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MATCHING RANDOM SAMPLES IN MANY DIMENSIONS?

By MiCcHEL TALAGRAND
University of Paris VI and Ohio State University

Consider any norm N on RY, d > 3, and independent uniformly
distributed points X;,...,X,,...;Yy,...,Y,,... in [0,1]% Consider the
random variable M, = inf¥; _ nN (X; - Y »(:))» Where the infimum is taken
over all permutations o of {1,...,n}. We show that for some universal
constant K, we have

log d
limsupMnn‘1+1/der(1+K i ) a.s.,

n—oo

where ry is the radius of the ball for N of volume 1.

1. Introduction. Consider a norm N on R¢. Consider independent iden-
tically distributed points X,,..., X,,...;Yy,...,Y,,... in [0, 1]¢, and denote
by MY the average length of the edge in an optimal matching between
X,...,X, and Yy,...,Y,, that is,

MY = inf ) N(X;- Y, )

oceSs i<n
where the infimum is taken over the set S of all permutations o of {1,..., n}.
Ajtai, Komlos and Tusnady [1] proved that, when d = 2, with high probability,
MY is of order (nlogn)/% (a truly remarkable result). When d > 3, the
nature of the result changes, and M,, is of order n!~!/? (a fact of considerably
less depth). This means that, with hlgh probability, we have ¢, yn'™1/¢ <
MY < C; yn*~Y/?, for two constants ¢, y,C, y dependent on d, N. We are
1nterested here in the behavior of these constants as d — «. The method of [1]
relies on a partitioning scheme that partitions [0, 1]? into parallelepipeds. This
method is extremely ill adapted to the study of C; y,c, y, in particular in the
case where N is the Euclidean ball, as parallelepipeds are far from balls (and
the higher the dimension, the more so). In the present paper, we introduce a
different (and very elementary) method that is better adapted to the problem
(but fails to give the correct result when d = 2). We obtain the following
result.
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THEOREM 1. Consider the number ry such that the ball for N of radius ry
has volume 1. Then

1 o MY My
it gy ) = i S e e
log d
er(1+K 4 a.e.,

where K is universal.

We close this section with a discussion of some open problems. It is routine
to prove (using “subadditivity arguments”) that liminf n=!*1/?MY exists a.e.
Denote by a,(N) this limit.

ProBLEM 1. In the case where N is the Euclidean ball in R¢, what is the
rate of convergence of |ryla ;(N) — 1| to 0 as d — »? Our result implies that
this quantity is O(log d /d).

Another natural question of interest is as follows. For p > 1, define

MYMP = inf ¥ N(X;-Y,.)"

= i<n

ProBLEM 2. Is it true that, given p > 1, we have

N,p
lir,?_?::p —Tp7d ‘s rg(1+o(d™h))?
The function of d ! that is implicit in the notation o(d ~') might depend on
p. We conjecture, however, that, provided p < ¢(d), where ¢ is a certain
function such that lim,__ ¢(d) = » [possibly, ¢(d) = ad], we can take a
function independent of p.

2. Simple facts. We fix the norm N on R?. We say that a function f on
RY is Lipschitz if |f(x) — f(y)| < N(x — y) for all x,y € R%. We denote by .~
the class of Lipschitz functions that are 0 at the origin. We will proceed (in a
standard fashion; e.g., [5]) through duality.

LEMMmaA 1.

¥

M, - swp | ¥ (F(X) - F(¥)].

feLli<n
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Proor. Since for fe€ .2, we have |f(X,) — f(Y)| < N(X; - Y)), we cer-
tainly have

¥ (F(X,) - f(%))| < M,.

isn

The converse is less obvious. It relies on the fact that
Mn=sup(2ui— Evi)y
i<n i<n

where the supremum is taken over all sequences (u;); _,,(v;); ., for which
u; <min;_{v; + N(X; — Y;)}. (This is a simple consequence of the duality
principle in linear programming; see [2]) For any such sequences
(©,;); < n> W;); - ,, consider the function

6(x) = minfy, + N(x - ).
J=<n
Then g(Y)) < v;, g(X;) = u;, so that
Yg(X)- Le¥)= Yu— L.

i<n isn’ i<n i<n

Also, it is simple to see from the definition that g is Lipschitz, so that
f(x) = g(x) — g(0) € .Z. This completes the proof. O

We set D = sup{N(x — y); x,y € [0, 1]%}. Thus |f(x)| < D for fe 7.

