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LARGE DEVIATION RESULTS FOR A CLASS OF MARKOV
CHAINS WITH APPLICATION TO AN INFINITE ALLELES
MODEL OF POPULATION GENETICS

By GREGORY J. MORROW

University of Colorado at Colorado Springs

Let {X,} = {X{™} be a Markov chain in the probability measures
P[0, 1], equipped with a certain metric for the topology of weak conver-
gence, and denote E (X;) = f,(x). Define a projection ¢ = 7wz« on P[0, 1]
by defining ¢ to be absolutely continuous with respect to Lebesgue measure
with constant density (d + 1)x(A) on each interval A of an equipartition
of [0,1] into d + 1 intervals, and let 7, P[0, 1] € R? be the natural embed-
ding. Assume myfy(£) = £ + Byhg(€), hy(éo ) =0 and Cov(myXy) =
o(¢)/N, in certain senses as N — o, where £, ; is an asymptotically
stable fixed point of myfy(£) = ¢ and %, = lim, _,, &y 4 exists in P[0, 1].
Assuming various regularity conditions and B = By — 0, NB/log N — o,
it is shown that the expected time it takes the Markov chain to exit a fixed
open ball D about x, once X, € D is logarithmically equivalent to
exp[ NByV], where V > 0 is a limit of solutions V; = V(h,4, 0,;) of varia-
tional problems of Wentzell-Freidlin type in R? as d — ». These results
apply to an infinite alleles model in population genetics, where {X,} repre-
sents the evolution of distributions of types among a population of N
randomly mating genes, and where forces of mutation and selection are
stronger than effects due to finite population size.

1. Main results. This paper establishes a large deviation result for a
population genetics model that can be viewed either as Kingman’s house of
cards model with genetic drift [Kingman (1978, 1980)], or as a Markov chain
version of the measure-diffusion infinite alleles model with stabilizing selection
[Ethier and Kurtz (1986)]. The result gives the asymptotic expected time for
the population distribution to wander a fixed distance from its equilibrium in a
particular metric for the topology of weak convergence of distributions.

To introduce our ideas, consider a class of R%valued Markov chains {£,}
which are strongly attracted to a stable fixed point as follows. Assume that

E (&) =fn (&) =&+ Bhy(€), hq(é9,4) =0, and

(1.1) o2
Cov,(§,) = dz(vf)

in senses made precise in Section 2.2, where N — » and B = By — 0, with

;’Received December 1989; revised October 1991.
AMS 1980 subject classifications. 60F10, 60J05, 92A10.
' Key words and phrases. Measure-valued Markov chain, large deviations, Wentzell-Freidlin
theory, population genetics, infinite alleles model, selection.

857

e]

v

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z
The Annals of Applied Probability . STOR IS

8

WWWw.jstor.org



858 G. J. MORROW

NpB — . Assume also
(1.2) | fa,a(8) — € < (1 - Br)|é - )|, ¢eU,

with some « > 0 and some bounded connected open set U containing $0,a =
limy gg{\g. Under additional regularity assumptions on the Markov chain
{¢,), Morrow and Sawyer (1989) prove that there are constants V, > 0 and
wpy —> 0 such that, for each ¢ € U,

(1.3) I%i_lflwpg[eXP(Nﬁ(Vd —wy)) < T, <exp(NB(V; + wy))] = 1,

where T, = inf{n: &, & U}. This result extends the large deviation theory for
solutions of the stochastic differential equation

(1.4) dE, = hy(&,) dt + Ve oy(&,) AW,

with € = 1/NB and scaling ¢ = n8 [Freidlin and Wentzell (1984)].
A special motivating case for the class (1.1) is the Wright—Fisher model of
population genetics, defined by

(15) §n+1zB(N, fN(g))/N, given §n=§,

where B(N, f) denotes a multinomial random variable with frequencies f &
{£ € R%: & >0, L¢ < 1). Then &, gives the joint frequencies of d + 1 alleles
in generation n, and NB — « in (1.1) provides a model for situations in which
the average stabilizing effect of forces such as mutation and selection is
stronger than random effects due to a finite population size N.

The present paper is in turn an extension of the work of Morrow and
Sawyer (1989), as follows. Let {X,} = {X{™} be a family of Markov chains
taking values in the probability measures P[0, 1] on the unit interval. Let
¢ = m;x be the conditional expectation of x € P[0, 1] given an equipartition of
the Lebesgue unit interval into d + 1 sets [see (1.15)]. We define a metric p on
P[0, 1] [see (1.14)] that is consistent with the topology of weak convergence and
such that

(1.6) sup p(x,7my;x) >0 asd — =,
x<€P[0, 1]

Our extension rests on the basic assumption that the typically non-Markov
chains {§,} = {m;X,} satisfy (1.1) and (1.2) for the natural embeddings
m,Pl0, 1] C R?. This approach is consistent with the theory for (1.1) in the
following sense. There exist Wright—Fisher models (1.5) that satisfy (1.3) with
exponents V; such that V, = lim,_,V, exists and such that V, > 0 plays a
similar role as V; in (1.3) but for an infinite alleles model {X,,}.

1.1. Infinite alleles model. A good deal of the perspiration and novelty in
this paper lies in its application to a certain infinite alleles model of population
genetics. The simplest case of this model is the infinitely many neutral alleles
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model of Kimura and Crow (1964). Starting with the Wright-Fisher model
(1.5) with symmetric multiple way mutation between d + 1 allelic types, one
may attempt to understand the neutral infinite alleles model by setting d = .
However, in passing to the case d = « it is assumed that any mutant type will
be totally new to the population, contrary to the case of symmetric mutation.

To handle this notion, one formulates a general infinite alleles Wright—
Fisher model as follows. Let the unit interval [0, 1] be the labels of all possible
allelic types. Let {¢;}},, ¢, € [0, 1], denote the labels, counting multiplicities,
currently present in a populatlon of N randomly mating genes. Let x =
YN ,8(t,)/N denote the empirical distribution of these labels on types. Con-
struct a Markov chain {X,} = {X™)} in P[0, 1] by the following transition
mechanism: Given X, = x in generation n, let X, ., be a random frequency
distribution of types in generation n + 1 defined by

(1.7 Xps1 = Z 8(m:)/N,

where {r,}Y | are i.i.d. in [0, 1] with common distribution fy(x) € P[0, 1]. The
original model of Kimura and Crow (1964) is represented by the formula

(1.8) fy(x)=(1-u)x +ua,

for a mutation parameter 0 < z < 1 and Lebesgue measure A on [0, 1]. Note
that the process of projections {m;X,} gives back the neutral Wright-Fisher
model with symmetric mutation. Unfortunately one does not get back a
Markov chain in general under projection, especially in case selection is
incorporated in the model; see Section 1.2.

The model (1.7)—(1.8) determines the stochastic dynamics of a population of
N genes undergoing random mating in each generation with mutation to
totally novel types at rate u per gene per generation. Even though there can
be no stationary distribution of an individual type (as each eventually dies
out), in the diffusion limit 2Nu — 6 there is a stationary distribution of
probability measures on labels which is summarized by the Ewens sampling
formula [Ewens (1979) and Ethier and Kurtz (1986), Theorems 10.4.6, 10.4.7].
In fact our work can be regarded as an extension of the well-developed theory
of diffusion approximation that arises for the case 8 = 1/N in (1.1) and that is
established in general for measure-valued Markov chains [Ethier and Kurtz
(1986)]. However, our work embarks with the assumption that the diffusion
limit degenerates to the limiting equilibrium of fy(x) = x.

The infinite alleles model is appealing by the fact that it allows mutations to
arise in a multitude of ways, none of which might be successfully modeled
alone [Sawyer (1989)]. Thus the gene can be modeled in a unified way by
mappmg its various traits into.the labelling space [0, 1] (or other appropriate
compact space). This view tends to support our assumption (1.11) that the
total mutation rate Nu tends to infinity. Yet it seems for the present theory
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that it is not feasible to do this mapping directly in terms of nucleotide
construction.

1.2. Selection. We introduce selection in the model (1.7) as follows. Define
fy(x) € P[0, 1] for all x € P[0, 1] by its action on measurable sets A c [0, 1]:

0 [ Jax(dt) [iW (7, t)x(d7)]
[/&fdx(dt)W(r,t)x(d7)]

(1.9) fy(x)(A) =ur(A) + (1 -

Here W(r,t) = 1 + s(7,t) is a symmetric function that determines the relative
fitnesses of the zygotic pairs (7, t). We assume W is a product function:

(1.10) W(r,t) =w(r)w(t) for w(t) =1+ s(¢).
Thus the selection acts independently on genes and (1.9) becomes
Ja(1 + s(2))x(dt)

fn(x)(A) =uA(A) + (1 - u) [E(1 + s(8))x(dt)

Let the parameters u and s(¢) have the scaling

(1.11) u=upuB and s(t)=po(?).
Assume o is Lipschitz continuous with
(1.12) @) llolle <pn/3 and (i) lollLp < 21/3.

Condition (1.12)(i) is used to establish stability of the transition ¢ — 7 f(¢)
in Section 2.2.

To find an infinite-dimensional analogue x, of &, ; in (1.1), we proceed as
follows. It is easy to see that the mapping x — f(x) of (1.9)-(1.11) has an
equilibrium x{™ with density x{¥(t) = u/[1 — cow(?)] relative to Lebesgue
measure, where ¢, is chosen to make this expression a probability density.
Here, with a slight abuse of notation, we have chosen to identify the probabil-
ity measure with its density. Calculate, by writing ¢, = 1 — Ba,, and by (1.11)
and (1.12)(), that x{™(¢) tends to x, = x,(¢) uniformly on [0, 1] for

(1.18)  xo(t) = u/[ay — o(t)], with fol(y,/[ao —o(b)])db = 1.

Note that the infinite alleles model (1.7) and (1.9)-(1.12) is a case of Kingman’s
house of cards [Kingman (1978) or (1980), pages 15-18], wherein an equilib-
rium fitness distribution for f y(x) = x is absolutely continuous with respect to
Lebesgue measure.

1.3. Projection method. We define a suitable metric on P[0, 1]. One ap-
proach to this problem is to embed the probability measures in a normed
linear space, namely, Lip[0, 1]*, such that the inherited topology on P[0, 1] is
. just the usual topology of weak- convergence of probability measures. Indeed,
let A be the subset of Lipschitz functions ¢ on [0, 1] with both |l¢ll. < 1 and
lellLp < 1. Observe by the Arzela-Ascoli theorem that A is compact in C[0, 1]
with the supremum norm. For each x € P[0, 1] we define the linear functional
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¢ = [dp(t)x(dt), ¢ € A. By the fact that Lip[0, 1] is dense in C[0, 1], there is a
one-one correspondence between these functionals and P[0, 1]. We thus define
the metric

(1.14) (%) = sup | [o(t) [x(dr) = y(d0)]
(pG

on P[0, 1]. Then it follows by the fact that Lip[0, 1] is dense in C[0, 1] and by
the compactness of A that the p(-, - )-topology on P[0, 1] is just the topology of
weak convergence [cf. Hutchinson (1981)]. A referee points out another way to
get at this metric. Indeed, by writing ¢(¢) = ¢(0) + [{¢'(s) ds, substituting the
definition (1.14) of p(x,y) and changing the order of integration in the
resulting double integral, it holds that p(x,y) = [¢|F,(¢) — F,(¢)| dt, for all
x,y € P[0, 1], where F,(¢) = x([0, ¢]).

The projection ;: P[0, 1] - P[0, 1] is defined to be the conditional expecta-

tion relative to an equipartition {A,}¢* of the Lebesgue unit interval, that is,

d+1
(1.15) fol(p(t)[wdx](dt) —(d+ 1)kz x(Ak)[A o(£)A(dt), forall g €A,
=1 k

where
Ak=[(k_l)/(d+1)7k/(d+1)):k=11,d, and
Ay =ld/(d+1),1],

and where A denotes Lebesgue measure. Obviously m; extends to the finite
signed measures on [0, 1]. Embed 7,P[0, 1] ¢ R? by identifying the extremal
points of 7, P[0, 1] with the extremal points of a d-dimensional simplex in RY.
Specifically, let b, be the probability measure with density (d + 1)1, (¢)
relative to Lebesgue measure, & = 1,...,d + 1. The embedding is given by
linearity and the correspondence

b, - (0,...,1,0,...,00 €R¢, k=1,...,d,
(1.16)
by~ 0=1(0,...,0) € R%

Hence an element ¢ € m,P[0,1]1 c R? is a subprobability vector ¢ =
(£,,...,&). Notice that the finite-dimensional process {m;X,},.,; is not
Markovian for the infinite alleles model (with selection) defined by (1.7) and
(1.9-(1.12).

The uniform approximation (1.6) is verified as follows. Let x € P[0, 1]. Then
by (1.14) and (1.15),

d+1

£ [1000[o0) = (@4 D] o)) |<(a

k=1

*

p(x,myx) = sup
pEA

Here, for each %, the term inside the square brackets is bounded uniformly in
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absolute value by

(d+1)[ (o(2) = o(r)M(d7)

IA

1/(d+1
sup lglip(d + 1) [/ VtA(dt)
pEA 0

1/[2(d + 1)].
Therefore condition (1.6) is verified with the following rate of convergence:

(1.17) sup p(x,myx) <8, ford =d(8) = [1/(28)].
xeP[0, 1]

sup
pEA

Notice that the Euclidean metric is continuous with respect to p on 7, P[0, 1].
This is seen by choosing ¢ to be linear on A, and zero otherwise. The
corresponding continuity of p relative to the Euclidean metric is clear by
(2.49). However, note that if x, = §,,, and y, = 8,,,,, such that #(¢) and
t(e) + € belong to A, and A, ,, respectively, for some & < d, then p(x_,y,)
— 0 as ¢ = 0, while p(7 x,,7;y,) = 1/(d + 1) for all ¢ > 0. Hence m,; is not
continuous on (P[0, 1], p(+, - )).

