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SHOCKS IN ASYMMETRIC EXCLUSION AUTOMATA

By P. A. FERRARI AND K. RAVISHANKAR
Universidade de Sdo Paulo and SUNY at New Paltz

A one-dimensional cellular automaton with conservative dynamics is
studied. The automaton are a special case of the Boghosian—Levermore
model, a probabilistic automaton, that has been used as a microscopic
approximation for the Burgers equation. We study the stationary measures,
the hydrodynamical limit and the existence of a microscopic interface.

1. Introduction. The generation of shock waves is a phenomenon which
appears in many physical systems such as fluid flow [Lax (1972)] and traffic
flow [Walker (1989)]. One of the most commonly used macroscopic models of
shock wave generation is the Burgers equation. The microscopic structure of
the shock in the Burgers equation has been studied by Spohn (1989), De Masi,
Kipnis, Presutti and Saada (1988), Gartner and Presutti (1990) and Ferrari,
Kipnis and Saada (1991). In all these works the rigorous results were proven
for the simple exclusion process. Boghosian and Levermore (1987) constructed
a probabilistic cellular automaton as a microscopic model for the Burgers
equation with viscosity; we call it BLCA for brevity. Lebowitz, Orlandi and
Presutti (1989) then proved that in the weakly asymmetric kinetic limit the
total density of particles of the BLCA satisfies the Burgers equation with
viscosity. We study the totally asymmetric BLCA in the hydrodynamic limit.
This is an automaton where the only randomness comes from the initial
configuration. We show that the density obeys a nonlinear conservation law of
the form

1 du a 7 0
. _+_ =
(1.1a) ot ar () ’
where

_Ju, if0<uc<l,
(1.1b) F(u) {2_u, ifl<u<2.

We also prove that there is a sharply defined microscopic position for the
shock, and we obtain a law of large numbers and a functional central limit
theorem for the position of the shock. From these results we prove the
existence of a dynamical phase transition. The probabilistic cellular automa-
ton, for which the updating rule is also random, presents the same type of
phenomenon. This is being studied by Ferrari, Ravishankar and Vares (1992).
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2. The model. A configuration of the one-dimensional Boghosian-
Levermore cellular automaton (BLCA) is an arrangement of particles with
velocities +1 and —1 on Z, satisfying the exclusion condition that there is at
most one particle with a given velocity (+1 or —1) at each site. We denote a
configuration by n(x,s), where x € Z and s € {-1,+1} and 70 €
{0, 1}Z><(—1, +1} . X.

Dynamics. The dynamics are discrete and are given in two steps:
1. Collision: For a given n let Cn be the configuration
Cn(x, +1) = 1{n(x,1) + n(x, —1) > 1},
Cn(x, —1) = 1{n(x,1) + n(x, —1) = 2}.
In other words, if there is no particle or two particles at x, then nothing
happens. If there is only one particle, under C this particle adopts the
velocity 1.
2. Advection: This part of the dynamics moves each particle along its velocity
to a neighboring site in unit time. The operator A is defined by
An(x,s) =n(x —s,s).
Defining T = AC, the dynamics are given by
Mey1 = Ty

Cheng, Lebowitz and Speer (1990) have noticed that these dynamics act
independently in the space-time sublattices {(x,#): x + ¢ is even} and {(x, ¢):
x + t is odd}. We work with the even sublattice.

Hydrodynamics. Let uy(r) be a smooth function on R. Let the occupation
number at site x for the BLCA be noted by {,(x), that is, {(x) = n(x, —1) +
n,x,1). Consider a family of initial measures on X that approximates the
density u,: {u°: ¢ > 0} is a family of product measures on X with the property
w(o(x)) = ug(ex). Let w5 denote u*(T*)'. We are interested in describing w5
by a density profile u(r,¢) which is the solution at time ¢ of some partial
differential equation with initial condition u,. We can try to guess the equa-
tion by looking at the evolution of u°, which we do know. We have

G(x) = Go(x) =mp_y(x = 1,1) —m,_y(x,1)
+ (2 —1,-1) —m_y(x, —1)
+ 1, (x+ 1, 1)n,_(x+1,-1)
= Mey(x = 1,1)m, 4(x — 1, —1).