LEMMA 2.
t2
P(‘Mn - E(Mn)l = t) < exp(—gr?D—z-).

Proor. This is an immediate consequence of the martingale difference
method as, for example, in [4]. O

A consequence of this statement is that, in the statement of Theorem 1, it
suffices to replace M, by E(M,).

We will assume in the sequel that ry = 1. This is no loss of generality, as is
seen by replacing N by N /ry. This means that the ball of N of radius 1 has
volume 1.

We prove the lower bound for M,, which is certainly well known, and is
based on the observation that

j=<n
-+ Thus, conditioning on X,,..., X,,, we get that
(1) E(M,)>n min E(min N(x — Yj)).

x<€[0,12 Jj=sn
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We denote by B(x, ¢) the ball for N centered at x of radius ¢. Thus
B(x,t) = {y € R% N(x —y) < t}.

849

The d-dimensional volume of a set A will be denoted by |A|. Since ry = 1, we

have |B(x, t)| = ¢¢, so that

|B(x,t) N [0,1]%] < ¢2

and

P(ljn:SN(x —Y) 2t) = (1-th)".
Thus

EI}EEN(x -Y) >[ (1 —¢t%)" ds.
By (1) and change of variable ¢ = n~ /%y, we get

E(M,) >nl"td f”l/d(l —ut/n)" du.
0

Thus, by Fatou’s lemma,

E(M,)
liminf—l(w_f exp( — ud)du>[ (1-u?)du=1-

12— 0 d+1°

3. The approach. We consider a parameter n > 1 to be adjusted later

on. We set r = nn~ /9 so that |B(x, r)| = n¢/n. We set

w(i, j) = 1, f N(X;-Y)<r,
0, otherwise.
We set
b(x) =|B(x,r) n[0,1]%].

Note that b(x) < n%/n.

LEMMA 3.
n?E(M,) <n%rn + 2G(n) + Gy(n),
where
G(n) =B sup | T 7(X) T (u(i,d) = b(X)|
) feLli<n N
Gi(n) = Esup | & f(X)(n" = nb(X0)) = L f(%)(n" = nb(¥))].
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Proor. We write for f €2,

4T rx) -
< ;;nf(xi?(jgnuu,j)) - Enf(Yf)(E,,“("’f))’

+| T AX) L (u(z J) - —d) YY) T (u(, i - _")

i<n Jj<n Jj<n i<n

=A(f) +A(f).
We have

A(f) < X u(i, H|FX)-FY)|<r ¥ u(i,j),

i,j<n i,j<n
since f is Lipschitz and u(i, j) = 0 unless N(X; — Y;) < r. Thus
ESHPA1(f) <r X Eu(i,J).

i,j<n
Now
n?
E(u(l,‘])le) =b(X;) < W
so that E(u(i, j)) < n%/n, and this implies that

E sup A(f) <rn?n.
fet

Now we write

AL F) <| T XD T (u(i,d) - 8(X0)| +| T A(Y) T (i, ) - 5(F)
i<n j<n j<n i<n
| X A(X)(nb(X,) = n?) = L F(Y,)(nb(Y;) = n%)).
i<n j<n

Taking the supremum over f and then expectation yields the result. O

Next we will derive upper bounds on G,(n) and G(n) and show that with
a proper choice of 7 these terms are low-order.terms. This will lead to
Theorem 1.