We introduce next the variational problem that describes the rough charac-
teristics of the time it takes {X,} to leave an open ball D about the limiting
equilibrium x,. In the finite-dimensional case (1.1), this problem is defined in
terms of the large deviation exponents

(1.18)  V,(U) = inf%fOT(u — hg(u), 054 (u)(& — hy(u))) dt,

where U is a domain containing ¢, ; and where the infimum is extended over
all T > 0 and all trajectories u such that u(0) = ¢, 4, u(t) € U,0 <t < T and
u(T) € oU. Define the open ball

(1.19) D =D(r)={x<P[0,1]: p(x,x9) <1}, forall r>0.
If d + 1 = 2% in (1.15), then it is shown in Sections 2.4 and 5 that

,}iln V,(int( ;D)) exists and is equal to
(1.20) V(D) = inf - 2{ [o(1) [y(dr) —xo(1) dt]

+ [ ogl(dyaa/de) /20(1)] ),

where u, o(¢) and x,(¢) are defined by (1.9)-(1.13), and where the infimum is
extended over all probability measures y with p(y, x,) = r, and y,, denotes
the absolutely continuous part in the Lebesgue decomposition of y. Note
that V(D) < if and only if r <sup{p(y,x,): y < P[0,1]}. Intuitively,
exp(—NBV,(D)) is the instantaneous rate with which the process { X, } tunnels
out to the boundary of D from its equilibrium x,. In Section 2.4 it is shown
that' V(D) > 0. Moreover, it is shown in Section 5 that V(D) is continuous as
a function of the radius r of D. This property is crucial for the following
result.
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THEOREM 1.1. Let {X{™)} be the infinite alleles model with selection defined
by (1.7) and (1.9)-(1.12), and let N —> », B = By — 0 with NB/log N — .
Define the exit time T, = inf{n: X, & D} for some radius r > 0 of D in (1.19).
Then (1.20) holds and

(i) Al’im (logE,T,)/NB =V (D), forallx €D.

Further, if VD) < », then there exist constants wy — 0 such that, for all
x €D,

(i) lim P,[exp(NB(VAD) — wy)) < T, < exp(NB(Vi(D) + wy))] = 1.

REMARK 1.1. We are also interested in the probability that the Markov
chain {X,} is found a fixed distance from the limiting equilibrium x, after
many generations. In the neutral case [o(¢) = 0] we know that {m;X,)} is
ergodic for each fixed d, and thus there is a unique limiting distribution
py € PP[O, 1) for {X™)}. Hence, by the standard argument of Freidlin and
Wentzell [(1984), Chapter 4], if F' = D° is the closed annulus of inner radius
r > 0 about x, in P[0, 1], then, under the neutral case of Theorem 1.1,

(1.21) lim log[u(F)] /N = ~V.(D).

Since revising this paper the author found an ergodicity result for the infinite
alleles model with selection based on the method of Barnsley and Elton (1988).
It turns out that the Markov chain (1.7) is ergodic whenever f, is a strict
contraction on (P[0, 1], p(-, - )). This holds under (1.9)-(1.11) if 3ol +
2llollLip < p. Thus (1.21) continues to hold when this last condition is added to
the hypothesis of Theorem 1.1.

Theorem 1.1 is extended in Section 2 to a class of Markov chains taking
values in a convex compact metric space (@, p(-, - )) embedded in a linear space
such that for a sequence of linear projections =, d — =, (1.6) holds with @ in
place of P[0, 1] and (1.1) holds in an appropriate sense for the finite-dimen-
sional projected processes {§,} = {w;X,}. This framework is particularly useful
in organizing our application to the infinite alleles model. However, the
question of whether the general analogue of V(D) in (1.20) is continuous in
the radius r of an open ball in @ is left open. Nevertheless, in finite dimen-
sions the regularity of the large deviation exponent V,(U) as a function of the
domain U is established in Morrow and Sawyer (1989) for a class of domains
satisfying the well-sharpened-pencil condition. Hence the present work im-
proves the condition NB?/log N — « assumed by these authors. Finally, our
approach is expected to yield large deviation exponents for certain measure-
valued diffusions as well as related measure-valued birth and death processes.
" 2. General framework. This section is devoted to formulating a general
set of hypotheses for the projection method outlined in Section 1. For the sake
of continuity these hypotheses are established for the infinite alleles model in
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turn within this framework. Here and in the following the infinite alleles
model means the model (1.7) and (1.9)—(1.12).

To motivate the development, the main steps in the Proof of Theorem 1.1
are outlined. First, note that a key difficulty in extending the continuous time
theory for (1.4) even in the finite-dimensional case arises from a lack of scaling
in the noise of the Markov chain (1.1). This problem is solved in Morrow and
Sawyer (1989) by means of certain tightness arguments for the exponents V,
in (1.18). Since these arguments are independent of the Markov property, they
carry over to the process {£,} = {m;X,} under precise versions of conditions
(1.1) and (1.2). However, a new difficulty for our extension is to obtain large
deviation estimates for the finite-dimensional process. This is done by extend-
ing the approaches of Ventsel’ (1976) and Darden (1983), especially for the
lower large deviation estimate of Section 3.3. This latter estimate is utilized in
an approximation scheme in Section 4 to obtain an upper bound on the exit
time. Our key idea for these last two steps is to link the dimension d with
certain convergence properties of the Legendre transform of the finite-dimen-
sional process as well as with regularity properties of the variational problems
V. These properties are made precise by conditions (2.28) and (2.29) of Section
2.3 and by conditions (2.40)-(2.42) of Section 2.4. In fact the exit times are
controlled from above and below by limits of d-dimensional large deviation
exponents corresponding to domains that are respectively larger and smaller
than the given domain. This program is successfully carried to a conclusion for
the infinite alleles model in Section 5, where it is shown that these limiting
exponents vary continuously with the radius of the domain. Thus the formula
(1.20) is established.

2.1. Setting up the model. For each N > 1, let {X,} = {X™)},., be a
Markov chain taking values in a convex compact metric space (Q, p(-, - ))
embedded in a vector space L. Assume that

E.(X,) =fy(x) =x + Bhy(x), xE€EQ,
hy(zfM) =0,
N)

where B =By — 0 and NB - © as N — «. Assume that x, = lim, _,, x§
exists in @ and let D C @ be an open connected subset containing x,.

For each d in a sequence of integers tending to », let 7;: @ - @ be maps
with d-dimensional range for all d and such that m; extends to a linear
mapping of the subspace of L generated by . We also assume that there are
distinguished metric space embeddings 7,@ < R¢ and that ;@ is compact for
all d. Suppose further that for every 8§ > 0 there emsts an integer d(8) with
d(8) » » as § — 0 such that

(2.1)

(2.2) supp(x TasX) < 8.

B xe

By the computations leading up to (1.13) and by (1.17), it follows that (2.1) and
(2.2) hold for the infinite alleles model.
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If the finite-dimensional approximant is degenerate, then technical diffi-
culties arise, which unfortunately cannot be avoided near the boundary of
int(m; D). Under the embedding 7,Q c R?, define

212V,d(x) = Cov, (7, X;),

for all x € Q. If &£ > 0, define D* ={x € Q: p(x,D) <&} and D~* = {x € D:
p(x, D) > ¢}, with D° = D. Also, for any domain G c @, let (G_, ), >0 be
the collection of subdomains of int(w,Q) defined by G_, , = {x € int(7,G):
lx — d(int(7;Q))| > y}. Here and in the sequel if A C 7,Q, then int(A) denotes
the interior of A c R? and |- | denotes the Euclidean norm. In the proof of
our main result we take G = D° and we send the parameters introduced
above to their respective limits in the following order: N —» o, y — 0, d - »
(6 > 0)and £ - 0.

Assume that for each v > 0 and d > 1 there exists A, 4> 0 and a big-O
function O, such that, for all x € @ such that ¢ = 7 x € Q_, 4

(2.3) AMx) = [minimum eigenvalue of E,zvyd(x)] > A, q/N.

Assume further that for each d > 1 there is a constant ¢, > 0 and a big-O
function O, such that, uniformly for ¢, 1 € m,Q,

(2.4) |N3% 4(€) = N32 4(0) |pexe < cglé = nl + 0O4(B), as N - .

We also assume that, uniformly for ¢ € 7,Q,

(2.5)(i) Al,i_lflmNEIZV,d(f) =07(¢)
and
(2.5)(ii) lim 7hy(€) = hy(€)

and that h, and ¢ are continuously differentiable on 7,Q c R

These conditions are verified for the infinite alleles model as follows. Under
P, and the embedding (1.15) and (1.16), N7, X, is a multinomial variable with
size N and parameters f,(x)A,) for f5(x) defined by (1.9) and (1.10).
Furthermore, by (1.10)-(1.12),

fAkw(t)x(dt)] L =2x(A,) + O(B),

Jow(t)x(dt) d+1
with O(B) uniform in x € Q. It follows from (2.6) that there is a number
e(y, d) > 0 such that for all x € m,Q such that ¢ = m,;x € QR_, 4

(2.7) 1-¢(y,d) =1f(x)(A,) 2¢e(y,d), forallk=1,...,d + 1.

Therefore, since the covariance of 7, X, is given by

(2.6) fy(x)(Ax) =(1 - u)[

xd 1 ..
($%.a(0)i5 " = HE(A) (8~ F(2)(4)), i, =1,...,d,

we get by (2.6) and (2.7) that (2.3), (2.4) and (2.5)(i) hold with
(28) Uciz(f)i.i:gi((sij—gj), I’)J= 17---,d-
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By (1.9)-(1.12) it is not difficult to compute that (2.5)(ii) holds for

(2.9) (h)(&) = (5 —o*(©))&+u((d+1)7"=¢), i=1,...,d+1,

where 7; = (d + 1)f, o(t) dt and o*(¢) = £1]5,£,. Here and in the sequel, by
a slight abuse of notation, ¢ = myx is viewed as a probability vector under
(1.16) by introducing the extra component &,,, =1 — X% ¢. It is easy to
check that the d + 1 components of %, so defined under this convention sum
to zero.

Define the cumulant generating function of the finite-dimensional approxi-
mant for all z € R? and all x € Q by

(2.10) G4(N,x,z) = logE, exp(z - my( X; — x)).
The second derivative of G, in z is a weighted covariance, which is denoted by
(2.11) $2 4..(x) = V2G4(N,x,2).

Assume that for any constant {; > 0 there is a big-O function O, = O,, such
that, for all x € @ and all |z| < {, N.

) g ) lz| + NB
(2.12)(i)  2,4,.(%) = 2x,q(x) + Od(T) as N — o,

and there is a constant C, = Cy(d) such that, for all x € @ and any z,

- C
(2.12)(ii) [largest eigenvalue of Elzv’d,z(x)] < WO.

Define the Legendre transform of G4(N, x, - ) for all x € @ and u € R? such
that 7de +u e WdQ by
(2.13) H,(N,x,u) = sup (z - u — Gy(N,x,2)).

zeR?
Assume that this supremum is uniquely achieved with z = z,(N, x, u) and
that for y > 0 and d > 1 there is a constant {, ;, < = so that, for all x € @, all
¢ =myx and all u € R? such that both £,é+ue€@_, 4,

(2.14) |z4(N,x,u)| < ¢, 4N.

Hypotheses (2.3), (2.12)(i), (2.12)(ii) and (2.14) are more or less typical assump-
tions for proving large deviation bounds for R?valued Markov chains of type
(1.1) [Morrow and Sawyer (1989)]. Regularity of the Legendre transform is also
typically assumed, but this is deferred until Section 2.3.

The assumptions (2.12)(1), (2.12)(ii) and (2.14) s1mp11fy for Markov chains of
the form

1 .
(2.15) X == Z Y, given X, = x,

Nl 1
where (Y, 1 <i <N} are iid. variables taking values in Q. Indeed,
since ENd J(x) is the covariance of m,X, under P, for dP,/dP, =
exp(z - del)/E [exp(z - m; X)), and ¢ is bounded for ¢ € m,@Q, it is easy to
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see that (2.15) implies (2.12)(i). Also (2.14) is satisfied if a change in the mean
of m;Y, to £ + u is possible under a change of measure with weight exp(z
m,Y,) for some |z| < {, ; and some finite constant {ya

By these last remarks, it follows that (2.12)(), (2. 12)(11) and (2.14) hold for
the infinite alleles model since by (2.7) we can find the constant {, , and
because (2.12)(ii) is satisfied with C, = 1. In fact the maximum elgenvalue of a
covariance matrix with form 7,(;; — 7 J) i,Jj= ,d, for subprobability
vectors n = (nq,...,my), is bounded by 1 for all d by the identity

Zzgj=lvi77i(6ij - nj)vj = Z(ii=177i(1 - "7i)Ui2 - (E?=lvi77i)2'

2.2. Stability. The analogue of the conditions (1.1) and (1.2) for the pro-
cess {m;X,} is made precise as follows. Assume that for each d there is an
asymptotically fixed stable point £§) for the dynamic ¢ — m,fy(¢) on m,Q as
follows. Assume that 7,hy(£5Y)) = 0 and that there exist constants x, > 0,
K, and Cy, big-O functions O,, and N, < « such that the following hold:

(i) forall ¢ € m,Q,d = 1and N > N,,
|mafn(€) — 8] < (1 — koB)| & — £

(ii) uniformly for ¢, 1 € 7,Q, I#d(hN(f) - hN("I))I =<
(2.16) Kql¢ = nl + 04(B) as N — c; |

(iii) forally >0and d > 1,
sp  sup | mby(x)] <,
N=>1xeq, TrdeQ_%d

where f5 and h, are defined by (2.1). Suppose further that there is a point
&0, 4 € int(m;Q) such that

(2.17) (i) &0,a =604 +0(1) as N—o and (ii) ha(é,4) =0
where h, is defined by (2.5)(ii). Assume moreover that the asymptotic equilib-

rium x, € D from (2.1) is the limit of the asymptotic stable fixed points £, ; in
(2.17):

(2.18) p(£0,41%) > 0 asd - .
These stability criteria are now established for the infinite alleles model. In
general if w(¢) is a function on the unit interval, define

maw(t) = dfjlwkhk(t), for @, = (d + 1) [ w(t)M(dt).
k=1 C A

Define ¢, = £} by writing its density &,(¢) with respect to Lebesgue measure
as ’
d+1

(2.19) £o(t) = k‘élf—klA,,(t),
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subject to the condition
(£o(2) —w)w* = (1 — u)éo(t)mgw(t),

where we denote
= [Te(Osa(t)AcdD),

and where » and w(#) are given by (1.9)-(1.11). By (2.19), one computes that
& =u/[l — cow,] for a number ¢, = (1 — u)/w* chosen to make &,(t) a
density. Since £,(¢) is a density this in turn implies by (1.11), (1.12)(i) that

1- 4%3(1 +o(l) <cp<1- 2%3(1 +o(1))

(2.20) 3
s(1+0(1)) < & <3(1+0(1)).

