relationship, the father being on the left (with smaller first
coordinate), and a vertical edge represents a father-left child connection, the
father having the larger second coordinate. The root of the tree is at position
(0, K,,). The unique path to the root from a node (i, 0) has length D;, and hits
the pole at coordinate 0 for the first time at (0, K;). The path distance between
(i,0) and (0, K,) is called P;, so that

D, =P + (K, -K;).
The quantities we will study in this article are the D,’s and the height of the
basic random tree,

H, = max D,.
" l<i<n

In p'articular, we will obtain a limit law for D; when i changes with n, and a
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law of large numbers for H,. The latter result is obtained by constructing a
particular branching process.

Skip lists. In Pugh’s skip list (1989), the nodes at (i,0), 1 <i < n,
represent elements to be stored in a data structure, which we shall call
%q,...,%,. These will be stored in ascending order: x; <x, < -+ <x,. All
other nodes in the structure are auxiliary nodes holding only pointer informa-
tion. All the poles are nothing but linked lists or doubly linked lists. Horizon-
tally, we store a linked list for every level, which means that at every level, we
connect all the nodes that exist at that level. The rightmost nodes at every
level have nil pointers. This is where the original skip list deviates from the
tree representation of Figure 1, as additional horizontal connections are
needed. However, it turns out that all the skip list operations can be carried
out equally efficiently if we had just stored all the horizontal pointers in the
tree of Figure 1. With each vertical linked list of nodes (i, j), we associate the
value of x;. With the pole at 0, we associate the value — . By ‘“association,”
we mean that a pointer to the location of the value x; is stored; hence, a quick
look-up reveals the value x;, for any position (i, j) in the skip list.

When we search for element x;, we go first to the root at (0, K,), which is
specially marked as such. With the aid of comparisons with the values associ-
ated with a node and with its right child, we will either move to the left child
or the right child. If a node has no right child, we automatically move to the
left child. In this manner, we will move down the tree, following the unique
path linking the root with (z, 0).

- Inserting an element is equally simple. It requires the generation by means
of a random number generator of an independent geometric random variable.
We will assume that we have at our disposal a source capable of producing an
i.i.d. sequence of uniform [0, 1] random variables. The operation insert is like
the operation search described above, but along the way we will have to modify
some pointers. Deletion is like undoing an insertion. Note that there is no
choice as to how a deletion is carried out because a skip list is uniquely
determined by its collection of geometric random variables.

The time taken by an operation involving x; is proportional to D,, the depth
of node (i, 0) in the basic random tree. Recall that i refers to the rank of the
present element among the elements stored in the skip list, and not its time of
insertion. To have uniform performance guarantees over all elements of all
ranks, it is useful to know how H, behaves.

Before proceeding with the analysis, it is useful to note that this structure
does not impose any conditions on the data. All its good qualities are entirely
due to the randomness artificially introduced. We also note that when the
linked list for level 0 is emptied, then the elements are encountered in order,
so constructing the skip list from scratch by consecutive insertions among
other things sorts the data. The skip list is thus a generalization of the linked
list in which the data are linked by pointers and elements are sorted as we
move from the header to the tail.
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The following results are known.

1. Papadakis, Munro and Poblete (1990) showed that in fact
ED, = (l/p)logl/pi + logl/p(n/i) + 0(1).

They also obtained precise expressions for the O(1) term. Earlier, Pugh
(1989) proved the explicit inequality

ED; < (1/p)log,,, i + log,,,(n/i) + 1/(1 —p) + 1.

2. Devroye (1990) proved that D,/log,,,n — 1/p in probability and in the
mean. The optimal value for p minimizing the asymptotic value for ED, is
p = 1/e. In that case, ED, ~ elogn.

The purpose of this article is to obtain more refined results. We present a limit
law for the D;’s, as well as a law of large numbers for H,. The latter result
requires a delicate reduction of the problem to one involving the survival of a
particular branching process.

THEOREM 1. Leti = i(n) be a sequence of integers varying with n in such a
manner that 1 - © as n — . Then

D; - logl/p(n/i) - (I/P)l()gl/p i
V(@ —p)ptlog,,,i

2y ‘/V(O’ 1)7

where —_, denotes convergence in distribution, and .# is the normal distri-
bution.

CorOLLARY. Ifi is as in Theorem 1, then

Di - logl/p(n/i)
log, /0

— — in probability.
p

THEOREM 2. H,/log,,, n — c in probability, where c is the unique solution
greater than 1 of the equation

c
c—1

log(1 — p) =log(c — 1) — logec.

Proor or THEOREM 1. The basic identity is

D;=P + (K, -K,).
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We will show the following things:

A K, - K, —log,,,(n/i) = O,(1), where a sequence of random variables X,
is Op(l) when V ¢ > 0, 3 M > 0 such that sup, P{|X,| > M} <e.