If we denote E,({,(x)) by u®(ex, ¢t) and assume that the two-point correla-
" tions factor, that is,

Epf('rlt(x’ l)ﬂt(x’ - 1)) = Em(nt(x’ 1))Ep€("7t(x’ _1))’

then we obtain the following difference equation for u®. Let u® (ex,st) =



930 P. A. FERRARI AND K. RAVISHANKAR

Eﬁg(nt(x, + 1)). Clearly u® = u® + u®:
ut(ex,et) — u®(ex,e(t — 1))
=u(e(x —1),e(t — 1)) —u®(ex,e(t — 1))
+uf (e(x +1),e(t — 1))u (e(x + 1),e(¢ — 1))
—u(e(x—1),e(t — 1))u®(e(x — 1),e(¢t — 1)).
Now, assume that local equilibrium is valid for this system and consider u%
and u° to be densities of a stationary product distribution (locally). We prove

in Section 3 that, for all x, either u°(x) =1 or u®(x)= 0. Hence the
left-hand side of (2.1) equals

u(e(x—1),e(t — 1)) —u(ex,e(t — 1))
if u® = 0, or the left-hand side of (2.1) equals
u(e(x + 1),e(t — 1)) —u(ex,e(t — 1))

if u°% = 1. Thus we obtain that, in the limit as ¢ — 0, the density profile
u(r,t) for u is a weak solution of (1.1).

In this case a smooth increasing initial profile u(r) such that u(r) < 1 for
r <0 and u(r) > 1 for r > 0 will lead to a shock in finite time. This is seen
from the observation that the characteristic velocity to the left of the origin
(F’) is 1 (since u < 1) while to the right of the origin it is —1. In-
deed, u(r,t) = uy(r — vt) is a solution of (1.1), where v =(1 - (p + 1))/
(1 — (p — ) [see Lax (1972)].

In Section 6 we show that, for initial profiles which are step functions [i.e.,
u(r)=A +M)1{r >0} +pl{r <0}, 0 <A, p <1], the appropriate rescaled
density converges to the unique entropic solution of (1.1). In Section 4 we
show that the shock (which at time zero is located at the origin) stays sharp.
More precisely, we show that there exists a position X(¢) such that, as seen
from X(2), the system at time ¢ has the same distribution as at time zero (with
left density p and right density 1 + A). The shock satisfies a law of large
numbers, that is, X(#)/¢ converges as ¢ — « to v, the macroscopic velocity of
the travelling wave of (1.1). This and the shock fluctuations are studied in
Section 5. There we also show that the shock position—in the diffusive
limit—converges to a Brownian motion. The limiting diffusion coefficient is
explicitly computed. Indeed, the position of the shock is represented by a
random sum of independently distributed random variables. Using the results
mentioned above we show in Section 6 that at the average position of the
shock, the system converges weakly to a mixture of the stationary measures v,
and »,,,, where v, is a Bernoulli product measure with v,({(x)) = a. Due to
the discontinuity of the derivative of F, decreasing profiles also present shocks.
But in this case they do not fluctuate. In the next section we characterize the
'stationary and translation invariant measures.

(2.1)

3. Stationary measures. We say that a measure u is stationary for the
process if uT* = u. The set of stationary measures is convex and compact,
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hence it can be described by the set of extremal stationary measures (those
stationary measures that cannot be written as a nontrivial convex combination
of other stationary measures). Next we characterize the set of translation
invariant stationary measures.