In what follows, let £(¢) € m,Q be a fixed density different from ¢,(¢) and
denote w** = [fw(¢)¢(t) dt. To establish (2.16)(1), use w*(&y — ud) = (1 — u)
m(wé,) to calculate that

mafn(§) — &0
=(1_u) d(*wg) u)\—fo
— T — w* o — UA
i R (R
=(1- u)ff.i(w%ﬁo—)- +(1- u)(w* _ w**)wd[(wil/u)**]

= comg[w(& — &) + co(w* — w**)m,(probability).

Thus, by (2.21) and (1.10),

(2.22) |77di(§) - folnd =< col""d[w(f - fo)”Rd + ¢ fs(t)(f = &) ()A(de)|.

Hence from (1.11), (1.12)(i), (2.20) and (2.22) we have
(2.23) |"7di(§) - §0|Rd = 00(1 + 2lIslle)|é — &plre < (1 — koB)I€E — &olre,

for all N > N,. Therefore, (2.16)(i) holds since ¢, = £() in (2.23). Note also
that, by (2.19)-(2.21), inequalities (2.22) and (2.23) hold with p(-, - ) in place
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of the Euclidean norm as follows:
(2.24) p(mafn(€),€603) < (1 = koB)p (£, £60)-

Condition (2.16)(ii) follows by elementary computations from (1.9)-(1.12) and
the Cauchy—Schwarz inequality with

(2.25) K, = const.(Vd).

Condition (2.16)(iii) is likewise easily verified. Condition (2.17) is satisfied for
&, = £§N) defined by (2.19). By the continuity of o(#), (2.18) holds with
£0,4(t) = u/lay 4 — myo(2)], for a constant @, ,; chosen to make this expres-
sion a density relative to Lebesgue measure, and with x, given by (1.13).

The stability estimate (2.23) and (2.24) is now used to derive some further
regularity properties of the continuous time dynamical system (1.4) with
e =0. In general, let u(¢), £ > 0, be a trajectory in R? satisfying u(t) =
h4(u(t)), where h, is defined in (2.5)(ii). Suppose there exist ¢,(d) > 0,
v(t,d) > 0 for t > 0, y(d) > 0, and r(x) > 0 for x € D, such that the follow-
ing hold:

(i) ifd>1,0<¢,<ty(d),and ¢ € m;Q, then u(0) = ¢
implies u(t) € Q_, , for y = y(¢,,d) and all ¢ > ¢;

(ii) if d 2 1and 0 < y < y(d), then u(0) €Q_, ,

(2.26) implies u(¢) € Q_, , forall ¢ > 0;

(iii) if x € D and d is sufficiently large depending on x, then
u(0) = myx implies u(¢) e D™"for r =r(x)andall0 <¢ < 1.

Here, in (2.26)(ii) and (iii), the embedding m,Q c R? is used to view u(¢) as an

element of Q.
These conditions are verified for the infinite alleles model with D in (1.19)

by applying (2.24) and the following Gronwall-type inequality. Let (@), . o be
nonnegative real numbers.

n—1
Ifa,<A+B Y a, foralln>0, thena, <A(l+B)" foralln > 0.

m=0

As in (2.9) it is convenient to work in the set of probability vectors

A = {(£1,. . Eair) ERITLE 20, T g = 1)
Define .
I(A?) = {£ € A%: ¢, = 0 for at least one i}

={teAh:(¢,..., &) €d(m,P[0,1]) c R}
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Let ¢ € 3(A%) and define a trajectory u(2), ¢t > 0, in A? by & = h (u), u(0) = £,
for h, defined by (2.9). When convenient we regard u(t) € w,P[0,1] by
dropping the coordinate u ;. ,(¢). By (2.9) and (1.12)(i) we compute that for any
point ¢ not at a corner of 4(A?), a unit inner normal n € R**! at ¢ satisfies
n - hy (&) > p/[3(d + 1) In fact, on a face of a(A%) with Epporp, =0, for
some j > 1, an inner unit normal is given by n, =c/(d + 1) for k = k;,
i=1,...,j, and n, = —¢j/[(d + 1 —j)Xd + 1)] for all other &, with ¢ =
[(d + 1 —jXd + 1)/j]'/2. 1t follows that

n-hy(¢) = L(5 - o*(&) — p)émy, > p/(3¢) > pn/[3(d + 1)].
Hence u(#) € int(7,P[0, 1]) for all ¢ > 0. Define
(2.27) ¥(to, d) = uto/[3(d + 1)].

The above estimate shows that u(f)) € Q_,, ,; for y = (¢, d) and all suffi-
ciently small #,. It also shows by continuity that z(0) € Q_,, ; implies u(¢) €
Q_, 4 for all >0 and all 0 <y <y(d) for some sufficiently small y(d) =
v(d, u). Hence (2.26)(i) and (ii) hold.

Next, let x € D and u(0) = £ = myx € A% so that by (1.17), u(0) € D for
large d depending on x. Define f,(u) = u + Bhy(u) and p(nB) = f3"(£) with
p(0) = £. Since h, is continuously differentiable, u(t + B) = f;(u(2)) + o(B),
with the constant implied by little-o depending only on d. Hence

u(nB +B) —p(nB + B)
= fo(u(nB)) + o(B) — fa(p(nB))
= u(nB) — p(nB) + B[ha(u(nB)) — hy(p(nB))] +o(B).

Therefore since f, preserves A%, we have p(nB) € A% so that by (2.5)(ii) and
(2.16)(Gi),

lu(nB +B) —p(nB + B)| < (1 + KyB)|u(nB) — p(nB)| + o(B).
Also, by the same calculation and by definition of p(-, - ) in (1.14),
p(u(np +B),p(nB +B)) < (1 + LyB)p(u(nB), p(nB)) + o(B)

for some constant L, < o, taking into account the equivalence of norms in
finite-dimensional spaces. Hence, it follows by the Gronwall inequality that

p(u(nB), p(nB)) < o(nB)(1+LyB)",

Next, define py(nB) = (my£y)°"(¢) with py(0) = £. We know py(np) € A4
since m,fy(¢) = E,my(X;) € A Since also (p(nB): n > 0} ¢ A% it follows by
(2.16)(ii) and the Gronwall inequality as above that p(py(np), p(np)) <
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o(nBX1 + LyB)". But by (2.24), p(py(np), &) < (1 — koB)"p(&, £GND).
Therefore, putting these estimates together, it holds that

p(u(t), €M) < (1 + o(1))exp(—kot)p(&,£5N) +0(1), forall0 <t <1.

Hence, letting first N — « and then d — « it follows by (1.17), (2.17), (2.18)
and the choice of D that (2.26)(iii) holds.

2.3. Legendre transform. In this section certain dimension-dependent es-
timates are verified for the Legendre transform (2.13) in the infinite alleles
model. These estimates are assumed to take the following general form. There
is a sequence (a ;) depending only on d such that a;, —» 0 as d — «, and for
each y > 0, d > 1 there are constants A ;, > 0 and big-O functions 0 _a With
implied constants depending on y and d ‘such that the following hold

(i) forall x € @, £ = myx, and |u| < A, , with both
§,§ +ue€e Q—‘y,dy

1
E|Hd(N,x, u) — Hy(N, & u)| < 0, 4((lul + B)®) + ayB%

(ii) forall ¢,7 € @_, ; and |u| < A, with both
(2.28) E+tu,n+tueq_,

1
ﬁ'Hd(N’n’u) _Hd(N’gyu)l

H,(N,¢,
< OY,d(In - §I(B2 + LNE—Q) + (lul + 3)3).

A mild condition on the rate of decay of the sequence (a ;) is imposed in (2.40).
Assume in addition that there is a constant C; and big-O functions O, such
that, for ¢ = myx and all x € @,

(2.29) |mhy(x) — mhy(£)| < Ci8 + 04(B), with d =d(3).

Conditions (2.28)(1) and (ii), respectively, are the key new conditions in our
extension of the lower and upper large deviation bounds for the process
{m;X,}. While these bounds are proved assuming only N — », 8 — 0 and
NB — =, the corresponding expectation bounds in Theorem 1.1 are proved
under the slightly stronger condition NB/log N — «. Condition (2.29) plays a
role in our approximation scheme for estimating exit times of the original
Markov chain via these large deviation bounds.

These conditions are now verified by direct computation for the infinite
alleles model. Let y > 0, 8 > 0 and x € P[0, 1]. Denote £ = m;x and d = d(8)
. and assume ¢ € (P[0, 1])_, ;. First some estimates for the function 7h(x) =
vdh ~(x) are made. For notational convenience the probability vector ¢ =
(¢4,...,&4,,) is viewed also as a measure ¢(dt) with £(A,) = £,. By (2.1) and
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(1.9-(1.11),
Blmh(x) — 7wh(¢)],
(1—-uB)
_ [‘n'di(x) —mafn(€) — (mx — f)]
(1—-uB)
_ A (L +s(®))x(dt) [ (1 +s(2))é(dt)
C L+ s()x(d)  [3(1 + s(2))é(dr)

- {[01(1 + s(t))x(dt)fol(l - s(t))f(dt)}_

X {[1 + fols(t)f(dt)”x(Ak) + fAks(t)x(dt)]

|

—(1+ O(B))_lg(Ak)[[Ols(t)(g(dt) — x(dt)) + 0(32)}.

_[1 +fols(t)x(dt)Hg(Ak) +fAs(t)g(dt)

Therefore,

[wh(x) - 7h(¢)],
230) - &(A0)|[o(O)(E(a) - x(@n)]| + 0(p)

=0C,£,6 + O(B), where C, = max({|lol, llollLp} and 6] < 1,

and in all cases the constants implied in the big-O function depend only on u
and o. By (2.30), condition (2.29) holds with C, = C,.

Turn now to condition (2.28). Because N7, X, is multinomial, it follows
that

d+1 fk + Uy
Hy(N,x,u) =N L (& + ukﬂ"g{m}'

Therefore, after subtracting and expanding the logarithms,
1
E(Hd(N’ §, u) - Hd(N’ X, u))

_ddl & + Blrh(x)],
_ kgl(gk + uk)log{ £, + B[wh(f)]k}

‘('2~31) d+1 {1 N B[mh(x) — Wh(f)]k}

- u,)l
L (& +up)log £ + Bl7h(E)],
d+1

- kg(lk +1I, + IIT,) + O, 4(B®),
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I, = 3[‘”'11(’5) - ‘“'h(f)]k,

mh(x) — mh($)],
& + B[mh(¢)],

I, = B(uy, — B[7h(£)],) [

and

[wh(x) - 7h(£)], )"
& + B[mh(9)],

The sums in (2.31) are studied in turn. First, use L¢*1[7h], = 0 to get, by
(2.28),

1
a1, = _E(fk +u,) B2

d+1
(2.32) Y 1,=0.
k=1
Next, by (2.30) and (2.31), for N > N,

[6C,&,8 + 0,,.(B)]
&, + B[mh(§)],

= B(u, — Blmh(¢)],)(6C,8 + O, 4(B)).

So, using again Y[7h], = 0 as well as Yu, = 0, we obtain that

I, = :B(uk - B["Th(f)]k)

d+1
(2.33) Y 1L, | < 0, 4((lul + B)?).
k=1
Finally, by (2.30) and (2.31),
I, = (& + u,)(—0°C2B%6%/2 + 0, «(8%)).

Hence, because & + u is a probability vector,

d+1

Y, I,

k=1
Putting together (1.17) and (2.31)-(2.34), it follows that (2.28)(i) holds with

(2.34) < C2B%%/2 + 0, 4(B?).

(2.35) a, = const.(1/d?).

To establish (2.28)ii), note by calculations similar to those above that
(us — Blrh(E)],)’
& + Blmh(§)],
Condition (2.28)(ii) follows after some algebra from (2.36), (2.16)(ii) and Lemma

1

~ + 0, 4((lul + B)%).

1
Hd(N’f’u) =~Z

(2.36) 5
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3.1 (in Section 3.1) as follows:

(u, = Blmh(&)],)"  (wx — Blwh(n)],)’

& +B[mh(&)], n, + Blmh(n)],
Oy,d(lnk - ‘fk|(uk - 3[7Th(§)]k)2
+&{Bl7h(n) — mh(€)],(2(u, — B[7h(£)],) + B[7h(¢) - 7fh(n)]k)})

H,(N,¢, Hy(N,&u)\"?
-0, ln—fl( al N§ u) +l3( a( N§ u))

+ (|u|+ﬁ)3).

2.4. Variational problem. In this section certain conditions on the regular-
ity of the finite-dimensional variational problems are introduced. It is shown
how these problems give rise to a limiting large deviation exponent for the
infinite alleles model in Section 5.

Let V,(U) be the large deviation exponents defined by (1.18). Assume there
exists an &, > 0 such that for all G = D° with |e| <&, and all y > 0 and
d > 1, an extremal solution u% for the problem V(G_, ;) satisfies the
Euler—Lagrange equations 2% = —h,(u%). Denote by u%(x) the point where
u* exits G_, ;. Assume that there exist vy > 0 and r(d) 3 0 with r(d) —» 0 as
d — « such that for all 0 < ¢ < ¢, and any d = d(8) in (2.2),

(2.37)(i) u%(») € (G"(d’)
and
(2.37)(ii) liix(l)Vd(G_%d) = V,(int(m;G)).

The meaning of (2.37)(i) is that u% should not exit G_, ; too far from the
boundary of G c @. For convenience in the following we denote

VA(G) = Vy(int(m,G)).

Assume further that there exists b, | 0 as d — « such that the integral I,(G),
defined as the right-hand side of (1.18) integrated over the set of times that the
solution u* to the problem V (@) is no longer in the ball {&: & — &, 4 < b,),
satisfies

(2.38) I,(G)-V,(G) >0 asd— .
Define

(2.39) Ag = 1\171_131 inf{NA(£): € — & 4l < by}
fo;' A(£) defined by (2.3).

Assume that the parameters d(3), a,, K , C;, y(¢y, d), by and A, of (2.2),
(2.28)(0), (2.16Xii), (2.29), (2.26)(1), (2.38) and (2.39), respectively, satisfy the
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following:
(i) ag(1 +|log(by)]) >0 asd — x;
(ii) K45 > 0 asd — 0;
(2.40) (iii) b2(1 + K3)/Ag— 0 asd - ;
(iv) for each & > 0, liﬂi&fy(t,d(&))/[Cltﬁ] > 1;

(v) there exists g(8) = O(1/8) such that p(¢, n) <
q(5)|§ — nlgd® for all é,m € 7Td(5)Q-

Condition (2.40)(i) is employed in the proof of the large deviation lower bound
in Section 3.3, while conditions (2.40)(ii)-(v) are basic elements of the approxi-
mation scheme in Section 4.