B. (P, - (1/p)log, ,, i)/ /(1 — p)p~2log,,, i = A(0,1).

The limit law follows immediately from these two statements. By this device,
we have split the problem cleanly into two subproblems, and we will not have
to worry about the dependence between P, and K, — K.

Since

K., = max G;

1 Y . b
l<j<i J

and i — o, we note that K; —log,,, i = O,(1). This standard fact is easily
obtained as follows: If & = log, ,,, i + a;, and |a; — a| < 1 for some integer a,

P(K, <k} = (P{G, < k})’

= (1-P{G, > k)’

— (1 _pk+1)i
— (1 _pa,+1/i)i
~ exp(—p“i“).

We obtain the result by taking a very small and very large. We conclude that
K, - K; —log,,,(n/i) = O,(1).

To handle part B, extend the basic random tree infinitely far to the left,
and associate ii.d. random variables G; with elements (i,0), i= ...,
—-2,-1,0,1,...,n. This creates an infinite random tree, as it is uniquely
determined by a left-infinite sequence of geometric random variables. There is
no root—the root ‘“escapes” to « so to speak. The path starting at (Z, 0) still
passes through (0, K,), as it does in the basic random tree. Thus, P, remains
unchanged, as does K, — K;. Let N; be the number of nodes at level j on the
path in question. Then it is easy to see that the N; — 1’s are i.i.d. geometric p
random variables:

P(N.=i}=(1-p) 'p, ix=Ll

J
Also, the truncation of the tree at (0, K;) implies the follovﬁng:
' Y NIk <P <

: —

j=

Nl <)

T

0

As we know from above, K; = log,,,i + O,(1), so that there is very little
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variation in the number of levels that we need consider. Thus, a simple
splitting argument allows us to handle the limit law for P,. We define the
integers

k = |log,,, 1 + loglogi|,
I =[logy,,1 —loglogi].

Since the N,’s have mean 1/p and variance (1 — p)/p2, we have by the central
limit theorem, as i — .

EAoN; = (k+1)/p

-, #(0,1),
V(A -p)p~2(k + 1)
and similarly with % replaced by /.
We have
k 0
P< Y Nj+ Y NI i,
j=0 J=k+1

so that, with

def . — .
2, = (1/p)log, ,, i + uy/(1 —p)p~2log, , i,

and u € R and ¢ > 0 fixed,

k
P{P, > z,} sP{Z Nszi} +P{k+1<K,}.

Jj=0

The first term on the right-hand side tends to 1 — ®(«) by the central limit
theorem alluded to above, where ® is the standard normal distribution
function. The second term is o(1) because K; = log, ,, i + O,(1). This shows
that liminf, , , P{P, < z;} > ®(u).

In a similar vein, we have

I l
P>} N; - )y Nl k-
j=0

With the same choice of z; as above, we have

J

l
P{P; < z;} sP{ N; szi} +P{l > K;}
=0

< (1+0(1))®(u) + P{K; < 1}
= (1+0(1))®() + (1 - p'*Y)
< (1+0(1)®P(u) +e ™
=(1+0(1))P(u) +o(1).
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We conclude that lim sup; _,,, P{P; < 2;} < ®(u). Thus, P(P, < z;} - ®(u). This
concludes the proof of Theorem 1. O

The height of the skip list. When studying the height of the skip tree, it
is convenient to construct a certain branching process. This will be done in this
section and in Lemma 1, whose proof is based on arguments that go back to
Biggins (1976, 1977) and Devroye (1987). Another proof can be given that uses
the theory of extrema of branching random walks as developed for example by
Kingman (1975), Hammersley (1974) and Biggins (1976, 1977), but the pre-
sent proof seems more intuitive and direct.

We begin by defining a right-infinite extension of the basic random tree. The
construction is as before, but with every positive integer i we associate a
geometric (1 — p) random variable G;, and these form an i.i.d. sequence. The
root of this tree is at (0,«), and the path from (i,0) to the root still passes
through (0, K,), as it does for the (finite) basic random tree. The collection of
descendants of a node (0, &) includes nodes (1, 0),...,(F,, 0), where the letter
F refers to the fact that this is the final node among the (i,0)’s that can be
reached from (0, k). For example, it is clear that Fyx > n.In other words, by
duality, F, > n if K, > k.

The basic random tree and its right-infinite extension have the interesting
property that every node in it, except those with coordinates of the form (i, 0),
has a left child. And every node has a right child with probability 1 — p.
Moreover, the presence of each of these right edges is decided independently of
all the other edges. Indeed, (i, j) has a right child if it is true that the next
m > i with G, > G; is such that G,, = G;. But given that G,, > G, by the
memoryless property of the geometric distribution, G,, = G, with probability
1-p.

We also note that the subtree of the infinite tree restricted to only those
nodes that are descendants of (0, K,), and are ascendants of one of the nodes
(i,0), i < n, is our original finite basic random tree.