THEOREM 1. Any measure u which is translation invariant and satisfies
either

(3.1) w(n:n(x,1)=1)=1 and 0<pu(n:n(x,-1)=1)<1 or
’ w(n:n(x,-1)=1)=0 and 0<p(n:n(x,1)=1)<1

is stationary. Conversely, if u is extremal stationary and translation invariant,
then u must satisfy (3.1).

Proor. Let 7, be the translation by x defined by 7,n(y) :== n(y — x). If
w(n: n(x,1)=1)=1, then Tn = 7_;m. Hence, by translation invariance
of u we get stationarity. On the other hand, when u(n: n(x, —1) =1) =0,
Tn = rm.

In order to prove the converse, take u stationary and translation invariant.
We want to prove that either u(n(x, 1)) = 1 or u(n(x, —1)) = 0. We have that
w(n(x,1) =1)=pu(n(x+1,1) =1) = (uT)(m(x + 1,1) = 1)

= (kC)(n(x,1) =1).

But (uCXn(x,1) = 1) = u(n(x,1) = 1) + u(n(x,1) = 0, n(x, —1) = 1). There-
fore we have that u(n(x,1) =0, n(x, —1)=1) =0 for all x € Z. Let Xz =
{n eX: n(x,1)=0, n(x, —1) = 1, for some x € Z}. Clearly u(Xz) = 0. Let
X' =X\Xjz. Let X; = {n € X" n(x,1) + n(x, —1) < 2, for all x € 7}. Clearly
7,X; =X, for all x € Z and TX, = X;. Therefore an extremal u is supported
either on X; or on X, = X'\X,. If u is supported on X,, then
w(n(x, —1) = 1) = 0, for all x € Z. The extremal measures supported on X,
are those which are ergodic with respect to translations.

Now let u be a measure supported on X,. We claim that u(n(2y,1) =1,
y < xIm@x, 1) + n(2x, —1) = 2) = 1. Let By(x) = {n € X,: 1@2x, 1) +
n@2x, —-1)=2,712x —n),1)=1,0 <n <k, n(2(x — k),1) = 0}. Then

TkBk(x) C XB’
n(By(x)) < u(T™*Xp) = u(Xp) = 0.
This proves the claim. Thus we have that if n € X,, then there exists x(n)
such that 1(2y,1) = 1 if y < x(n) almost surely.
Let A, ={n X, n2x,1) =1, if x < n}. Clearly {A,}, is a decreasing
family of sets and
(3:2) ,L( N A,;) - lm w(A,) =1
' nez n——®

Now we observe that T2A, c A, , ;, which implies that A, c T7%4 ;. Thus
w(T2A,.)=wu(A, ) >u(A)). Since A,,, CA,, we have that u(A,, ) <
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u(A,). So we conclude that u(A,) = u(A,,,), for all n € Z, which together
with (3.2) implies that u(A,) = 1 for all n € Z. This proves that if n € X,,
then 7n(2x,1) = 1 for all x € Z almost surely. The extremal measures are the
ones which are ergodic with respect to translations. O

REMARK. As noted earlier, the dynamics act independently on odd and even
space-time sublattices. Therefore it would be of interest to prove a correspond-
ing theorem if we studied the system at even times and at even sites; that is, a
theorem classifying measures which are stationary with respect to 72 and are
invariant with respect to 7,,. Such a theorem could be proved proceeding
along the same lines as in Theorem 1.

There are other stationary measures which, in analogy with the simple
exclusion process, we call blocking measures. Let n” be the configuration
n™(x,s) =1for all x >n, s = +1, and let ¢” :== Ty". Notice that T¢" = n™.
Define »" = %Bnn + 38,n. It is easy to check that v" is stationary. We say that
each one of these measures represents a microscopic shock: The measure v"
has density 2 at sites x > n, density 0 at sites x <n — 1 and, due to the
periodicity of the motion, has density 3 at n — 1 and 2 at n.

