MATCHING RANDOM SAMPLES IN MANY DIMENSIONS¹

By MICHEL TALAGRAND

University of Paris VI and Ohio State University

Consider any norm N on \mathbb{R}^d , $d \geq 3$, and independent uniformly distributed points $X_1,\ldots,X_n,\ldots;Y_1,\ldots,Y_n,\ldots$ in $[0,1]^d$. Consider the random variable $M_n=\inf \sum_{i\leq n} N(X_i-Y_{\sigma(i)})$, where the infimum is taken over all permutations σ of $\{1,\ldots,n\}$. We show that for some universal constant K, we have

$$\limsup_{n\to\infty} M_n n^{-1+1/d} \le r_N \bigg(1 + K \frac{\log d}{d} \bigg) \quad \text{a.s.,}$$

where r_N is the radius of the ball for N of volume 1.

1. Introduction. Consider a norm N on \mathbb{R}^d . Consider independent identically distributed points $X_1, \ldots, X_n, \ldots; Y_1, \ldots, Y_n, \ldots$ in $[0, 1]^d$, and denote by M_n^N the average length of the edge in an optimal matching between X_1, \ldots, X_n and Y_1, \ldots, Y_n , that is,

$$M_n^N = \inf_{\sigma \in S} \sum_{i \le n} N(X_i - Y_{\sigma(i)}),$$

where the infimum is taken over the set S of all permutations σ of $\{1,\ldots,n\}$. Ajtai, Komlos and Tusnady [1] proved that, when d=2, with high probability, M_n^N is of order $(n\log n)^{1/2}$ (a truly remarkable result). When $d\geq 3$, the nature of the result changes, and M_n is of order $n^{1-1/d}$ (a fact of considerably less depth). This means that, with high probability, we have $c_{d,N}n^{1-1/d}\leq M_n^N\leq C_{d,N}n^{1-1/d}$, for two constants $c_{d,N},C_{d,N}$ dependent on d,N. We are interested here in the behavior of these constants as $d\to\infty$. The method of [1] relies on a partitioning scheme that partitions $[0,1]^d$ into parallelepipeds. This method is extremely ill adapted to the study of $C_{d,N},c_{d,N}$, in particular in the case where N is the Euclidean ball, as parallelepipeds are far from balls (and the higher the dimension, the more so). In the present paper, we introduce a different (and very elementary) method that is better adapted to the problem (but fails to give the correct result when d=2). We obtain the following result.

Received February 1991; revised November 1991.

¹This research was supported in part by an NSF grant.

AMS 1980 subject classifications. 60C05, 05C70.

Key words and phrases. Matchings, transportation cost, empirical measure.

Theorem 1. Consider the number r_N such that the ball for N of radius r_N has volume 1. Then

$$egin{aligned} r_Nigg(1-rac{1}{d+1}igg) & \leq \liminf_{n o\infty} rac{M_n^N}{n^{1-1/d}} \leq \limsup_{n o\infty} rac{M_n^N}{n^{1-1/d}} \ & \leq r_Nigg(1+Krac{\log d}{d}igg) \quad a.e., \end{aligned}$$

where K is universal.

We close this section with a discussion of some open problems. It is routine to prove (using "subadditivity arguments") that $\liminf n^{-1+1/d}M_n^N$ exists a.e. Denote by $\alpha_d(N)$ this limit.

PROBLEM 1. In the case where N is the Euclidean ball in \mathbb{R}^d , what is the rate of convergence of $|r_N^{-1}\alpha_d(N)-1|$ to 0 as $d\to\infty$? Our result implies that this quantity is $O(\log d/d)$.