The properties of K, were studied in the proof of Theorem 1. We need to
study the properties of the subtree of (0, k) as k increases. Let 7}, be the
maximal path distance between (0, k) and any node of the type (i,0). The
fundamental auxiliary result of this article is Lemma 1.

Lemma 1. T, /k — c in probability, where c is the unique solution greater
than 1 of the equation

c
c—1

log(1 — p) =log(c — 1) — log c.

v

- Proor. The proof that T,/k > ¢ + ¢ finitely often almost surely follows
from simple inequalities. Since this result is not needed further on, it will not
be shown. To show that P{T, < (¢ — )k} — 0 for any 0 < ¢ < ¢, we will first
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prove that it suffices to show that
liznian{Tk > (c—¢/2)k} =B >0,

for some positive B. Consider the maximal path distances in the trees rooted at
the right children (f they exist) of (0, %2),(0,% — 1),...,(0, 2 — r). Call these
Vi,...,V,_,, where, by convention, the maximal path distance is —1 if the
tree is empty. Obviously, since these trees are disjoint, each tree is empty with
probability p:

T,>z max {(j+1+V,_}.

- O<j<r
Thus, by independence of the V’s,
P(T, < (c — &)k}

<7 P{j+1+V, ;<(c—e)k}
j=0
ﬁ(p+(1—p)P{j+ 1+Tk_j<(c—8)k})

Jj=0

= J_Ijo(p + (1= p)P(T, ; < (c—e)(k—j) +r(c—e-1)})

IA

IA

TI(p+ (= PIP(Tuc; < (c = e/2)(k =J)}) (for k large enough)

- Jljo(l — (1= p)P(T,, = (c - e/2)(k — 1))

< e~ A=P)EjoP(Th_;=(c—e/2Xk =)}
< e—(l—p)(r+ 1):1/2,

when %k — r is large enough. By choice of a large fixed r, we can make the
upper bound as small as desired. Thus, we need only prove that

lim inf P(T,, = (c — e/2)k} > 0.

To show this, we construct a fictitious branching process. Let p < ¢ be a
constant. The pater familias of the population is the root node at position
(0, ). We carefully choose a large but fixed integer / according to a recipe to be
given below. In the infinite associated binary tree, we consider all nodes at
distance ! from the root, and keep only those whose right-distance is greater
than or equal to [al]; that is, the number of right-edges on the path to the root
is greater than or equal to [al]. The constant « is in (0, 1). These nodes are
called, the offspring of the pater familias. We choose / and a in such a manner
that. the expected number of offspring is m > 1. Each offspring in turn has
offspring at distance [, and in this manner, we create a Galton-Watson
branching process. The fundamental theorem of branching processes says that
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the population survives forever with probability ¢ > 0. In particular, with
probability at least g, there exists a node at distance |p% /|l from the root,
and at right-distance at least [alllpk /l]. Its left-distance is not greater than

Lok/LI(L ~ [al]) < (pk/U)(I —al) = pk(1 —a) =k
if we have p = 1/(1 — a). Since the left-distance is less than or equal to %, the
node actually is a real node, as its level is greater than 0. So, assume the node
in question is at coordinates (7, j). Then the node at (i, 0) is at an even greater
distance from the root. This distance is at least
llpk/l) = U(pk/l — 1) = pk — 1.
Thus,

lim inf P} = pk ~ 1} 2 ¢ > 0.

Since [ is a constant, and p is an arbitrary positive constant less than c, we
see that for arbitrary £ > 0,

li;nian{Tk > (c —e)k} > 0.

Lemma 1 follows if we can establish the existence of constants a € (0,1) and [
(integer) such that m > 1. To see this, note that the pater familias node has ( f )
possible offspring at distance / and right-distance i. A given node with these
properties actually exists with probability (1 — p)* because on the path to the
root we must meet precisely i right edges at given locations, and these occur
independently with probability 1 — p. The expected number of offspring at
distance ! and right-distance at least [a!] is

)y (f)(l —P)i = ([all])(l _p)[a”

i>[all

1 \/ l ll(l _p)lall
>
\/—?; [al](l - [al]) (l’al'l)[“”(l _ "al])l—[all
(for all / large enough, by Stirling’s formula)
1 1-p° \
= l-a
edm(al + 1)(1 — a) al | (1 — a)
(for all  large enough)

> 1,
for all [ large enough, provided that
alog(l - p) > alog(a) + (1 — a)log(l — a).
Translated in terms of p, this is equivalent to asking that p > 1 and
(p—1)log(1 —p) +plogp — (p — 1)log(p — 1) > 0.