In contrast with the simple exclusion process for which the ergodic station-
ary measures are product measures, Theorem 1 tells us that the set of
stationary measures is much richer. It is known that for the simple exclusion
process the extremal stationary measures are either product measures or
blocking measures [Liggett (1985)]. One might guess that for the totally
asymmetric BLCA the extremal stationary measures are either measures
satisfying Theorem 1 or blocking measures. We show that this is not true by
exhibiting an extremal stationary measure which is neither a product measure
nor a blocking measure. (This construction was pointed out to us by a referee.)

Consider the following configuration:

n(x,1) = {0, fx=2K+1,K€Z x=-2-4n,neN,
’ 1, otherwise,
1, ifx=2+4n,neN,
(%, =1) = {0, otherwise.

It is easily verified that T*n = 7. Therefore a measure which puts equal
mass on 1, Tn, T?n and T3y is stationary. We can easily see that this
measure cannot be obtained as a convex combination of measures satisfying
the conditions of Theorem 1 and blocking measures. We know that there exist
an infinite family of such configurations.

4. Microscopic shocks. We consider the BLCA starting from an initial

measure v, , with 0 <A <1 and 0 <p < 1, the measure defined as follows.

The marginals of v, , are
. va(n(x,1) =1) =1,v, ,(n(x,-1) =1) =A, forx >0,
v, (n(x,1) =1) =p,v, \(n(x,-1) =1) =0, forx <O,
Vp,/\(n(o’ —-1) =a,n(0,1) =b) = m(a,b),
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where m(0,0) = m(1,1) = XA — p)/A + X —p), m(0,1) =1 — A1 - p)/
(1 +A—p)and m(1,0) =rp/(1 + A — p). The marginals at the origin have
this unnatural definition for reasons that will be clear later. We assume also
that v, , is a product measure in the following sense. Let A c (Z\{0}) X

{—1,1}). Then
Vp’)‘(n(x,i) =1,(x,i) €A;7(0,-1) =a,n(0,1) = b)

= II v, A(n(x,i) =1) X m(a,bd).
(x,i)€A

In order to define the shock, let n be any configuration and define 1’ as the
configuration that differs from n only at site 0, for only one velocity that
depends on (a, b) = (n(0, — 1), 7(0, 1)). (The precise dependence is given below.)
The reader can check that at later times the two configurations will differ at
only one site for one of the two velocities. Let X(¢) be the site where the two
configurations differ:

X(t) =x iff nj(x,s) =1—-nj(x,s), fors=1lors= —1.

THEOREM 2. If m, has distribution v, ,, then Tx,m, also has distribution
v, forallt > 0.

We define more carefully the microscopic interface. Let 1 be a configuration
and define 7’ as follows: Let (a, b) = (n(0, — 1), 7(0, 1)). Then 7'(x, s) = n(x, s)
for all x # 0; if (a,b)=(1,1) or (a,d)=1(0,0), then 7(0,1) = n(0,1),
70, —1) = 1 — n(0, — 1); if (a,d) = (1,0) or (a,d) =(0,1), then 7'(0,1) =
1 —7(0,1), n'(0, —1) = n(0, — 1).

Let 7, and 7, be the evolutions of n and 7', respectively. Let X(#) and V(¢)
be the site and velocity where n and 7’ differ:

, 1—n,(x,s), ifx=2X(¢)ands=V(?),
ﬂt(x’ S) = .
n(x,s), otherwise.
The motion of (X(¢), V(2)), the “second-class particle,” is the following:
If V() =1and
if n,(X(¢),—1) =0 then V(t+1)=V(¢t)=1
and
X(t+1)=X(t) +1;
if n,(X(¢),-1) =1, then V(t+1)=-V()=-1
and
, X(t+1)=X(¢t) - 1.

If V(t) = —1 and
if n,(x+1,1) =1, then V(¢+1)=V(¢) = -1
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and
X(t+1)=X() -1,
if n,(x+1,1) =0, then V(¢t+1)=-V(¢) =1

and
X(t+1) =X(t) + 1.