Define limiting large deviation exponents

V.-(D) = lim lim sup V,;( D?),

( 241 ) el0 gow

' V. (D) = lim lim inf V;(D~).

|0 — 00

Assume finally that
(2.42) V. (D) > 0.
To verify these conditions for the infinite alleles model, a representation for

V, in (1.18) is computed. We begin with a lemma to compute the integrand in
(1.18) for a general Wright-Fisher model in d dimensions.

LEMMA 2.1. Let &£ = (£,,...,&,) for a probability vector (£,,...,&4,1) € A?
and let b = (by,.. bd) for probability vectors (&, + by(€),..., &1 + bgi(E)),
so that by, | = Z, 1b;. Let also g3(£)?*? be given by (2.8). Define 1y, =
- m; forall n =(ny,...,my) € Rd Then we have the algebraic identity

d+1

(7= b(&), 0 *(&)(n = b()) = T (m: = b:(6)) /%

Proor. First see that oy %(£),; = £;}, + £;'6,;. Check this by the calcula-
tion

d
Y (€ats + €0 "0u)én(dny — &)
k=1

d d
Y 8i(8r — &) + Eats Y E(0h; — €))
k=1 k=1 ‘

(aij - fj) + §JJ}1 §j(1 - fj) - §j Z §k
: k+j,d+1

=0 =&t

=,

ij*
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Therefore,

E (77; (§d+1 + § 1611)(77] )

i,j=1

(n —b(u), 05 %(u)(n — b(w)))

Z(”’h_b)/f +§d+1(2(nz )

i=1
d+1

Y (m: — b))% /¢;. d
i=1

It follows from Lemma 2.1 and (2.8) that (1.18) can be rewritten

V,(U) = inf — fdil(uk— [hq(w)], )/ukdt where u € A%,

We want now to show that an extremal u € A? for the problem V,(U) is
defined by

(2.43) = —hg(u), t> —oo,

This can be done directly as follows. Set u(¢) = —b(u(2)) + l(t.), with b as in
Lemma 2.1. Then by the identity (—2b + 1)> = —2b(—2b + 21) + 12, it ob-
tains that (&; — b,)* = (—2b; + [,)> = —2b,(21,) + [2. Therefore

1d+1 1d+1

(2.44) fm2 Z uyl(u; - b;)* dt>f Z ui'(—4b(u)u;)dt

Now substitute b = & ; from (2.9) in (2.44). Then the last integral becomes
1 .d+1

f Z u;'(—4(c, —0*(u))u )i, dt

(2.45) p,[dil —4u; (1/(d+1) —u;)u; dt

d+1 d+1

= -2 T au;dt—2uf ¥ uita,dt/(d + 1),
i=1 i=1

where we have used Y¢*!'it; = 0. Fortunately both of these last integrals can
be evaluated explicitly, as expressions depending only on the starting point and
endpoint of the trajectory u. Therefore by Lemma 2.1, (2.44) and (2.45) and by
reversing the direction of a trajectory that goes into the stable point ¢, ;, from
a point ¢ on the boundary of int(w,D), it follows that (2.43) holds and that

d+1

(2.46) V(D) = inf — 2 ._2_:1 [5:(¢; — (£0,a):) + mlog(é:/(£0,4):)/(d + 1)],

where the infimum is extended over all ¢ € d(int(w,; D)).
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The result (2.46) can also be gotten by applying Theorem 4.3 of
Freidlin and Wentzell [(1984), Chapter 5]. To see this, define m(¢,2) =
(h (&), 2) + 3(z,07(£)2). For each ¢, exp(m(f, )) is the moment generatlng
function of the Gauss1an measure on R? with mean & 4(¢) and variance 0 7(£).
One wants to find a function g: int(7;D) - R with g(¢, ;) = 0, Vg = 0 for
£+ &y 4 and m(§,Vg(§)) = 0. Then V,(int(my; D)) = inf, g(f) and an extremal
u(t) for this problem is defined by &, = V,m(u,, Vg(u,)). One can easily solve
the differential equation for g by assuming the special form g = £g;(£).

Conditions (2.38) and (2.40)(i) are verified by choosing b,. In fact, since
|¢ — £, 4l < b, implies the same inequality coordinatewise, and since [log(a) —
log(b)| < la — bl/min{a, b}, it holds by (2.19), (2.20), (2.46) and the Cauchy-
Schwarz inequality that

(2.47)  |I,(G) — Vy(G)| < const.( X |& — (£,4):]) < const. byVd .
Therefore, by (2.35) and (2.47), conditions (2.38) and (2.40)(i) hold with
(2.48) b, = 1/d2.
Also, with this choice of b, it is clear that A, > const./d in (2.39), so that by
(2.25), condition (2.40)Gii) is verified as well. Condition (2.40)iv) holds by
(1.12), (1.17), (2.27), (2.29) and (2.30).

To verify (2.42), note first that by definition of the p(-, - ) in (1.14),

d+1
(249) p(T’, f) = Z lni - §i|’ for all f’ ne Ad-
i=1

Let u(t) € m;P0,1], —o < ¢ < ®, be extremal for the problem V,(G) with
G = D¢ for some 0 < ¢ < &, and as before set Uy, =1-X% u,. Here we
simply fix u(#) = u(), where u(¢) first exits d(int(m;G)). Because by (2.46)
u(t) does not leave int(7,G) by the boundary of m P[0, 1], we deduce by (1.19),
(2.18) and Remark 2.1(b) that if d is large enough and &, small enough, then
u(t) must pass through a point in the boundary of a ball about &, ; in P[0, 1]
of radius r, > 0 independent of d: p(u(), £, 4) = r,. Next, by the Cauchy-
Schwarz inequality,

d+1 52 d+ g |\ d+1 d+1 2
(2.50) .1£=.1(|u|)2ul_(zlu|)

i=1

d+1

|[hd(§)] |2 5 i = [€0,ali| = [€0,alllolle Z !f - [, d];!

, Therefore, upon summing over i we have
d+1

) d+1
(2.51) X [l 2 (£ —||a||m)A 1€, — [£0.4),].
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Hence, by (1.18), Lemma 2.1, (2.43), and (2.50) and (2.51),

d+1u
Vd(G)—zf( )dt

=1 U;

(2.52) > 2/(di1|u |) dt

d+1 d+1

23(% - ||a||m)/ L |u,(6) = [éo.a)i| X o) dt.

Now estimate the last integral from below by integrating only after the last
time ¢ = 7 that u(¢) is at distance ry/2 from &, ; in P[0, 1]. Thus by (2.49),

d+1
Y |u(t) — [é0,al;| = ro/2, forallt>r.
j=1

So, by (2.52),
wd+1

(2.53) VAG) = ro(— - ||0'“m)f pAEROIES

But by (2.49), [2X¢*Ha,l dt > T;lu (=) — u (1) = p(u(), u(r)) = ro/2. There-
fore, by (2.53),

2
ry

5"
Hence, by (1.12)(1), condition (2.42) holds. Further, by (2.49), (1.17) and the
estimate L¢*1¢, — n,1 < (d + D'Y?|¢ — nlpd, condition (2.40)v) also holds.

Finally, condition (2.37) is established for the infinite alleles model as
follows. Let ¢, be a point on d(G_, ;) that asymptotically achieves the
infimum in the problem for V,(G_, d) Since the closure of int(w,G) is
compact in R?, there is a limit point £* of the set {£,} . . Since Vi(G_, ;) <
V@), for all y > 0, it follows by continuity that

(2.54) ViG) = (5 -~ llolk) 5

d+1

Va(§%) = -2 Z (0:(&F = (£0,a):) + 1 log(£F/(£0,a):))| < Va(G).

Therefore the last inequality is in fact an equality. Hence, replacing ¢* by ¢,
and letting y — 0 we have that V,(¢,)) > V,(£%) along a subsequence y' — 0.
Thus (2.37)(i) follows by monotonlclty of Vy(G_, »), v10. Further, we claim
t;hat £, € (G™?)° for y = v’ sufficiently small, where § is such that d = d(8)
in (2.2). Suppose not. Then ¢, € G~*° and for all 7 € 7,(G°), it would hold
that p(¢,,7) > 8. In partlcular for all n € (7;G)° c RY, it would follow that
p(£,,m) > 8. Hence, letting y — 0 and noting by (2.46) that ¢* & a(m, P[0, 1]),
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it would follow that ¢* & d(int(m;G)). This is a contradiction. Hence (2.37)(i)
holds for r(d) = r(d(3)) = 26.
To summarize the last argument we make the following general remark.

REMARK 2.1. Let Fc Q. (@) If ¢ € m,F, ¢ & d(m,;Q) and p(£,m) = py> 0
for all 1 € (m,F)° N m,Q, then by the metric space embedding 7,@ < R? it
follows that ¢ € int(s;F). (b) Let § > 0 and d = d(8) as in (2.2) and let
G C Q be open. If ¢ € d(int(m,G)) and ¢ & I(m,Q), then ¢ € (G°)°. Indeed, if
on the contrary £ € G™° N 7,Q, then it would follow that inf{p(¢,7): n €
(m,G)° N Q) > 0, which by (a) would contradict the assumption ¢ &
int(m;G). '

2.5. General result. Our main result for the general setup and conditions
of Sections 2.1-2.4 is summarized as follows.

THEOREM 2.1. Assume in addition to the above conditions that NB/
log N - . Then:

(1) lim sup (log E,T,) /NB < V.' (D),
N-owx
(i) lim inf (log E,T.) /NB = V= (D),

for each x € D, where V7 and V, are defined by (2.42).

REMARK. In Theorem 1.1 we have an explicit representation for V. In
Section 5 it is shown that (2.41) is consistent with (1.20) for the infinite alleles
model and that V. (D) and V(D) coincide with V(D), when D is given by
(119 and d =2/ - 1,1=1,2,3,..., in (2.2).

3. The finite-dimensional process. The groundwork for the exit prob-
lem in infinite dimensions is laid by establishing tightness arguments and
upper and lower large deviation bounds for the finite-dimensional process
{m;X,}. These bounds are designed to fit an approximation scheme to estimate
the exit time for the original Markov chain in Section 4.

3.1. Tightness. Here the tightness results from the finite-dimensional the-
ory are summarized. We note that for each y > 0 the conditions (2.1), (2.3),
(2.5)(), (2.5)(i), (2.12), (2.16)1) and (2.26)(ii) imply corresponding conditions of
Morrow and Sawyer (1989) for the process {m;X,} in the domain @_, ; C Re.
Hence the following lemmas and propositions are proved as in corresponding
results from that paper. Therefore we only sketch their proofs.

" Lebva 3.1, Let ay = 1/(2Cy) with Cy in (2.12)ii). Then

H,(N,£& u) > agN|u — Bryhy(€)|°, forall ¢+ u € m,Q.
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Proor. If z € RY then H, (N, ¢ u) > 2(u — Bryhy(¢) — [Gy(N, &, 2) —
Bzmyh ()] At z = 0 the term in square brackets as well as its derivative in z
both vanish. Hence the result follows by applying Taylor’s theorem to this
term, using (2.12)(ii) and choosing z = ¢N(u — Bryhy(€)) with ¢ = 1/C,. O

LEmMA 3.2.  Let vy > 0. There exist A, ; > 0 and big-O functions O, ; with
implied constants depending only on y and d such that if Ay are constants
satisfying B < Ay <A, ,, then, uniformly for all ¢£,¢é +u € Q_, ; and |u| <

AN7
Hy(N,¢&u) = 3(u — Bryhy(£), 33%(6)(u — Brshy(£)))(1+ 0, 4(Ay))

as N - o,

Proor. By (2.13), (2.3) and (2.12)(i) it holds that z,(N, ¢, u) is defined and
analytic in an open set containing the line segment from =, f(£) to ¢ + u and
that

Vuza(N, & u) = VPHy(N, & u) = £5% .(¢)
=33%(€) + 0, 4(l2l + NB),
for z = z;(N, ¢, u) whenever |u| < Ay. Therefore, since by (2.1) and (2.13)
Hy(N, ¢, Brghy(£)) = V,Hy(N, ¢, Brghy(£)) = 0,
the result follows by Taylor’s theorem, (3.1) and (2.12)Gi). O

(3.1)

Let [u] = (u,)I_, be a discrete trajectory in ;. Define

(3.2) Sd(N’T’[u]) = TilHd(N’ UpyUpipr — Uy).

n=0

Propostion 8.1, If [u] € w,Q is a trajectory such that |u,, — £N)l = o/ > 0
for all n, then

S4(N, T, [u]) = NBagko(koBTa® ~|ug - £0[°).

Proor. The proposition follows from (2.16)(1) and Lemma 3.1 as in the
proof of Proposition 3.1 of Morrow and Sawyer (1989). O

For any set F c @, define
A(N’ F—‘y,d’ g)
(3-3) . ’ .
: = inf{S,(N,T,[u]): [u] cint(myQ), uo=¢& up & F_, 4}

In the following let G denote D° for some |¢| < £y. Assume {Ty} = {Ty, 4, In=1
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is a sequence of integers that satisfies the following:
(1) BTy — =;
(i) B*Ty — 0;
(iii) (BTy)**/(BN)* - 0;

(3.4)
(iv) BTy sup (|mshy(€) — hy(é)]

§€G_y 24
+| N3 o(€) - 0f(£)]) >0, as N - .

Here we are simply making Ty — « such that BT} goes to zero as slowly as
we like. Later, in (3.7), we may impose further conditions on T, such that
BT\ goes to zero even more slowly.

PROPOSITION 3.2. () If ¢y — & 4, then
lim A(N7G—‘y,d7 fN)/NB = Vd(G—y,d)7

N>
and in general if K C Q_, ; is compact, then there is a constant ¢(K) > 0
such that,

li]{lnian(N,Q_y’d,f)/NB >c¢(K), forall t€K.