Another natural question of interest is as follows. For $p \ge 1$, define

$$M_n^{N, p} = \inf_{\sigma \in S} \sum_{i < n} N(X_i - Y_{\sigma(i)})^p.$$

PROBLEM 2. Is it true that, given p > 1, we have

$$\limsup_{n \to \infty} \frac{M_n^{N,p}}{n^{1-p/d}} \le r_N^p (1 + o(d^{-1}))?$$

The function of d^{-1} that is implicit in the notation $o(d^{-1})$ might depend on p. We conjecture, however, that, provided $p \leq \varphi(d)$, where φ is a certain function such that $\lim_{d\to\infty} \varphi(d) = \infty$ [possibly, $\varphi(d) = \alpha d$], we can take a function independent of p.

2. Simple facts. We fix the norm N on \mathbb{R}^d . We say that a function f on \mathbb{R}^d is Lipschitz if $|f(x) - f(y)| \le N(x - y)$ for all $x, y \in \mathbb{R}^d$. We denote by \mathscr{L} the class of Lipschitz functions that are 0 at the origin. We will proceed (in a standard fashion; e.g., [5]) through duality.

LEMMA 1.

$$M_n = \sup_{f \in \mathcal{L}} \left| \sum_{i \le n} (f(X_i) - f(Y_i)) \right|.$$

PROOF. Since for $f \in \mathscr{L}$, we have $|f(X_i) - f(Y_i)| \le N(X_i - Y_j)$, we certainly have

$$\left|\sum_{i\leq n} \left(f(X_i) - f(Y_i)\right)\right| \leq M_n.$$

The converse is less obvious. It relies on the fact that

$$M_n = \sup \left(\sum_{i \le n} u_i - \sum_{i \le n} v_i \right),\,$$

where the supremum is taken over all sequences $(u_i)_{i \le n}$, $(v_j)_{j \le n}$ for which $u_i \le \min_{j \le n} \{v_j + N(X_i - Y_j)\}$. (This is a simple consequence of the duality principle in linear programming; see [2].) For any such sequences $(u_i)_{i \le n}$, $(v_j)_{j \le n}$, consider the function

$$g(x) = \min_{j \le n} \{v_j + N(x - Y_j)\}.$$

Then $g(Y_i) \le v_i$, $g(X_i) \ge u_i$, so that

$$\sum_{i\leq n} g(X_i) - \sum_{i\leq n} g(Y_i) \geq \sum_{i\leq n} u_i - \sum_{i\leq n} v_i.$$

Also, it is simple to see from the definition that g is Lipschitz, so that $f(x) = g(x) - g(0) \in \mathcal{L}$. This completes the proof. \square

We set $D = \sup\{N(x - y); x, y \in [0, 1]^d\}$. Thus $|f(x)| \le D$ for $f \in \mathcal{L}$.

LEMMA 2.

$$P(|M_n - E(M_n)| \ge t) \le \exp\left(-\frac{t^2}{8nD^2}\right).$$

PROOF. This is an immediate consequence of the martingale difference method as, for example, in [4]. \Box

A consequence of this statement is that, in the statement of Theorem 1, it suffices to replace M_n by $E(M_n)$.

We will assume in the sequel that $r_N = 1$. This is no loss of generality, as is seen by replacing N by N/r_N . This means that the ball of N of radius 1 has volume 1

We prove the lower bound for M_n , which is certainly well known, and is based on the observation that

$$N(X_i - Y_{\sigma(i)}) \ge \min_{i \le n} N(X_i - Y_i).$$

Thus, conditioning on X_1, \ldots, X_n , we get that

(1)
$$E(M_n) \geq n \min_{x \in [0, 1]^2} E\left(\min_{j \leq n} N(x - Y_j)\right).$$