In words, if the second-class particle has velocity 1, it continues at velocity 1
until it meets a particle with velocity — 1. Similarly the second-class particle
moves to the left until it meets a hole with velocity 1, at which time it reverses
velocity.

Now we study the motion of (X(¢), V(¢)) when 7, is distributed according to
v, »- Let V(1) = —1 [the case V(1) = +1 is similar]. We define L, as the first
tlme after 0 that the velocity is reversed to + 1, and analogously R, is the first
time that the velocity is reversed again to — 1. More precisely, set L, = R, =0
and

L,(n) = min{t > L,_,(n): V(¢) = =1, V(¢ + 1) = 1},
R,(n) =min{t > R,_(n):V(¢) =1, V(¢ + 1) = —1}.

Now we observe that the dynamics on even sites are independent of the
dynamics on the odd sites [Cheng, Lebowitz and Speer (1990)]. This justifies
the following definitions:

D;(n) =2 ¥ Ly — R,y = sup{2x < D;_,(n): mo(24,1) = O};

k=1
D} (n) =2 X R, — L, = inf(2x > D;_y(n): mo(2x, —1) = 1};
r=1
D§=Dgy= 0.

If 1 has distribution v, ,, then D;_, — D, and D, — D, n > 1, are geomet-
ric random variables with parameters (1 — p) /2 and A/2, respectively.
Furthermore, they depend on different regions of the space for the initial
configuration. This implies that D, — D,_; and D;— D;_;, n > 1, are mutu-
ally independent.

Proor oF THEOREM 2. For x < 0 and y > 0, let H, , be the operator which
when applied to a configuration n deletes the part of the configuration that is
between x and y and translates the configuration to the left of x and to the
right of y to the origin. In other words,

n(z+x,s), ifz<0,

B m(z,8)= n(z +y,s), ifz>0.

LetX = {0, 1}2NO»X{(-L.1) Qbgerve that if the distribution of 7 restricted to X
has distribution v, , (restricted to X), then, for any x < 0 and y > 0, the
distribution of H, ,n restricted to X is also v, , (restricted to X).
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F1G. 1. The trajectory of X(¢t) is darker. We only draw the trajectories of particles.

Now we leave to the reader to prove that, for all n,,
HD;,D;%(Z, s), forz=+0,
Txr, e, (% 8) = { 1(0, —1), forz# 0and s = —1,
1, forz=0and s =1,
and that
D -D,,,=2(L,,; - R,),
D;/-D; ,=2(R,-L,)
(see Figure 1). This implies that (recall that D, is negative),
(4.1) X(R,) = (D} +D;)/2,

which is independent of Hj- ;.m,. In other words X(R,) and 7y yngp are
independent. This proves that for ¢ = R, the measure outside the origin is
v, ,. With the same argument we can prove the same result for ¢ = L,,. For the
intermediate ¢’s, say L, <t < R, one observes that to determine the config-
uration to the right of the shock one erases ¢t — L, sites and translates the
configuration at L, while the configuration to the left remains unchanged.
Something similar is done for R, <t <L, ,,. Finally, the measure at the
origin m(a, b) is just the stationary measure for the Markov chain on {0, 1}~ -1}
with transition probabilities

p((1’1)7(070)) =p((1’0)’(0’ O)) =1-p,
p((171)’(1’1)) =p((1’0)’(1’1)) =p,
p((0,0),(O,l)) =p((07 1)’(071)) =1-4,

r((0,0),(1,0)) =p((0,1),(1,0)) =4,
p((a,b),(c,d)) =0, otherwise.
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This Markov chain governs the evolution of the configuration at the shock.
This completes the proof of Theorem 2. O

5. Law of large numbers and central limit theorem. In this section
we study the asymptotic behavior of the shock position.