(i) Let ¢* = u%(») € dG_,, ,; for a solution u* to the problem V(G _, ;).
Here we fix u%(t) = u%() at the first time t that u* exits G_, 4. Put Ly = TyB
for Ty in (3.4) and let v(-) satisfy v(0) = £* and © = h (v). Set &y = v(Ly).
Define uy(t), 0 <t <Ly, by uy(0) =¢y and iy = —h(uy). Define the
discrete trajectory [u] = (W), 0 <n < Ty, by u, = uy(nB). Then u, =
éns Uy —u,l < C, 4B, up, =¢*€0G_, ; and

Al,iinde(N, Ty,[ul)/NB =Vy(G_, 4)-
Also, for any T < Ty,
1 7, . Ly .
Sa(N, T, [u]) /NB = 5 [ (i = ha(un), 03" (un) (ity = ha(uy)) dt
+0(l) asN — o,
with o(1) uniform in T < T),.
Proor. The proof follows from (2.3), (2.5)(1), (2.5)(i), (2.26)(ii), Lemmas
3.1 and 3.2 and Proposition 3.1 as in the proofs of Proposition 3.2 and

Corollary 3.1 of Morrow and Sawyer (1989). In particular, the proof of Lemma
3.3 of that paper implies ¢(K) > 0. O



882 G. J. MORROW

LemMma 3.3.  Let u(t) be a trajectory in m,Q satisfying i = h j(u). Let k, be
the constant in (2.16)(i) and let L, be defined as in Proposition 3.2. Then

|u(Ly) — €8 < 2exp(—xoLy) +04(1) asN — o,
Proor. By Taylor’s theorem and the differentiability of &,

w(t +B) = mfn(u(t)) + od(;a sup |hy(€) - 'n'th(f)[).

femyQ
Hence by (2.5)(ii), (2.16)(i), and (3.4)(iv), putting L, = Ty8, it holds that
|u(Ly) = €683] < (1 = koB) “¥P|u(0) — &M + 04(1). m

3.2. Lemmas. The following lemmas are more or less standard results in
large deviation theory. However, special care is taken to trace the dependence
of the estimates on the parameters y and d. Recall the definition of the
cumulant generating function G (N, x, z) in (2.10) and its Legendre transform
H,(N, x,u) in (2.13).

LeEMMA 3.4. There exist big-O functions O, with implied constants depend-
ing only on d such that the following hold:

@) uniformly for ¢, € m;Q and |z| < {;N,
IG4(N, §,2) = G4(N,m, 2)|
< 04[z1B(1 — nl + 0,(B)) + leI*(& — ml + 0u(B))/N
+(l2l® + 12I°NB) /N?|;
(ii) for all x € @ and z € R?,
|G4(N, x,2)| < Blz| lmghy(x)l + Cylzl?/N,
with the constants {; and C, of (2.12).
Proor. By (2.12)(i) and (2.4),
V7Gy(N,§,2) = V7Gy(N,n, 2)
= i12\r,az,z(§) - i?\l,d,z(n)
= 0[cylé —nl + 04(B)]/N + O4((lz| + NB)/N?),
where |6] < 1. Thus, by Taylor’s theorem, ‘
V.G4(N,¢,2) = V,G4(N, 1, 2)
= mafn(§) — & — (mafn(m) — m) + Olzl[cylé — nl + Oy(B)]/N
+ 0y((121* + |zINB) /N %),
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where, by (2.1) and (2.16)(1),
Wdi(f) —-&- (‘"'di('ﬂ) - "7) = ﬁ["Tth(f) - 1"'th("'?)]
= 0B(K ¢ — ml + 04(B)),

for some || < 1. Hence part (i) follows by applying Taylor’s theorem again,
this time to the difference G,(N, ¢, 2) — G4,(N,n,2), since G4(N,¢,0) =
G,(N,7,0) = 0. The proof of part (ii) follows from Taylor’s theorem, (2.12)(i)
and the facts that Gu(N, x,0) = 0, V,G4«N, x,0) = Bryhy(x) and
VEGN,x,2) = 3%, (x). O

LemMa 3.5. There exist big-O functions O, ; and constants A, ; > 0 such
that the following hold:
(i) forall x € Q such that ¢ = myx € Q_, 5 and for all |ul <A, 4,
lz;(N,x,u)l < OY,d( N(lul + B)),

(i) for all £,me@_, 4 and |ul <A, ; such that both § +u,m+u €
Q—y,d’

1
SHa(N &,u) = Hy(N,m,u)l < 0, o(ul + B)lIE = ml + lul + B]),

(iii) forall ¢ €Q_, 4 and |luy — uyl, lu,l, lugl <A, ; such that both § = u,
and § +u, €Q_, 4

1
-N‘lHd(Nafz/uZ) —Hy(N,¢,uy)l < O'y,d(luZ - u1|(3 + max{'”ll’ qul})).

Proor. Part (i) of the lemma follows from (2.1), (2.3) and (2.12)(i) as in the
proof of Lemma 2.3() of Morrow and Sawyer (1989). Part (ii) is proved by
Lemmas 3.4 and 3.5(i) and the following estimate:

Hd(N7 gy u) - Hd(N’ n, u)

= sup(2u — G4(N,£,2)) — sup(2u — G4(N,n, 2))

< sup{G4(N, £,2) — G4(N,n,2): lz| < max{lz;(N, £ u)l, lz4(N,n,u)l}}.

To prove part (iii), note that there exists a line from ¢ + u, to ¢ + u, lying
entirely in @ _, 5 4 if A, ; is small enough. Thus by Taylor’s theorem,

|Hd(N’ gy u2) - Hd(N’ gy ul)l = |u2 - ull |Vqu(N’ fy u)l

for u on a line between u, and u,. However, by definition of H, in (2.13),
V,H/N, ¢ u) = z,(N, £ u). Hence part (iii) follows from Lemma 8.5(). O

Notice, by Lemma 3.1, that Lernma 38.5(ii) is weaker than condition (2.28)(ii).
This latter condition is used to establish (3.14) in our proof of the large
deviation upper bound. It seems that Darden’s [Darden (1983)] proof for the
upper large deviation bound fails for this weaker estimate since this author
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implicitly uses an estimate of the form G,(N, x, 2) < const. Blzl, whereas the
bound in Lemma 3.4(ii) is essentially best possible. Thus the note added in
proof of Morrow and Sawyer (1989) needs (2.28)(ii) as well.

3.3. Large deviation lower bound. The approach to large deviation bounds
in Ventsel’ (1976) is extended for the process {m, X,} along the lines of Darden
(1983) (who treated the one-dimensional Wright-Fisher model). Part of the
novelty of our lower bound lies in its dependence on the dimension d through
condition (2.28)(i). This estimate is applied together with the further dimen-
sion-dependent conditions (2.29) and (2.40)()-(v) in proving an upper bound
for the exit time via Proposition 4.1. In the proof of the lower bound we also
give a novel method to handle the event that the path (¢,: 0 < n < Ty), once
started near £, ,;, remains in @ _, 4.

Define

(3.5) 8y (T) = 2/C,T/N,

where C,/N is a bound on the maximum eigenvalue of i?\,, (%) for x and z
in (2.12)ii). In the following we denote &, = 73X, £ = m;x and G = D, and
statements involving G hold uniformly for |¢| < &, unless otherwise stated.

Let y> 0 and d > 1 and let [u] = (w,)]_, T = Ty, N = 3, be the trajec-
tory of Proposition 3.2. Let also my — & 4. Define [w] = (w,) as follows.
Define T, by lu, — &4l 2 b,y foralln > T, —1land T, is the smallest integer
with this property. Set T, = [1/8], wg = ny, Wy, = Ug, W, = Uy, 1, TOT
all n > T, and w, , — w, = (uy, — nx)/Ty, forall0 <n <T, — 1. Thus w,
is defined for 0 < n < T* with T* = T — T; + T, < T + T,. Notice, by (3.4)(),
that T* = T(1 + o(1)), so (3.4) holds with T* in place of T'. Notice also that
SUDg < p <7#—1/Wh 41 — W, < cB for some constant c depending only on 7y
and d.

ProposITION 3.3. Let [w] = (w,) be as defined above. There are little-o
functions o, ; with implied constants depending only on vy and d, a sequence
wy = 0 as d > « independent of y and N, and N, = Ny(y,d) < » such that if
myx = ny and N > N, then

P( max g, — w,l < 0x(T"))

> 3 exp{—NBVy(G_, a) = 0,,a(NB) — wyNB}.

PrOOF. Let A be the event max,_, . |&, — w,| < 05(T*) and let I, be
the event &, € Q_, 5 4- Define I =N o<n<7+l,. Since T*/N — 0 by (3.4)(ii1)
and therefore 8, (T*) — 0 by (3.5), it holds that A C I. In the following we
denote for brevity z(x, w) = z,(N, x, w), G(x,2) = G4(N, x,2), A§, = E,41 —
g, and Aw, = w, ., — W,, for z; and G, in (2.10)-(2.13). Define

Z,=1; 2(X,,Aw,) AE, and G, =logEx exp(Z,).

These definitions make sense as sup, - ,, < 7+_1 Aw,, < v/4 for large N. Define
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R, (n) =TI1},_,explZ,, — G,]. Then R,(T*) is a martingale relative to P
and o(x, X,,..., Xp+) with mean 1. Note further that
T*-1
onI, R, (T*)=exp Zo (2(X,,, Aw,,) AE,, — G(X,,, 2( X, Aw,,))) |-
m=
Define the probability P on o(x, Xi,..., Xp+) by dP,/dP, = R, (T*).
Hence P,(A) = E [1, R, (T*)]. Therefore for any event F' it holds that

P[AN i ~1(T*).
Px(A) = x[A F] X jﬂfl‘rR[w]( )

Now we want to estimate P(A°) from above. Define 7 = inf{n: &, € @_, 5 4}
Since w, is inside the closure of @_, ;, it follows that, on A°¢, the
max,_, ., |€, — w,l is bigger than 6(T*) by time n = min(T*, 7). Hence

B,(4) = B, max lg, —w,l > 0(T%))

= f’x{ max &, — w,| > 0(T*)}.

0<n<min(T*,7)

Thus

n—1
Y (Mg, — Awy)l,,
k=0

P(A°) = f’x{ max > O(T*)},

0<n<min(T*,7)

since if k <7, then 1, = 1. But (Z;25(A&, — Awp)l,) is a P-martingale
relative to the filtration (F,) = (o(x, X1,..., X,,)). Indeed,
EX,,=x{(A§n - Awn)ll,,} =0,

since if £, =£€@Q_, 54 then &, +Aw,€G_, ,, and thus, by (2.10),
(2.13) and (2.14), this last expectation is equal to

E,(Af — Aw)exp[2(x, Aw) AE — G(x, 2(x, Aw))]
=V,G(x,2(x,Aw)) — Aw = 0.

Thus U, = [Z}Z3(A&, — Aw,)1, I is a nonnegative submartingale relative to
P and (F,). Hence, by the L? submartingale inequality and the optional
stopping theorem for nonnegative submartingales and by (2.12)(ii) and (8.5),

P(A%) < ON(T*)_ZE[UmZin(T*,—r)]

< 05(T*) *E[U]
T*_l . .
<o(T*)2 ¥ sup E[(Ag - Aw,)®1,

n=0 TEXEQ_y/3,q
< 6(T*)"*C,T*/N
=1/4.
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Next define
T*-1
Q=2sup Y (2(x,Aw,),V2G(x,2(x,Aw,))z(x, Aw,)),
n=0
(3.6) —— 2
F = Yy 2(X,, Aw,)(Aw, — Agn)l,n < Q},
n=0

where the supremum is extended over all x € @ suchthat { =mx € @Q_, 5 ,.
Then since (X7 232(X,,, Aw, Aw, — Ag,)1 1,) is a P-martingale relative to (F,),
it follows by (2.11) that

T*-1
Z Z(Xn’Awn)(Awn - Agn)ll,,

n=0
Hence, by (3.6) and Chebyshev’s inequality, we have P(F°) < 1/2. Hence
P(ANF)>1/4.

To finish the proof we need to estimate inf, , » R, }(T*). By definition we
have that

on I, R[;}](T*) = exp{—S4(N,T*,[w])}
xexp{ L [H(w,,Aw,) — H(,, Aw,)]
+ Y [H(t,, Aw,) - H(X,, Aw,)]
+2(X,, Aw,)(Aw, — AE,))
= exp{—S,(N,T*, [w]) + I + II + III},

where the summations in I-III are all from n = 0 to T* — 1. Then, by (3.2),
Lemmas 3.1 and 3.5(i), (3.4)(i1), (3.4)(iii) and (3.6) and by the fact that A c I,
it follows that

onset A, |Il <O, ;(NB*(05(T*) + 0y(B))T*) <0, 4(NB).
Also, by (3.6), Lemma 3.5() and (1.8)(ii),
onset F NI, [II| <V <0, ,(NB*T*)"* <0, 4(NB).

2

E <Q/2.

Finally, write

Ty—1 T*-1
II = ( Y + ¥ )(H(gn,Awn) -H(X,,Aw,)) =II, + II,.
n=0

n="T,
Then by definition of T, and by (2.28)(1),
Lol /N < O, 4(ToB%) + ayB?T,
<0, 4(B?) +ayB
<ayB(1+o0(1)), as N - o,
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Also, by Lemma 3.3 and the estimate |Au,| = O, ;(B) from Proposition 8.2(ii),
it holds that

T*—Ty=T—T, < llog(by + 0o(1))|/koB, as N — .
Hence by (2.28)(i) and Proposition 3.2,

IIL|/N < O, 4(B*(T — T,)) + ayBllog(by + o(1))l/xo.
Further, by (3.4)(ii) and (2.40)(1), it obtains that

LI /N < 04(B) + Bayllog(by + o(1))l/xe < 04(B) + wgB.

Finally, by (1.17) and the last assertion of Proposition 3.2,

T-1 T,-1
_Sd(N’T*’[w]) < - ZH(urwAun)_'- Z H(un’Aun)
n=0 n=0
< =NB(Vy(G_,,qa) + 0(1)) + NB[V4«(G) — I,(G) + o(1)]
< =NBV4(G_, 4) + w4NB +o(NB), as N — c.

Therefore, putting all these estimates together, the proof of Proposition 3.3 is
complete. O

3.4. Large deviation upper bound. In this section the arguments of
Ventsel’ (1976) and Darden (1983) are extended via condition (2.28)(ii); see the
comments at the end of Section 3.2. Let y > 0 and d > 1 and define ¢,(s) =
¢(x, N, Ty,v,d,s), for all s> 0, as the set of all discrete trajectories
[ul=(u,), 0<n<Ty, with ug=¢=myx and [u]lc@Q_,, , such that
S,(N, Tylul) < NBs. Let Ty — « satisfy (3.4) and choose @ = ay — 0, such
that the following hold:

(i) Va BTy - 0;
(i) a=562%Ty — 0;
(iii) Tya~3llog(a)lB = o( NB);
(iv) log(BTy/a®) = o(NB), as N — .
Notice that (3.7)(1)-(iv) are possible by the remarks after (3.4).