With equality instead of inequality, this is precisely the definition of c. For
1 < p < ¢, the left-hand-side expression is indeed positive. O
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Proor oF THEOREM 2. In this proof, T}, D,, N;, P, and K, keep their
meaning from above. In particular, N; is distributed like 1 plus a geometric p
random variable. Observing that T, < Ty < --- < T, < ---, we have the
following implication of events, where & > 0 is a fixed integer and ¢ € (0, c) is
a constant:

[H, < (c—e)k] € [Tk,_1 < (c—&)k]
c[[Ty<(c—e)k] N[K,-1=Fk]]U[K, - 1<E]
C[T,<(c—e)k] U[K, <k +1].
Take k =[(1 — &)log, /b n]. We have seen in the previous section that

K,/log,,, n — 1 in probability, so that P{K, < k + 1} — 0. Also, by Lemma
1, P{T, < (¢ — €)k} — 0. We conclude that

lim P{H, < (¢ — ¢)log,,, n} = 0.

n-—o

The theorem follows if we can show that

lim P{H, > (¢ + ¢)log, ,, n} = 0.

Define [ = |log,,, n — Wl. Since H, = max,_;_, D;, and each D,
is stochastically smaller than D,, we have, with £ = [6log, ,, n], 6 > c,
P{H, >k} <P{K,>1l} +nP{D, >k, K, <1}
=o(l) +nP{P, >k, K, <}

i
<o(1) +nP{ Y Nj>k}.
j=0
Via Chernoff’s exponential bounding method [Chernoff (1952) and Hoeffding
(1963)], we obtain for any ¢ > 0,

l
P{ N, > k} <e *(EN,)"*"
j=0

< e'tk(EetNl)Hl

; i+1
_ -tk pe
1+ pe' —ef
!
—th pe’
1+ pe’ — e
Rk a N (tak , k—1
== —_—_—_——_——_——_— — e e =
Ik - 1)+ Py p k(1 - p)

(=2
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where u = /k € (0,1). We note that as n > », u — 1/6. Collecting bounds,
we obtain

P{H, >k} <o(1) +n{(i:p)1‘u(£)u}k

u u

=o(1) + exp(logl/p n(log(1/p) + 6((1 — u)log(1 — p)
—(1 —u)log(1 — u) + ulog(p) — ulog(u)))),
=o(1), '

provided that the coefficient of log, ,, n in the exponent is negative for all n
large enough. This leads to the requirement that

(6 — 1)log(1 —p) — (0 — l)log(e ) + log(6) < 0.

This in turn is equivalent to
(6 — 1)log(1 — p) — (6 — 1)log(6 — 1) + 61og(8) < 0.

With equality instead of inequality, the equation has a unique solution greater
than 1, namely c. For 6 > c, the left-hand side is negative, as it is asymptotic
to 0 log(1 — p). This shows that P{H, /log,,,n > ¢ + ¢} - 0. O

Remarks, improvements and extensions.

The optimal p. We have seen that D, ~ (p log(1/p))~ ! log(n) in probabil-
1ty, and that H, ~ C, log(n) in probablhty, where C, = c¢/log(1/p), and c is
as in Theorem 2. In Flgure 2, we have sketched the coefﬁments of log(n) as a
function of p. The minimal value of 1/p log(1/p) occurs for p = 1/e: At this
value, we have D, ~ elog n in probability. This was also observed by Pugh
(1989), Table 1. Interestlngly, the value of p that minimizes the coefficient C,
is very different: The minimal value C, =6.1593... is obtained for p =
0.59139... . Figure 2 also shows the relatlve 1nsen31t1v1ty of the constants
l/plog(l/p) and C, to the value of p when p is in the range 0.3 to 0.6.

Relationship with random binary search trees. There are several similari-
ties between random binary search trees [see Aho, Hopcroft and Ullman (1983)
for definitions and terminology] and skip lists; in both cases, the distance
between the root and the last node inserted is asymptotic (in probability) to
Alogn for some constant A, while the height of the tree (skip list) is
asymptotic (in probability) to C log n for some constant C > A. The constants
" are smaller for the randomized binary search tree, however, with A = 2
[Lynch (1965), Knuth (1973), Sedgewick (1983) and Mahmoud and Pittel
(1984)] and C = 4.31107... [Devroye (1986, 1987).] As we have seen, for skip
lists, A > e and C > 6.1593... uniformly over all p.
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Storage requirements. The number of nodes in the basic random tree is
n+1+ X7 ,G;+max,_;_, G;, which is close to n/(1 — p) by the law of
large numbers. Of these, there are exactly n nodes with no left child, as each
horizontal edge corresponds to one pole.

Trimmed skip lists. The number of operations needed to locate an element
x; in a skip list can be reduced by eliminating (bypassing) all nodes that are left
children, that live at a nonzero level, and that have no right child. This is an
idea related to that of patricia trees [see, e.g., Knuth (1973)]. What is needed to
replace this is extra storage in each node to keep track of the level of the node.
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