We denote by B(x,t) the ball for N centered at x of radius t. Thus

$$B(x,t) = \{ y \in \mathbb{R}^d; N(x-y) \le t \}.$$

The d-dimensional volume of a set A will be denoted by |A|. Since $r_N = 1$, we have $|B(x,t)| = t^d$, so that

$$\left|B(x,t)\cap [0,1]^d\right|\leq t^d$$

and

$$P\Big(\min_{j\leq n} N(x-Y_j)\geq t\Big)\geq (1-t^d)^n.$$

Thus

$$E \min_{j \le n} N(x - Y_j) \ge \int_0^1 (1 - t^d)^n dt.$$

By (1) and change of variable $t = n^{-1/d}u$, we get

$$E(M_n) \ge n^{1-1/d} \int_0^{n^{1/d}} (1 - u^d/n)^n du.$$

Thus, by Fatou's lemma,

$$\liminf_{n \to \infty} \frac{E(M_n)}{n^{1-1/d}} \ge \int_0^{\infty} \exp(-u^d) \ du \ge \int_0^1 (1-u^d) \ du = 1 - \frac{1}{d+1}.$$

3. The approach. We consider a parameter $\eta > 1$ to be adjusted later on. We set $r = \eta n^{-1/d}$, so that $|B(x,r)| = \eta^d/n$. We set

$$u(i,j) = \begin{cases} 1, & \text{if } N(X_i - Y_j) \leq r, \\ 0, & \text{otherwise.} \end{cases}$$

We set

$$b(x) = |B(x,r) \cap [0,1]^d|.$$

Note that $b(x) \leq \eta^d/n$.

LEMMA 3.

$$\eta^d E(M_n) \leq \eta^d r n + 2G(n) + G_1(n),$$

where

$$G(n) = E \sup_{f \in \mathscr{L}} \left| \sum_{i \leq n} f(X_i) \sum_{j \leq n} (u(i, j) - b(X_i)) \right|,$$

$$G(n) = E \sup_{f \in \mathscr{L}} \left| \sum_{i \leq n} f(X_i) \left(\eta^d - nb(X_i) \right) - \sum_{j \leq n} f(Y_j) \left(\eta^d - nb(Y_j) \right) \right|.$$

PROOF. We write for $f \in \mathcal{L}$,

$$\begin{split} \eta^{d} \bigg| \sum_{i \leq n} f(X_{i}) &- \sum_{j \leq n} f(Y_{j}) \bigg| \\ &\leq \bigg| \sum_{i \leq n} f(X_{i}) \bigg(\sum_{j \leq n} u(i,j) \bigg) - \sum_{j \leq n} f(Y_{j}) \bigg(\sum_{i \leq n} u(i,j) \bigg) \bigg| \\ &+ \bigg| \sum_{i \leq n} f(X_{i}) \sum_{j \leq n} \bigg(u(i,j) - \frac{\eta^{d}}{n} \bigg) - \sum_{j \leq n} f(Y_{j}) \sum_{i \leq n} \bigg(u(i,j) - \frac{\eta^{d}}{n} \bigg) \bigg| \\ &:= A_{1}(f) + A_{2}(f). \end{split}$$

We have

$$A_1(f) \leq \sum_{i,j \leq n} u(i,j) |f(X_i) - f(Y_j)| \leq r \sum_{i,j \leq n} u(i,j),$$

since f is Lipschitz and u(i, j) = 0 unless $N(X_i - Y_j) \le r$. Thus

$$E \sup_{f \in \mathscr{L}} A_1(f) \le r \sum_{i,j \le n} Eu(i,j).$$

Now

$$E(u(i,j)|X_i) = b(X_i) \le \frac{\eta^d}{n},$$

so that $E(u(i, j)) \le \eta^d/n$, and this implies that

$$E \sup_{f \in \mathscr{L}} A_1(f) \leq r \eta^d n.$$

Now we write

$$\begin{aligned} A_2(f) &\leq \left| \sum_{i \leq n} f(X_i) \sum_{j \leq n} \left(u(i,j) - b(X_i) \right) \right| + \left| \sum_{j \leq n} f(Y_j) \sum_{i \leq n} \left(u(i,j) - b(Y_j) \right) \right| \\ &+ \left| \sum_{i \leq n} f(X_i) \left(nb(X_i) - \eta^d \right) - \sum_{j \leq n} f(Y_j) \left(nb(Y_j) - \eta^d \right) \right|. \end{aligned}$$

Taking the supremum over f and then expectation yields the result. \square

Next we will derive upper bounds on $G_1(n)$ and G(n) and show that with a proper choice of η these terms are low-order terms. This will lead to Theorem 1.