(3.7)

PROPOSITION 3.4. For each s < » there are integers Ty that satisfy (3.4)
and (3.7), and there are little-o functions o =o, ;, and integers N, =
Ny(v,d, s) < = such that, for any fixed time T, < Ty and any N > N,,

! supr( inf sup |&, —u,l>3ay,£,€Q_, ,;,0=<n< TO)
(3.8) [u]C¢x(s)05nsTo

< exp(—NBs + o(NB)), asN — ,
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where the supremum on the probability is extended over all x € @ such that
TaX € Q—Zy,d .

ProoF. Define A = Ay — 0 and integers At and T by
(3.9) A=a%2,  At=[A/B] and T =[Ty/At],

for Ty in (3.4). Define the integer T, by the condition TyAt < Ty < (T, +
1) At, so that, by (3.9), 0 < T, < T. Introduce the interpolation process a,),
0<n<T,byly=E&y lja=Ea forall j=0,...,T and l, = &7 as for
all n =T, At,...,T,, and [, otherwise linear in n. Define sets A; and I; for
all j=0,...,T, by

A= {'g(jn)At IR sup &, — &l < 20‘}
jAt<n<(j+1DAt
and
I ={t,€Q_,  forall jAt <n < (j+1)At},
where for the case j = T, we replace (j + 1) A¢ by T.
Put also A = NT2,A; and I = NT2,1;. If A holds then supo, <1, /€, ~

l,| <3a,whileon ANIL[llc@Q_,,, foral N>N,.
By the above definitions, the left-hand side of (3.8) is bounded by

P(A°NI) +P,(ANI, Sy(N,Ty,[1]) > NBs)

Ty
(3.10) < Y P (ASNI;) + exp(—NBs(1 - o(1)))
j=0

XEx(lAnI exp[(l - 0(1))Sd(N7 Ty, [l])])’

where the term o(1) will be chosen to go to zero slower than @ — 0 as N — .
We now work on the right-hand side of this basic estimate. First, following
Ventsel’ (1976),

Px(A.ci N Ij) = Px(lg(j+1)At - ngtl > a)
+ Px(|§(j+1)At - §jAt| = a, sup &, — §jA,| > 2a).
JjAt<n<(j+1) At

Given X;,, =y, with m;y = 7, introduce the stopping time 7, as the first time
n >jAt such that |£, — 7l > 2a. Since the original process {X,} is strong
Markov, it obtains that

(3.11) P(ANI)<2sup sup P&, —nl>a)
yEQ 0<m<At

The Chebyshev inequality is applied to each component of §, — 7 to estimate
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this last probability. By successive conditioning relative to the filtration
oy, X,,..., X,), we have

sup sup Py([gm - nl, > a/\/d_)

yEQ 0<m <At

(3.12)
< sup sup exp(—za/x/g + mGy(N, x,2,)),
yEQ 0<m <At
for z, = (0,...,2,...,0) and a positive number z to be chosen below. Define

C,; = supy . 1 Sup, < lmgh y(x)l. This constant is finite by (2.16)(iii). Hence by
Lemma 3.4(ii) the right-hand side of (3.12) is bounded by exp(—za/Vd +
AHC, Bz + Cyz?/N1). Choose now z = NBsVd /a. Then, by (3.9), (3.11) and
(3.12),

A 2
P(ASNI)<d exp(—NBs + E(Cdﬂz + Co—zﬁ))

< d exp(—NBs + NB(aVasC,/d + Vas?dC,))
< exp(—NBs + o(NB)) as N — o,

Therefore, since by (3.7)(iv) and (3.9), log T = o(NB), it follows by (3.13) that
the first term in (3.10) is also bounded by exp(—NBs + o(Np)).

We pass to the expectation in the second term of (3.10). If jAt<n <
(j + D A¢, then Al, =1,,, — [, is constant and |§, — &, ,,| < 2a and |A],| <
a/At on A N I. Thus we have by (2.28)(ii) that on A N I,

Ty—1
Sd(N’ TO’ [l]) =< At Z Hd(N’ ngt’ Alet)(l + Oy,d(a))

|

Further, by Lemma 3.2, (2.3), (2.16)(iii) and (3.9), the last term is bounded on
ANIbyO, ,(At B?N) = O, 4;(ABN). Hence, by (3.9) and (3.14) and by choos-
ing 0o(1) — 0 slower than a — 0, it follows that, on A N I,

(1 = 0(1))S4(N, Ty, [1])
Ty—1
(3.15) <At Y, Hy(N, &5 ALjs,)
Jj=0
| + 0, 4(NB(aB + a%B%)Ty) + O, 4(ABN).

By (8.7)(1), (3.7)(ii) and (3.9) the big-O terms on the right-hand side of (3.15)
are o(NB), so we study now the sum in (3.15) in case T, > 1. Again by

(3.13)

(3.14)

a 3
+ O%d(TON ap® + (A—t + B)

+(T0 - To At)Hd(N, gTOAt’ 0).
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successive conditioning,

Ty—1
At Y Hd(N, Enes Alet)

j=0

E,|1sn7€xp

|

Ty
< [ sup E,(14,n1, exp(AtH (N, wdx,AlAt)))] .

er, ‘IdeEQ_%d

(3.16)

To estimate the term inside the square brackets, the Legendre transform H,
is approximated by using its definition (2.13) as follows. First by the definition
of G, in (2.10) it holds that E. (z - (£ — £) — G4(N,¢,2)) = 1. Thus, by
successive conditioning, it also holds that, if |z| < {; N, then E (exp(z - (§,, —
&) — LA IG.(N, &, 2)) = 1. Therefore, by Lemma 3.4(),

sup E, (1,1, exp(2 " (Ea, — €) — At Gy(N, &, 2)))

X€Q, Tyx€EQ_, 4

At—1
e -0 aiea)

n=0

(3.17)
X eXp{At sup |G4(N, &, 2) — Gd(N,n,Z)I}
£EMEQ_ g, 1E—m <3
< eXp(Od(At{IzIB(a +B) + l2*(a + B) /N + (l2I° + IzlzNﬁ)/Nz})),
as N — oo,

For the remainder of the argument we follow Darden (1983). Let & = ky =
ayt - . Let {£)}%°, be a collection of points in @_, , such that for any
¢§€@Q_, , there exists £ with |£' — ¢lpe < const./k. Define also k% points
{u} € R? such that for any u € R? with |u| < a/A¢, there is a u’/ with
lu — u’| < const. a/(k At). Define z(i, j) = z,(N, &, u’/) and

(3.18) AH :=sup|Hy(N, & u) — max{z(i,j)u — G4(N, ¢, 2(i, N,
i,J

where the supremum is extended over all £ € Q_,, ; and |u| < a/At. By (3.18)
and (2.13),

AH < H,(N,¢,u) — Hy(N, E,ul) + (i, j)l lu - u
(3.19) +1G4(N, £, 2(i, j)) — Ga(N, £, 2(i, j))l
=1+ 1II+ IIL.
By Lemma 3.5(ii) and (iii),

| (3‘.‘20) I< Oy,d(N{(f? * B)?(% " Ait i B) * ;%?(B ' %)})

=0, 4(NB(a™°B% + aB)),
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where we have used £ = o~ * and A = a%/2. Next, by Lemma 3.5(i),

(3.21) I < o%d( ( + /3) ; At) = 0, 4(NB(apB)).
Finally, by Lemma 3.4(i),

o 1
III < oy,d(N{(A—t + B)B(—,; +B)

(3.22) +(% +B)2(%+B) " (% +B)3})
= 0, 4(NB(a"°B? + ap)).

To finish the estimate of (3.10) by means of (3.15)-(3.22), we argue that, by
(3.18),

Ex[ler\Io exp(AtHd(N, ‘fr AlAt))]

(3.23) < exp(Af AH)Ex(lemo exp[Atr?a;x {2(i,J) ALy,

~Gu(N.£,2(0, )] ).

Now estimate by Lemma 3.5(i) that [2(i, j)| < O, ;(N(a/At + B)), and there-
fore, by (3.7)(), (3.7)Xv) and (3.9) and by substituting z = 2(7, j), the right-hand
side of (3.17) becomes exp(O,(NB[Va B + a~2B2]). Also, it is estimated that
exp(max a,;) < LY; ; exp(a;;). Therefore, putting together (3.17)-(3.23) and
these last two estimates, it follows that

E,[14,n1, exp(AtHy(N, £, AL,))|
< a_s‘exp(O d(AtNB(a_532 + \/;B)))

Y

(3.24)

Finally, raising both sides of (3.24) to the power T, and using (3.7)(i)-(iii), we
obtain from (3.24), (3.15) and (3.16) that

Ex(lAnI exp[(l - o(l))Sd(N, Ty, [l])])
(8.25) < exp(0, 4(NBTy(a %82 + VaB) + Tya *log(a)lB + NBa®?)

= exp(o(NB)).
By (3.10), (3.13) and (3.25) the proof of the proposition is complete. O

4. Exit proofs. The arguments of Freidlin and Wentzell (1984) and
Morrow and Sawyer (1989) are adapted to establish Theorem 1.1 using an
.approximation scheme and the conditions (2.29) and (2.40). This is complicated
somewhat by the typical possibility that, for an initial point x € D, 7 ;x may
lie on the boundary of 7;@. The next lemma allows one to circumvent this
problem.
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LEmMMmA 4.1. Let 1> 6 > 0 and put d = d(8) as in (2.2). Choose 0 < t, < 8
so small that y(t,, d)/[¢,C,8] > 1, which is possible by (2.26)(i) and (2.40)iv).
Put &, = m,;X,,. Then there exists y; > 0 such that for some absolute constant
C, some 6, > 0, and all 0 < § < §,,

(1) i sup P, (8reo/01 & Q—y,,0) =

and, for each fixed x € D,
(i) Iyglex(Xn €D, n=0,...,[te/B], &y € (D7) ypa) = 1,

where r(x) is defined in (2.26)(ii).

ProoF. The proof uses the discrete-time Gronwall inequality and the
submartingale inequality. By the proof of Section 2.2 but with the R¢ norm in
place of the metric p(-,-), and by setting u(¢) = h (u), u(0) = m;x and
pn(nB) = (myf ) "(myx), we have

(4.1) lu(?) — pn() < o(1)t(1 + K,8)"7*
for K; in (2.16)ii) and any ¢ = np < 1.
Now
n—1
§, —py(nB) = |§, — kZ mhy(X,)
1
n—1

+ Bk§1 [rahy(X,) — mahy ()]

n—1
+ Bk¥1 [mahy (&) — mohy(pn(EB))]

=1+ 1II + III,

where I is a mean-zero martingale M, and, by (2.29), II is bounded in
R%norm by np(C;8 + Oy (B)), as N — ». Therefore, by (2.16)(ii) and the
discrete-time Gronwall inequality,

(42) &, —py(nB)l < [ max M, + CnBd + 0,(1)|(1+KaB)",

for all 0 < n < ¢t/B. Now choose ¢t = ((¢,/B8] + 1)B, so that ¢t > ¢, and ¢ = ¢, +
O(B) < 6 < 1. We know by (2.26)(i) that u(?) € Q_,, 4)4- By (2.40)ii) we
choose y; > 0 such that tC;6 — y(¢y, d) < —3y;. Hence, by (4.1), (4.2) and
(2 40)(ii), it follows that

o if & 6 € Qy,ar then 1<rzlax IM,| = vy5; — 0o(1),

as long as 8K, is small enough and N is sufficiently large. Now simply apply
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the L? submartingale inequality, using (2.12)(ii) to obtain

2
Px(lji??f/ﬁ'Mk' > A) < dCyt/[ NBA].
Since NB — o, this completes the proof of the first assertion.

To prove the second assertion, let ¢ = ¢, + O(B) be as above. By (2.26)(iii) it
holds that u(s) € D™"®, for all 0 < s < 1, so by (2.26)(i)) and Remark 2.1(a),

u(t) €Q_, ¢ Nint(myD™"@) = (D7®)_, 4, withy = y(t,,d).

Therefore, also by (4.1), it holds that py(¢) € (D77®)_,, 4 4 if N is suffi-
ciently large. In particular, by (4.2) as above, P (& 5 & (D7"®)_ ;) - 0.
But also by (4.1), if N is large, then py(nB) € D™"™/2 for all n <t/B.
Hence, if &, € (D7"®/2+C%)¢ for some 0 < n < [¢,/8] and for any fixed
C > (C, + 1)supg . 5, 8q(8) with q(8) of (2.40)(v), then by (4.2), (2.40)(ii) and
(2.40)(v),
2
13:?:/5'Mk| > 8% —o(1),

if § is sufficiently small, since ¢, < §. Since &, € D™® implies X,, € D™ °*° the
submartingale inequality yields statement (ii) if in addition & is so small that
-r(x)/2+C6 <0. O

We now proceed to establish the basic ingredients needed to prove Theorem
2.1. Let T = T and a = ay satisfy (3.4) and (3.7) such that Propositions 3.3
and 3.4 hold with T in place of T and T, respectively. This is possible since
by its definition, 7§ in Proposition 3.3 satisfies (3.4) and (3.7). Define 6 =
05(T) by (3.5) so that § > 0 as N — « by (3.4)(i1) and (3.4)(iii). Choose
a' = ay = 0 so slowly that, by (3.4),

(4.3) a/ZﬂT — oo, &/a—>o and o /0 > .
Define
By a={6€R%: ¢ - M <a'}.

PRroOPOSITION 4.1. For each 6 > 1 and & > 0 there exists v > 0 such that if
d = d(8), r(d) is given by (2.37)i) and G = D¢, then

supP,(T, > 2T) < 1 — exp(—~NB[V,((G"@) _,.4) + 0, 4(1) + w4]),

x€D

where w5, — 0 as 6 > 0 and o, ;(1) > 0 as N — o,

Proor. Let £, <1 and y; > 0 be as in Lemma 4.1. Define a discrete
trajectory (v,)I_, as follows. Define u(¢) by & = d(u) with ©(0) = m;x €
Q_,, 4 Then set v, = u(np) until a time n = T, given by Lemma 3.3 such
that, Iv - &M < bd Next set v, — v, = (v, — £/ T, for all T; <n <
T, + T, — 1, with T, = [1/B]. Finally, if n > T, + T, set v, = £§}). Define
the trajectory (w,)I_, as in Proposition 3.3 for a starting point m,x € By 4
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that asymptotically minimizes inf, , c 5, , P.(T, < T'). We have

inf BT, < 3T) > inf Po(fy, 5 < Q-y,0)

X inf P, max |£, —v,| < 05(T)

(4.4) TyxEQ_y q (OsnsT )
x inf P(T,<T)

TgXxEByN 4

=AXBXxC.