THEOREM 3 (Law of large numbers for the shock). The following holds:

LX) 1-(A+p)
.t 1-(p—A)

Proor. We consider the renewal process R, and call n(¢) the number of
renewals up to time ¢. We have that

n(t)
(5.1) X(t) = ]EOMk +(X(t) = X(Ro))»

where M, = X(R,) — X(R,_,) is a difference of two geometric random vari-
ables of parameters (1 — p) and A, respectively [see (4.1)]. Furthermore, {M,},
is a family of mutually independent random variables. On the other hand,
(X(#) - X(R, ) is tight [dominated by a sum of two geometric random
variables with parameters (1 — p) and A]. Hence we have

t 1 1

im—— = — + 5.
P n(t) A 1-p a8
and
R, L, 1
im —2© -~ and lim 22 = — as.
t—w n(t) A t—ew n(t) 1-p

Putting this all together we have

LX) QA -(1/A=p) 1-(p+A)
ST T aAmE /A 1A

This proves the theorem. O

a.s.

Properties of X(¢) enable us to prove also an invariance principle. Let
We(t) = e( X[ %) — e %tv).

THEOREM 4. As ¢ —» 0, W*(¢)/o converges in distribution to a standard
Brownian motion, where

" A1) =)
(1+(-p)*
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Proor. By (5.1) we have that
n(e~%t) n(e~%t)

E(X(a—2t) —ve %) = e( kX_:O M,—-E Y M,| +0()

k=0
(5.2) n(e~2t)
= a( EO (M, — EM,) + [n(s72t) — En(e~%)]| EM,
+ O(¢)

where O(e)/¢ is bounded by a sum of two geometric random variables and
integer parts have been taken when necessary. The right-hand side of (5.2)
converges to Brownian motion by the random change of time theorem of
Billingsley (1968). The diffusion coefficient of the limiting Brownian motion is
given by

B((R, + L)E(R, - L) - (R, ~LYE(R, + L))’
(E(R, + L))’ -7

where we have used the independence of L; and R;. D

2

ReEMARK. If we only assume that the initial measures are extremal station-
ary translation invariant (not necessarily product), then using the ergodic
theorem we can still prove the law of large numbers for the shock, with the
same velocity. It would also follow from the ergodic theorem that asymptoti-
cally to the right and left of the shock one sees the extremal measures with
densities 1 + A and p, respectively. To prove a central limit theorem one would
have to assume more than ergodicity, probably some sort of mixing conditions.

6. Hydrodynamics and dynamical phase transition. Let, for all
r € Rand ¢ € Z, denoting by [x] the integer part of x,

us(r,t) = vp’A(n([s‘lr], 1,[e7%]) + n([e7'r], -1, [¢7't]))-

THEOREM 5. As & — 0, u(r,t) converges to u(r,t), uniformly at points of
continuity of u(r,t), where u(r,t) is the weak traveling wave entropic solution
of (1.1), with initial conditions u(r,0) = 1 + M1{r = 0} + pl{r < 0}. That is,
u(r,t) = u(r — vt,0), where

1-(A+p)

1-(p—A)

Furthermore, for any cylinder function f, fort sufficiently large,

. V1+/\ f’ lfw > v,
N Vp,)\f(T[wt]nt) 1y f ifw<v
. pl? *

(6.1) v

We note that v is the velocity of the shock of (1.1).
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Proor. Let u(r,t) = u(r —vt,0). Let 7,u(A) = u(r,A). We consider
Ttwf¥, AT™). From the law of large numbers and Theorem 2, it follows that
. Misp fw>v,

lim 7w, \ T = {

t— o0

Ky if v <w.
This proves Theorem 5. DO

We now consider the question of what happens at the velocity of the shock.

THEOREM 6 (Dynamical phase transition). The following limit holds:
th_l}olo Vp,)\f(Tvtnt) = %V1+,\f+ %fo,
for any cylinder function f.

Proor. It follows from Theorem 4 that, given & € R,
lim v, ,(X(£) = vt > k) = lim v, (X(¢) —ot <k) = }.