+ LEMMA 4.
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ProOF. For a measurable function f on [0, 114, we set

Afom) =] £ AR = nb(X)) = T F5)(n = ()|
Thus _ _
A(Fm) <17 S I = ()] + E [ = mo(s))
Set

V, = {x €[0,1]%; b(x) + n?/n}
= {x e [0,1]%; B(x,r) ¢ [0, I]d}.
Since n¢ —nb(x) = 0 unless x € V,,, we have

sup A(f,n) <a(card{i <n; X; € V,} + card{j <n;Y; € V,.})-

I flle<a
Thus

E sup A(f,n) <2nalV,|.
Ifllo<a

Now since r = n~ /9, it is clear that for a constant C, depending on N, d, but
not on n, we have [V,| < Cn~/?. Thus

(2) E sup A(f,n) <2aCn~/7
1 flle<a

On the other hand, for a given bounded function f, we see that
EA(f,n)? = C'n, where C' is independent of n, so that EA(f,n) < (CHYV*/n,
and lim, _,, EA(f, n)/nt-v d = ( since d > 2. The result then follows from
this observation, (2) and the fact that given any a > 0, £ can be covered by
finitely many sets of the type {g € £; l|f — gll. < a}. O

The hard part of the proof is the following statement.
LEMMA 5. We have G(n) < 14nt~1/dnd/2+1,
If we combine with Lemma 3, and recall that r = nn~/%, we see that
1-1/d 10 —d
E(M,)<n ‘n+n—d/7_—1 + 1 %Gy(n).
Taking n = 1 + K(log d/d) for a constant K large enough gives n?/271 >

d; combined with Lemma 4, this proves Theorem 1. It remains to prove
Lemma 5.
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4. Proof of Lemma 5. Weset W, = X, _,(u(i, j) — b(X;)). The first idea
in the proof of Lemma 5 is elementary.

LEMMA 6.
E\W,| < n¢/2.
Proor. Observe that E(u(i, j)IX,) = b(X;) so that
E(W2X,) = nb(X,)(1 - b(X,)) < n°. o
For a function g on [0, 1]2, we consider the random variable
F(g) =| L g(X)W,|.
Thus
(3) G(n) = E sup|T(f)].
fe.z

A second idea in the proof of Lemma 5 is that, for a given a set A, there is
much cancellation among the variables W; forX; € A. (Observe that these
variables are not independent.) We denote by 1, the indicator function of A.

LeMMA 7. For a set A [0, 1]%, we have

E(T(1,)%) < nlA|(n? + n?) < 2n|A[n*.

Proor. For simplicity we set v(i, j) = u(i, j) — (X)) if X; € A, v(i,j) =0
otherwise. Thus I'(1,) = |X; ; _ (i, j)I. Now

E(T(1,)%) = X E(uv(i, ), J"))-

ii'J,
If j #j', conditioning on X;, X;,Y,, we see that E(v(i, j)v(@, ;) =0. If
j=Jj and i #i’, we see that
e N .. 2
E(u(i, j)v(i, 7)) = E(E(v(i, ))Y;)?).
Thus
E(T*(Ly)) = n’E(v(1,1)*) + n*(n - D E(E(v(1, DIY,)’).

For s,t > 0, we have (s — #)? < s2 + ¢2, so that v(1,1)? < u(1,1) + b%((X,) and
v(1,1) = 0 if X, & A. We observe that u(1,1)? = u(1, 1), so that

E(u(1,1)3X,) = E(u(1, 1)IX,) = b(X,).
,Since b(X;) < n?/n, we have shown that

g 77d 172d
E(v(1,1)%) < |A|(7 + )

n2
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We have
E(v(1,1)lY}) =|A N B(Y,,r)| — Ec,
where ¢ = b(X,) for X; € A and ¢ = 0 otherwise. Note that, since
E(v(1,1)) =0,
we have
(4) E|ANB(Y,,r)| = Ec.
This implies first that
E(E(v(1,1)IY,)°) = E|A 0 B(Y,,r)[* - (Ee)?