We follow the proof of Proposition 3.3 verbatim, with (v,,) in place of (w,) and
vs in place of vy, until the estimate of —S;(N, T, [v]). We write

T Ty+Ty—1
- Sy(N,T,[v)= X 0- )y Hd(N, Ur, (§(()1de) - le)/TZ)
(45) n=T,+T, n=T,
T,-1
- Z Hd(N7 UpnsUps1 — vn)‘
n=0

Apply Lemma 3.5(iii) to the last sum on the right-hand side of (4.5), noting
that v,,, — v, = m,f5(v,) — v, + o(B). Hence the contribution from this last
sum is at most O,(NB?). Apply Lemma 3.2 and (2.40)(iii) to estimate the other
sum by

NT,B?b3(1 + K3)/A; + o( NB) = w;NB + o(NB).

Hence B > exp(—Np[w, + o(1)]). Also, by Lemma 4.1, A > 1 — o(1). Finally,
by (2.37)() and Proposition 3.3 there is a y > 0 such that

C > exp(—NB[V4((G™"®) _y,4) + 0, 4(1) + w4]).

Putting together the estimates for A, B and C, the proof of Proposition 4.1 is
complete by (4.4). O

Define

7, =min{n > 1: §{, € By ; or X, € D°}.

PrOPOSITION 4.2. Assume NB/log N — «. Let 0 <& <g¢,. There exists
some 8(¢) > 0 and little-o functions o = o, ; such that if 0 <8 <8(e), d =
d(8) and G = D¢, then the following hold for all vy > 0:

(1) ing P(ri<T,)=>1- exp(—NB[Vd(G_Z%d) + o(l)]);
TgXELN, 4
(i) for any compact K C Q_, ,; there is a constant c(K) > 0 such that
sup P,(r; =T.) = O, 4(exp[—c(K)NB(1 + o(1))]);

mgx €K

(iii) for each x € D, limy_, P(7; <T,) = 1.

"
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REMARK. Besides the final proof of Theorem 2.1, the proof of Proposition
4.2 is the only place we use the condition NB/log N — « instead of just
NB — oo,

PROOF OF PROPOSITION 4.2. Assume in addition to (3.4) and (3.7) that
(4.6) logT = o(NB), as N — o,

This is possible by our assumption NB > log N. Define, for all y > 0 and
d=>1,

7, o=min{n > 1: &, € Q_, ,}.
Work first on (i). Let m,x € By , and write
P(r,=T,)<P(ry=T,<T,7,4<T,)+P(r,=T,<T,7,,>T,)
(4.7) +P (1, > T, 7, 4<T)+Py(r;>T,7,,>T)
=1+ 11+ III + IV.
Estimate first that

T
I+ <2P(7,>7, 4,7, a<T)<2 Y P(ry>n,7,4=n)= 2Y . p,-
n=1

However, by Proposition 3.2,

p"sP( inf max |§, —uyl >a,§,€Q_, 54, k=0,.. n)
[ulep (s) O<k=<n

+P(£, €Q_, 54t €@, )

=DPn1 + Pros

with s = V(Q_,, ) + o(1) as N — o, since @ = o(1) and, on the event for p,,,
§k is out of @_, ; by time n. Smce by (2.16)Gii), E(§,lE, € Q_, ) =& +

0, «B), it follows by a standard exponential inequality [see Morrow and
Sawyer (1989), Lemma 2.1] that

Do < exp[_cy,’dN]
for some C, ;, > 0. Also, by Proposition 3.4,
Pn1 < exp(_NB[Vd(Q—2y,d) + 0(1)])-
Therefore, by (4.6),

T
(4.8) I1+1I1<2 Y p, < exp(—NB[Vy(Q_s,,4) +0(1)]), as N -

n=1

Next, write

'(4.9) Il = Z P(r,=T,=n,7,4>n)= LIL,.

n=
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We claim that

(410) II, <P ([uller;f;(s) Orilgnlgk upl >a, £, €Q_, 4, k=0,. n),
for s = V(G_,, 4) + o(1). Indeed, if X, is out of D by time n, then &, is out
of 7, (D~2%%) by "this time. But we shall see that the Euclidean distance between
G _,, o) and 8(D~%°)_ ;) is positive if 0 <& < 8(¢) and 0 < y < y(8) for
some 6(g) > 0 and y(8) > 0. If this is so, then by Proposition 3.2(i) and our
choice of s, [u] cannot get out of G_,, ;. Thus the L, distance between [£]
and [« ] will be a positive number, independent of N, on the event of II,,. Now
if indeed by contrapositive argument, there does exist some point ¢ €
NG _y, o) NI(D™?)_, ), then £ €Q_, ,;, and also & € G*. Further, by
Remark 2. 1(a) with FZ D2 it follows that ¢ & (my(D~??)), since ¢ & d(m,;Q)
and since inf{p(¢, n): n € (my(D~?°))° and ¢ € wy(D %)} > §. Thus
£ € G% \ D% = empty set, if § is sufficiently small, depending on ¢. This is
a contradiction to the existence of £. Hence the claim is established and (4.10)
holds. Thus, by (4.9), (4.10), Proposition 3.4 and.(4.6),

(4.11) II < exp(—NB[Vd(G_zy,d) + o(l)]), as N — oo,
Finally, we estimate that
V=P(r,>T,7,,>T)

(4.12)
SP( inf  max [|§, — ,,I2a’/2,§n€Q_%d,n=0,...,T),
[ul€d(s) 0<n<T
for any s = s, < «. Indeed, given s,, if u, were outside Ay, :=
{&: 16 — €§M)l < o' /2) for all 0 < n < T, then, by Proposition 3.1 and our choice
of & in (4.3), it would follow that S (N, T,[u]) > NBs,, which would contra-
dict the condition [u] € ¢,(s,). However, if u, is inside Ay ; for some
0 < n < ¢, then on the event 7, > T it would hold that max,_, _,l§, —u,| >
a'/2. Since o' /2 > a by (4.3), it follows that estimate (4.12) holds. Hence, by
Proposition 3.4,
(4.13) IV < exp(—NB[s, + 0(1)]), as N - o,
for any s, < ». Putting together (4.7), (4.8), (4.11) and (4.13), we obtain
statement (i) of the proposition. Part (ii) of the proposition follows in the same
way by replacing s in (4.7) and (4.10) by ¢(KX1 + o(1)) for ¢(K) in Proposi-
tion 3.2(i). Part (iii) is proved by first applying Lemma 4.1(ii). We sketch the
argument as follows. As in the proof of part (i), write out (4.7), except now it is
understood that x is a fixed initial point in D and we define the stopping time
o =1, 44 With y, from Lemma 4.1. Look at II in (4.7), with o in place of
7,.4- We have

I=P(r,=T,<T, 0>T.)
(4. 14) <P (X & D, some n = S [t0/B), or &y g & (D7T7P) a0 )
+supP(r;=T,<T - [to/ﬁ], o>T,),
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where the supremum is extended over all y such that =;y € (D_’("))_md.
The first term is estimated by Lemma 4.1 to be o(1). The second term is
estimated by Proposition 3.4 and the argument for estimating II in part (i).
Indeed, let s = s, , ; = the minimal action required for a trajectory to go from
(D™*)_, ato(D™/?)_,_, 4 for some a = a, > 0. Then s > 0 by Proposition
3.2(i), since the Euclidean distance between the boundaries of these two sets is
positive. So Proposition 3.4 gives that the second term on the right-hand side
of (4.14) is bounded by exp(—NB[s + o(1)]). The other estimates for part (iii)
follow similar lines as this one, but using the ideas of the estimates of I, III
and IV as above. Hence, for each fixed x € D,

(415) P(7,=T,) <o(1) +exp(—NB[s +0(1)]), as N — o,

for some s = s, , ; > 0. This concludes the proof of Proposition 4.2. O

Proor orF THEOREM 2.1. By Propositions 4.1 and 4.2, Theorem 2.1 is
proved along the lines of Morrow and Sawyer (1989) until at the last step the
parameters y, d and ¢ are sent to their limits. For the upper expectation
bound we put G = D*~"9® for r(d) in (2.37)i). By the Markov property of
the original chain, Proposition 4.1 and (4.6), we have that

P,(T, > 4nT) < (1 — exp(—NB[Va(G_s, 4) + o(1)]))

for all n > 1. Hence

E,(T,) < 4T Y. P(T, > 4nT)

n=0

< 4T é‘,o(l ~ exp(~NB[Vi(G_s,.4) + 0o(1)]))"

= 4T exp(Nﬂ[Vd(G_zy,d) +0(1)])
= exp( NB[V4(G_s,,4) +0(1)]), as N - w.

Thus limsupy _,, E(T,)/NB < V,(G_,, ;). Letting first, y > 0 and second,
8 >0, so d(§) » », and finally ¢ |0, part (i) of the theorem follows by
(2.37)(ii) and (2.41). To prove part (ii), define stopping times 7, by induction as
follows: 7, = 0, and

_ |min{n>7, + 1:§,€By or X, €D}, ifr,<T,
Teer T T ifr, =T,

e’

Then

Te=71+ Z (Tk+1_Tk) >1+ Z l(Tk<Te)‘
k=1 k=1

Thus by Proposition 4.2 and (2.42), if G = D™° for some 0 < ¢ < g, then, for



898 G. J. MORROW

any given x € D,

E(T,) 2P, (7, <T,) ). inf PJ(r;<T,)
k

—1 TaYE€BN,a
> (1- oe,x,a(l))él(l — exp(~NB[Vi(G_,.4) + o(1)]))"

= exp(NB[Vd(G_%d) + o(l)]).

Hence, liminfy _,E(T,)/NB > V,(G_, ;). Therefore, by (2.37)ii) and (2.41),
letting first y | 0, then & | 0 and finally £ | 0, we obtain part (ii) of the theorem.
This completes the proof of Theorem 2.1. O

Proor oF THEOREM 1.1. The proof of Theorem 1.1() follows from Theorem
2.1, the work of Section 2, and Theorem 5.1 in Section 5 on the characteriza-
tion of V, by (1.20). To prove Theorem 1.1(ii), obtain the estimate P{T, >
expl NB(V,, + wp)l} = 0 by Theorem 1.1(i) and Chebyshev’s inequality. Finally,
the estimate P{T, < exp[ NB(V, — wp)]l} = 0 follows from Proposition 4.2(ii)
and (iii) as in the proof of Lemma 5.2 of Morrow and Sawyer (1989). O

5. Characterization of V.. Let D be the open ball of radius r defined
by (1.19). The purpose of this section is to prove the following facts about the
large deviation exponents associated to the infinite alleles model.

TueoreM 5.1. If d = 2! — 1 in (1.15), then (1.20) holds and VD) is
continuous as a function of the radius r of D.

An outline of the proof is as follows. Define
(5.1) J(y) = —2{ Jo(©)y(dt) - xo(2) dt] + p [ log[(dyse/dt) /xo(1)] dt},

for all y € P[0,1], where x, is defined by (1.13). It is first shown that
J(y) = lim, _,, J(w,y), where m, denotes m, defined by (1.15) with d = d(I) =
2! — 1. It is also proved that J is lower semicontinuous from P[0, 1] to the
extended real line. It is proved that (1.20) is consistent with (2.41) in the
following sense:

(5:2)()) lim lim infVy,(D™°) = liminf{J(y): y & D¢} = V; (D)
el - el

and
(5.2)(ii) lifg lillnsude(,)(D”) = lifx(}inf{J(y): y éD*s} = V(D).

" Finally, using (5.2)(@) and (5.2)(ii) and the lower semicontinuity of oJ, it is
proved that V) and V coincide.

We proceed to establish the above outline. As in (1.15), let ,y denote the

projection of y € P[0,1] onto the conditional expectation of y given the
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algebra generated by the dyadic intervals of level [ in the Lebesgue unit
interval. With a slight abuse of notation, ar;y actually denotes the density of
this projection relative to Lebesgue measure, so that if A is a dyadic subinter-
val of level [, then [,(m,y)¢)dt = y(A).

ProposiTiON 5.1. Let ¥: (0,) - R be continuous, concave up and strictly
decreasing with V(u)| — o as uto, ¥(u)teo as ul0, ¥(0) = and
lim, ., ¥(u)/u = 0. For each y € P[0, 1], writey = y,, + y, (Lebesgue decom-
position ), where y,, and y, denote, respectively, the absolutely continuous part
and the singular part of y. Then,

sup ["W(my) dt = lim ["W(wy)dt = [(dy,/dt) dt,
1 0 l->=/0 0
for each y € P[0, 1].

ProoF. Let &y, B, > 0 such that ¥(u) > —u, for all u > B, and ¥(¢,) =
0. Let F, be the finite sigma field generated by the dyadic intervals of [0, 1] of
level I. Then mw;y = E(w,,y|F,). Hence, by Jensen’s inequality, the integrals
[¥(m,y) are nondecreasing. Note that [¥(w,y) = « if and only if =,y = 0 on
some dyadic interval. Here and below when convenient we denote for brevity

J&C--) dt by [(-).
(a) Assume first y = y,. and denote y' = dy/d¢t. Then either

(i) / W(y) < or (i) / V() =

<eo <eo

Cast a(i). Since [(y > 5g¥(y) = [ —y = —1, it holds that ¥(y') is abso-
lutely integrable, as is ‘If(q-r, y). Hence, by adjoining a last element ¥(y’) to the
sequence {¥(m,y)},.,, we obtain a submartingale with a last element:
Y(m,y) < E(¥(w,, IF) and ¥(w,y) < E(¥(y)|F,). The uniform integrabil-
ity of a submartingale with a last element is well known, but follows easily by
writing

V(my) < [ W(y) =1+1I,

j{'\lf(-rr,y)>b} {(¥(mw;y)>b}

where this last sum corresponds to splitting up the last integral by the identity
1 1(‘1’(y’)sa) + Liyyy>a BEstimate I <al{®(my) > b} <af;¥(y)/b and

< Jwoy>a¥(y'), and let first b > o and then a — « to obtain
supl fwmpmy > ¥ (my) = 0 as b — . Hence the submartingale is uniformly
integrable. Further, since the fields F, increase and generate the Borel field B
- on,[0, 1], it follows from the continuity theorem for conditional expectations
that m,y —» E(y'|B) = y' a.e. relative to Lebesgue measure. Hence because the
submartingale is a.e. convergent to ¥(y') and uniformly integrable, it is
convergent in L!. This completes the proof of Case a(i).
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Cask a(ii). In this case [¥(y') makes sense and converges to + e since

[ eon=(f  + |l < 1wz + 1.
' >e0} {y'>By} {eg<y'<Bg}

Note that the same estimate holds with ,y in place of y'. Next,
\P(Trly)l(-rrlys:»:o) - \P(y,)l{y’s%) a.e.