If f is a cylinder function, then the result of Theorem 6 follows from Theo-
rem 2. O

Other initial conditions. Now we describe briefly the behavior of the
system under other initial conditions.

1. Left density p < 1, right density A < 1. It is clear from the equation that
this is a travelling wave solution with velocity 1. Microscopically, configura-
tions are translated one unit to the right each step.

2. Left density p > 1, right density A < 1. In this case the macroscopic equa-
tion gives us two travelling waves moving in opposite directions. At time ¢
the solution is undefined in the region —¢ < r <¢. The microscopic solution
also gives these two travelling waves, but in the region in between, the
solution is u = 1.

3. Left density p > 1, right density A > 1. In this case we get a travelling wave
solution with velocity —1 microscopically and macroscopically.

4. Monotone initial conditions with more than one step. In this case both
macroscopically and microscopically the system behaves the same.

7. Relations with particle systems in {0, 1}?. In this section we show
that the BLCA is isomorphic to two simple exclusion-type automata in {0, 1}*.
We start by defining the models.

The asymmetric simple exclusion cellular automata. For a given configu-
ration ¢ € {0, 1}, define B,¢ as the configuration
B£(2z + 1) = 1{£(22) + £€(22 + 1) = 1},
B.£(22) = £(22) + £€(22+ 1) — 1{£(22) + é(22 + 1) = 1},



SHOCKS IN ASYMMETRIC EXCLUSION AUTOMATA 939

and B,¢ as the configuration
B,é(22) = 1{£(22 — 1) + £(22) = 1},
B,é(2z — 1) = £(22 — 1) + £(22) — 1{£(22 — 1) + ¢(22) > 1}.
Now define the asymmetric simple exclusion automata

(7.1) - €9t = By§y_; and éarv1 = Bados-

In words, at even times, all particles occupying even sites that can jump to the
right (i.e., those whose successive odd site is empty), jump to the right. At odd
times, the particles occupying the odd sites do the same.

We prove that this is isomorphic to a subsystem of the BLCA when the
advection is applied before the collision rule. As observed before, the BLCA
consists of two independent subsystems: {n(x, s, t): x + ¢ odd} and {n(x, s, ?):
x + t even). Consider the subsystem {n(x,s,t): x + ¢ odd} and define the
configuration ¢ = ¢(n) by

ox + 1) = n(2x + 1, —1,t), for¢even,
§( g ) B 77(2-’5, 1’t)7 for ¢ Odd

and
n(2x — 1,1,¢), for teven,
g2y = {12200
n(2x, —1,t), for ¢ odd.

We have the following result, the proof of which is straightforward (see
Figure 2).

rAVARY S .

Y O O H—— DD

o

\1\ NN g =

¥ e*eaﬁ——#

Fic. 2. O, particles in exclusion automaton; X, vacant sites in exclusion automator; -, vacant
sites in BLCA; \ , particle with velocity 1 in BLCA; v , particle with velocity —1 in BLCA.
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LEmMA 1. The transformation ¢ defines an isomorphism between the sub-
system {n(x,s,t): x +t odd} and ¢,, t € Z, such that &, is the asymmetric
simple exclusion cellular automata, with distribution described by (7.1).

The automaton 184. This model has been classified by Wolfram (1983),
and studied by Krug and Spohn (1988), who related it to an interface problem
and studied convergence to equilibrium. Let By be the configuration defined
by

1, if y(z—1) =1and y(z) =0,
By(z) = (0, if y(z) =1land y(2+1) =0,
v(z), otherwise.

In words, By is the configuration obtained when all particles of y allowed to
jump one unit to the right do it. Define the automaton by y, = By,_;. Assume
now that at time 0, all even sites are empty. In this case this is isomorphic to ¢,
with the same initial configuration. On the other hand, if all even sites are
occupied, it is also isomorphic to ¢,. Nevertheless, for other configurations this
system is not isomorphic, presenting a richer structure. But for those types of
initial conditions the results proved for the BLCA hold.
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