LEMMA 4.

$$\lim_{n \to \infty} \frac{G_1(n)}{n^{1-1/d}} = 0.$$

PROOF. For a measurable function f on $[0,1]^d$, we set

$$\Delta(f,n) = \left| \sum_{i \leq n} f(X_i) (\eta^d - nb(X_i)) - \sum_{j \leq n} f(Y_j) (\eta^d - nb(Y_j)) \right|.$$

Thus

$$\Delta(f,n) \leq \|f\|_{\infty} \left(\sum_{i \leq n} \left| \eta^d - nb(X_i) \right| + \sum_{j \leq n} \left| \eta^d - nb(Y_j) \right| \right).$$

Set

$$V_n = \left\{ x \in [0, 1]^d; b(x) \neq \eta^d / n \right\}$$

= $\left\{ x \in [0, 1]^d; B(x, r) \not\subset [0, 1]^d \right\}.$

Since $\eta^d - nb(x) = 0$ unless $x \in V_n$, we have

$$\sup_{\|f\|_{\omega} \leq a} \Delta(|f,n|) \leq a \big(\mathrm{card} \{i \leq n \, ; \, X_i \in V_n \} \, + \, \mathrm{card} \big\{ j \leq n \, ; \, Y_j \in V_n \big\} \big).$$

Thus

$$E \sup_{\|f\|_{\infty} \le a} \Delta(|f,n|) \le 2na|V_n|.$$

Now since $r = n^{-1/d}$, it is clear that for a constant C, depending on N, d, but not on n, we have $|V_n| \le Cn^{-1/d}$. Thus

(2)
$$E \sup_{\|f\|_{\infty} < a} \Delta(f, n) \leq 2aCn^{1-1/d}.$$

On the other hand, for a given bounded function f, we see that $E\Delta(f,n)^2=C'n$, where C' is independent of n, so that $E\Delta(f,n)\leq (C')^{1/2}\sqrt{n}$, and $\lim_{n\to\infty}E\Delta(f,n)/n^{1-1/d}=0$ since d>2. The result then follows from this observation, (2) and the fact that given any a>0, $\mathscr L$ can be covered by finitely many sets of the type $\{g\in\mathscr L; \|f-g\|_\infty\leq a\}$. \square

The hard part of the proof is the following statement.

Lemma 5. We have $G(n) \le 14n^{1-1/d}\eta^{d/2+1}$.

If we combine with Lemma 3, and recall that $r = \eta n^{-1/d}$, we see that

$$E(M_n) \le n^{1-1/d} \left(\eta + \frac{10}{\eta^{d/2-1}} \right) + \eta^{-d} G_1(n).$$

Taking $\eta = 1 + K(\log d/d)$ for a constant K large enough gives $\eta^{d/2-1} \ge d$; combined with Lemma 4, this proves Theorem 1. It remains to prove Lemma 5.

4. Proof of Lemma 5. We set $W_i = \sum_{j \le n} (u(i, j) - b(X_i))$. The first idea in the proof of Lemma 5 is elementary.

LEMMA 6.

$$E|W_i| \leq \eta^{d/2}.$$

PROOF. Observe that $E(u(i, j)|X_i) = b(X_i)$ so that

$$E(W_i^2|X_i) = nb(X_i)(1 - b(X_i)) \le \eta^d.$$

For a function g on $[0,1]^2$, we consider the random variable

$$\Gamma(g) = \left| \sum_{i < n} g(X_i) W_i \right|.$$

Thus

(3)
$$G(n) = E \sup_{f \in \mathscr{L}} |\Gamma(f)|.$$

A second idea in the proof of Lemma 5 is that, for a given a set A, there is much cancellation among the variables W_i for $X_i \in A$. (Observe that these variables are not independent.) We denote by 1_A the indicator function of A.