<E|AnB(Y,r).
Since |A N B(Y,, r)| < n¢/n, we get, by (4),

d
E(E(u(1,1)7)?) < %EIA A B(Y,,r)|
d 2d
< n—EC < |A|n—2,
n n
since ¢ < n?/n for X; € A and ¢ = 0 otherwise. O
LeEmMma 8.
E sup T'(g) <nbn?/2,
llglle<b
Proor. Write
I'(g) <b) W]
i<n
and use Lemma 6. O
For two functions &, g on R?, we recall that
(5) hg(x) = [ h(x—t)g(t)adt.
R

In the cases we will consider the functions &, g will be continuous, and h will
have a bounded support, so that h * g will be well defined.

LEmMA 9.

. 1/2
’ E sup F(h*g)sb(f EF2(h‘)dt) ,
' llglhe<b R?

where h'(x) = h(x — t) for x,t € R%.
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Proor. We have, using (5),

(b g) =| £ Whea ()| - }fﬂ@d,zvtcg(t)h(xi—t)dt
< [ (0| T Wk(X, —t)dt‘

i<n
t
< bed|l“(h )| dt.
Taking expectations, we get

E sup r(h*g)<bf E|T(R')]dt.
llglle<b

Using Cauchy-Schwarz twice, we have
1/2
fRdEll“(h‘)|dt < (/Rd(Ell“(ht)l)z dt)
1/2
< (fRdEl“z(h’) dt) . O

For | > 1, we consider the function %, on R? defined as follows. If N(x) >
2'r, then h, = 0, while if N(x) < 2'r, then &, = (2'r)~%. Thus

(6) fRdh,(x) dx = 1.
We now combine Lemmas 7 and 9.

LEmMA 10.

E sup T(h,*g) < 2bn"/*nd(2lr) "
llglle<b

Proor. Consider ¢ € R?, and
A, ={xe[0,1]%Ri(x) 20} = {x € [0,1]% N(x — ¢) < 2'r}.
Consider the indicator function 14, of A,. By Lemma 7, we have
E(T%(1,,)) < 2nlAn™.
Thus, setting a; = (2tr)~9, we have

E(T(R}) ) < 2a2n|A |n2¢
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E(T(ht)%) dt < 2nn2a? At
E(D(R)

= 2nn2a |B(0,2lr)|
= 2nn¥ata;! = 2nn*a,.

The result follows by Lemma 9. O

We now complete the proof of Lemma 5.
Consider a number g large enough that 29r > D. For a function f on R, we
set

fi=f—="fx*hy,
faser=F*hyx - xh,.
For2sl5q,weset &="hyx - xh,_;, and we set

=(f-fxh)*x&=(f—Fxh)*& 1%hy.
Thus f= Zq“f Consider the class
= {f: R? > R; f Lipschitz, f(0) =0, [|fll. < D}.

We have
q+1

(7 E sup [T(f)|< X E sup [T(f)].
fe’ 1=1 fe’

For fe ', we have ||f — f*hll. < 2'r, since [h,(x)dx =1 and h,(x) =
for N(x) > 2'r. It thus follows that if one sets g, = (f— f*h)*&_,, then
llg,ll. < 2'r. Thus for I < g, we have, by Lemma 10, and since r = nn —l/d

~d/2
E sup |F( )l <2t 2rpd2-tr) /
fe’
= pltd/2g1+¢-1X1-d/Dpl-1/d,

The same argument actually works for [ = g + 1, since now || fll. < D < 29r.
Thus, from (7), we get, since d > 3,

E sup |F(f)| < 771+d/2n1_1/d( Z 22—1/2)
fe’ =0

< 14n1+d/2n1—1/d‘
To finish, it suffices to show that ‘
E sup|T(f)|=E sup|T(f)|.
fe’ fet

But this is the case since each function of _# is the restriction to [0, 1]? of a
function of -#’. O
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