Therefore since these are all nonnegative functions, we have by Fatou’s lemma
that

o = f Y(y') < liminf V(my).
{y'<eo}

I—o Hmy<eo)

Hence the proposition is verified in Case a(ii). This completes the proof in case
Y = Yac-

(b) We now pass to the case when y = y,, that is, y has no absolutely
continuous part. Then it is well known [see Billingsley (1979), Example 35.10]
that w;y — 0 a.e. relative to Lebesgue measure. Now let ¢ > 0 and write

J¥(my) = ( fo.t + + ¥(my)

my<e} {e<my=<eg) {eg <y <B,} (‘ﬂ'ly>Bo})

= Y(my) —1— [¥(By)l

- Hmy<e)
>V(e)/2 -1 - |¥(By)l,
for all [ > I(¢). By the same reasoning as in Case a(ii) we know [¥(m,y) is

nondecreasing, so letting ¢ — 0 it holds that the supremum over [ is ». This
completes the proof in the purely singular case.

(c) Consider finally the case y = 0y, + (1 — 0)y,, where y,, y, € P[0, 1], and
y, is absolutely continuous, y, is singular with respect to Lebesgue measure
and 0 < 6 < 1. We obtain first an upper bound. Since ¥ is decreasing, it holds
that

(53)  [¥(my) = [V(Omy, + (1 - 0)mys) < [(6my,).
To obtain a lower bound, let & > 0 be small and let B > B,/(1 — ). Then
[¥(my) = /{ )‘If(f)'rrlyl + (1 - 0)¢)
™Y <€

+ v(0my, + (1 —6)B
(5.9 ey T (7 OP)

+ Y(0my, + (1 - 0)wy,)

{w,y2> B}

=1+ 1II + III.
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Estimate first that
1 > —( sup - ‘If(u)/u)f [0y, + (1 — 6)w,,]
u>B(1-6) {mys>
=o0(1) as B » o,
independent of !/ and ¢. We assume now that [¥(6y]) < «, so in particular
[¥(0y; + (1 — 0)e) < ». Then, by the same argument used to establish Case

a(i), Y(0my, + (1 — 0)e) > ¥(By, + (1 — 8)¢) in L'. Hence because
1 — lae. as [ — o, we have

(5.5)

{my2 <€}

(5.6) lim T = f\I’(Oy’I + (1 - 0)s).
Also, by the same reasoning, except using now 1, ... 5 — 0 ae as !l - x,
we have

(5.7) lim I = 0.

Therefore, letting first [ > « and then B — « it follows by (5.4)-(5.7) that
lim, ., [W(mw,y) = liminf,_,, [V(m,y) = [fV(0y; + (1 — 0)¢) for every & > 0.
Hence, by the dominated convergence theorem, lim, , [¥(1w,y) > [¥(6y)).
Since by the upper bound (5.3) and the argument of Case a(i) with 6y} in place
of ¥/, we have also lim, _,,, [ ¥(m,y) < [¥(8y)), the proof is complete under the
assumption that this last integral converges.

Suppose finally that [W¥(6y}) diverges. We know that ;y, converges a.e. to
¥} and that 1 — 1 a.e. for each ¢ > 0. Hence if ¢ < ¢, then, by Fatou’s

{miy2 <¢}
lemma,
liminfI > liminf V(0my, + (1 — 0)e)dt — [V(By)l — 1
Ui Ioe Ny, <e, my; <eo)

> T(0y, + (1 — 0)e)dt — |V(By) — 1,
[W%) (651 + (1 = 0)e) (Bo)

since liminf, 1., .., > 1, <., Therefore, since by monotone conver-
gence,

f P(6y; + (1 —0)e) > +o ase -0,
i<eo}

it obtains that lim, ,,I = . Thus because II is bounded below by
—|¥(By)| — 1, the proof of the proposition is complete. O

We will now prove that the functional I(y) := [W¥(y,,.) is lower semicontinu-
ous from (P[0, 1], p(+, - )) to the extended real line. Unfortunately, the func-
" tionals I,(y) := [W(r,y) are not lower semicontinuous in this setup since the
maps 7, are not continuous. Thus we cannot immediately conclude that I(y)
is lower semicontinuous. However, the maps w, are bounded on the class of
nonnegative measures that are absolutely continuous with respect to Lebesgue
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measure with densities uniformly bounded by & for some b < «. It is essen-
tially this fact that is used to prove the following.

LEMMA 5.1. Let ¥ be as in Proposition 5.1. Then I(y) = [¥(y,.) is lower
semicontinuous from (P[0, 1], p(-, - )) to the extended real line.

ProoF. Let y,, converge weakly to y in P[0, 1]. Assume lim inf,, I(y,,) < c.
We must show I(y) < liminf,, I(y,). For the proof, we pick first a subse-
quence (y,,+) of the sequence (y,,) along which lim I(y,,+) = liminf I(y,,). For
convenience, write now (y,,) for the subsequence (y,,«). Let y, =y, .. + ¥, s be
the Lebesgue decomposition of y,, into its absolutely continuous and singular
parts, respectively. Let f,(t) =y, ..(t) be the density of the absolutely contin-
uous part, so f,(¢) > 0 and [f, < L.

For each 0 < b < «, we define a sequence of absolutely continuous subprob-
ability measures z, = 2, ,, with densities relative to Lebesgue measure given
by 2, = f,1;s, <- Then some subsequence (z,+) of (z,,) converges weakly to a
subprobability z: [¢z,+(dt) = [ez(dt) for all continuous functions ¢ on [0, 1].
Let z = z,, + 2, be the Lebesgue decomposition of z into its absolutely contin-
uous and singular parts, respectively. It is clear that z, = 0, since otherwise
there would be a Lebesgue measurable set E with |[E| = 0 but with 2(E) > 0.
Indeed, if the latter would hold, then, since for each ¢ > 0, E is enclosed in a
countable union of open intervals (a, b;,) with £(b; — a;) < ¢, it would hold for
some finite N that, z(U,_;_n(a;, b)) > 2(E)/2 > 0. But choosing then
0 < ¢ < 1 to be a continuous function approximating the indicator function of
the set U;_; . n(a;, b;) with support of ¢ in a set of measure at most 2e, it
would hold that 2eb > lim [/ , _ ¢ fx(¢) dt > 2(E)/2. This is a contradiction
since ¢ > 0 is arbitrary. Thus z, = 0. Note therefore that z,. <y, since

Yn = l(fnsb)fn + Y — l(fnsb)fn 22ty T Zae

where y — z,, = 0.
Now fix [ and a dyadic interval A of level / with interior A°, and let ¢,(¢)
be continuous and supported on A° such that as ¢ = 0, ¢,(¢)1140(¢). Then,

[ efu= [z dt + [ez(dr) asn* > .
{fux<b}

Thus by the uniform bound on the density f,«l; ., of z,« and by the
integrability of 2/, it follows after letting ¢ — 0 that

5.8 w2« = W2, a.e.t,asn* - o,
l%n [“ac

Estimate now that

lin’II*in f ‘I'( far] fox < b))

\%

li}n linrl‘}nf;f‘l’(‘"zzn*)

(5.9)

v

li v
l}n f ( ™ zac)

J¥(z) = [¥(5e)-



LARGE DEVIATION IN POPULATION GENETICS 903

Indeed the first inequality holds by Proposition 5.1 since the integrals
[¥(m,z,+) are nondecreasing in [ with limit [W(f,«1 . ;). The second
inequality follows by (5.8) and Fatou’s lemma since ‘If(-rrlzn*) V(b)) = 0. The
equality in (5.9) follows by Proposition 5.1. The last inequality in (5.9) holds
because ¥ is decreasing and because z,, < y,., so that 2z, < y...

Finally, we use first the fact that, by construction, lim inf I(y,,) = lim I(y,),
since (y,) = (y,,+), and second the facts that ¥(u)/u — 0, as u — », and
[f+ < 1 to obtain

lim inf I(y,,) = lim 1(y,») = im [¥(y}» o)
(5.10)
= lim liminf [¥(foulyf,, <)-

Therefore by (5.9) and (5.10), liminf I(y,,) > [¥(y,.) = I(y). This proves the
lemma. O

We now go back to the infinite alleles model. By applying Lemma 5.1 with
T = —log, it follows by (5.1) that J is lower semicontinuous on P[0, 1]. First
set G = D°. Let y achieve the infimum in the problem inf{J(y): y & G*2%},
where 6 = 1/[2(d(1) + 1)1. The probability y exists by lower semicontinuity
of J and compactness of P[0, 1]. Then m,y & (int(w;G)). Hence, by (2.46), (5.1)
and (1.13),

Va(G) < J(m) + = 2 [o(D)mo(t) — t0.u(0)] dt

1 ogl(8) /o, (0)] ).

for d = d(l). Therefore by (1.13) and the definition of ¢, ,(¢) =
p/lag g — myo (@),
ligniand(l)(G) < li?lian('rrly).

But J(w;y) = J(y) as [ - » by Proposition 5.1 and the fact that by the
uniform continuity of o(#),

sup fa(t)[-rrly(t) dt —y(dt)]’ -0 asl - o,

yeP[0,1]
Thus letting first [ — « (so also § —» 0) and then ¢ |0, obtain that V(D) <
lim, , inf{J(y): y & D™°}, where V. (D) is defined in (2.41). Next, let ¢ €
d(int(w,(G)) be minimizing for V,(G), so, by (2.46), § & d(w, P[0, 1]). Then by
Remark 2.1(b), ¢ also belongs to (G~°)°. Hence,

intlI(5):7 € (67)) < V(@) + 2{ [o () [olt) — £o.4(0))

+,U~f log[xo(2) /€0 4(t)] dt},
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for d = d(1). Thus letting first [ — c and then ¢ | 0 obtain also lim, | , inf{/(y):
y & D¢} < V(D). Hence (5.2)(i) holds. By the same arguments with instead
G = D** and with lim sup, in place of lim inf;, obtain also (5.2)(ii).

We are now ready to complete the proof of Theorem 5.1. By (5.2) we need
only the following lemma.

LEMMA 5.2. . Let D= D(r) be given by (1.19). Then V(r) = inf{J(y): y &
D(r)} is a continuous function of r.

Proor. We must prove V(r — ) = V(r) = V(r + ). Let J(y,,) = V(r — 1/n)
for some y, € P[0, 1]. Let y be a weak limit of the y,. Then p(y, x,) > r and
by the lower semicontinuity of J(-), V(r — ) = liminf, J(y,) > J(y) > V(r).

To complete the proof we need to show V(r + ) = V(r). Note that this is
trivially true if V(r) = «. So assume V(r) < . We know that V(r) = inf, J(y)
is achieved for some y with p(y,x,) = r. To see this, use the fact just
proved that V(r — ) = V(r) as follows. Write V(r —) = V_(D(r)) =
lim, |, liminf, J(y, ) with y, , € d(int(w, D(r — ¢))), so that by (2.2) and Re-
mark 2.1(b), v, , € D(r — & + 28) \ D(r — & — 8), where § — 0as [ — «. Then
take y, to be a weak limit of y, , along a sequence ! — =, and finally take y to
be a weak limit of y, as ¢ — 0. Thus we obtain by lower semicontinuity of J
that J(y) < liminf, J(y,) < lim, |, liminf, J(y, ) = V(r). Therefore, since
p(y, xo) = r, we have J(y) = V(r).

In the following we fix y € P[0, 1] with p(y, x,) = r and J(y) = V(r). We
decompose this probability measure by y = 6y, + (1 — 0)y,, where y; and y,
are, respectively, absolutely continuous and singular probabilities with respect
to Lebesgue measure. Since V(r) = J(y) < «, we have that § > 0 by Proposi-
tion 5.1. The strategy is to find a nice measure y, with p(y,, x,) > r for all
a <1, so that y, >y as a1l with also J(y,) = J(y). We construct y, =
ay + (1 — a)8, for an appropriate number ¢ = t,(y). Then p(y,y,) =
1 - a)p(8,,y) <1 — a) = 0, as a1 1. Further, it is clear that the absolutely
continuous part of y, is fay, —» 0y, so that by (5.1), J(y,) — J(y) since
log(a) — 0. It remains to show that there exists a ¢ = ¢, so that p(y,, 8,) > r
for all & < 1. We recall that the set A of Lipschitz functions ¢ on [0, 1] with
both ll¢ll. <1 and ll¢llLp <1 is compact in C[0,1] by the Arzela-Ascoli
theorem. Therefore there exists ¢, € A such that [o, dly — xo] = r. There-
fore,

P(ay +(1- oz)8t,x0) 2 af¢y dly —xo] + (1 - a)/¢y[8t — dx,]
—ar+ (1 -a)[e,(dy — dxo + 8, — dy)

. T =r+(1-a)fels - dy]

| We now choose ¢ = ¢, so that ¢,(¢,) = sup{e,(2): ¢ € [0, 1]}, which exists by
continuity of ¢,. We claim [¢[5, — dy] > 0. Indeed, Je,l8,, — dyl =
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0/¢,l8,, — dy] + (1 — 0)[¢,[5, — dy,] = 6[¢,[5, — dy,] by the choice of ¢,.
Thus since 6 > 0, it suffices to show [¢,[8, — dy;] > 0. Suppose on the
contrary that [¢ [8, — dy,] = ¢,(¢;) — [e,ldy,/dt]dt = 0. Then since dy,/dt
> 0 a.e. [because J()y) < ), it would follow that goy(t) = (py(to) a.e. Indeed, if
@,(t) < ¢,(ty) on a set E of positive Lebesgue measure, |E| > 0, then (¢,(2,) —
o, (O)(dy,/dt) > 0 ae. on E, so that [zo,(dy,/dt) < ¢(¢,)y(E) and therefore
Joo,[dy, /dt]dt < ¢,(t,), contrary to hypothesis. But if ¢ (1) = ¢,(¢,) a.e., then
@,(t) = ¢,(t,) for all ¢ € [0, 1] by continuity. In this case, [¢,dly — x,]=0<r,
a contradiction. Therefore the hypothesis fails and [¢,[8, — dy;] > 0. Hence
p(¥,,8,) > r for all @ < 1. Therefore V(r +) < lim,,,, J(y,) = J(y) = V(7).
Since on the other hand V(r + ) > V(r), the proof of the lemma is complete. O
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