LEMMA 7. For a set $A \subset [0, 1]^d$, we have

$$E\big(\Gamma\big(1_A\big)^2\big) \leq n|A|\big(\eta^{2d} + \eta^d\big) \leq 2n|A|\eta^{2d}.$$

PROOF. For simplicity we set $v(i, j) = u(i, j) - b(X_i)$ if $X_i \in A$, v(i, j) = 0 otherwise. Thus $\Gamma(1_A) = |\sum_{i, j \le n} v(i, j)|$. Now

$$E(\Gamma(1_A)^2) = \sum_{i,i',j,j'} E(v(i,j)v(i',j')).$$

If $j \neq j'$, conditioning on $X_i, X_{i'}, Y_{j'}$, we see that E(v(i, j)v(i', j')) = 0. If j = j' and $i \neq i'$, we see that

$$E(v(i,j)v(i',j')) = E(E(v(i,j)|Y_i)^2)$$

Thus

$$E(\Gamma^{2}(1_{A})) = n^{2}E(v(1,1)^{2}) + n^{2}(n-1)E(E(v(1,1)|Y_{1})^{2}).$$

For $s,t\geq 0$, we have $(s-t)^2\leq s^2+t^2$, so that $v(1,1)^2\leq u(1,1)+b^2(X_1)$ and v(1,1)=0 if $X_1\not\in A$. We observe that $u(1,1)^2=u(1,1)$, so that

$$E(u(1,1)^2|X_1) = E(u(1,1)|X_1) = b(X_1).$$

Since $b(X_1) \leq \eta^d/n$, we have shown that

$$E(v(1,1)^2) \leq |A| \left(\frac{\eta^d}{n} + \frac{\eta^{2d}}{n^2}\right).$$

We have

$$E(v(1,1)|Y_1) = |A \cap B(Y_1,r)| - Ec$$

where $c = b(X_1)$ for $X_1 \in A$ and c = 0 otherwise. Note that, since

$$E(v(1,1))=0,$$

we have

$$(4) E|A\cap B(Y_1,r)|=Ec.$$

This implies first that

$$E(E(v(1,1)|Y_1)^2) = E|A \cap B(Y_1,r)|^2 - (Ec)^2$$

 $\leq E|A \cap B(Y_1,r)|^2.$

Since $|A \cap B(Y_1, r)| \le \eta^d/n$, we get, by (4),

$$egin{split} Eig(Eig(v(1,1)|Y_1ig)^2ig) &\leq rac{\eta^d}{n}Eig|A\cap Big(Y_1,rig)ig| \ &\leq rac{\eta^d}{n}Ec \leq |A|rac{\eta^{2d}}{n^2}\,, \end{split}$$

since $c \le \eta^d/n$ for $X_1 \in A$ and c = 0 otherwise. \square

LEMMA 8.

$$E \sup_{\|g\|_{\infty} \le b} \Gamma(g) \le nb\eta^{d/2}.$$

PROOF. Write

$$\Gamma(g) \leq b \sum_{i < n} |W_i|$$

and use Lemma 6. □

For two functions h, g on \mathbb{R}^d , we recall that

(5)
$$h * g(x) = \int_{\mathbb{R}^d} h(x-t)g(t) dt.$$

In the cases we will consider the functions h, g will be continuous, and h will have a bounded support, so that h * g will be well defined.

LEMMA 9.

$$E \sup_{\|g\|_{\infty} \leq b} \Gamma(\dot{h} * g) \leq b \left(\int_{\mathbb{R}^d} E \Gamma^2(h^t) dt \right)^{1/2},$$

where $h^t(x) = h(x - t)$ for $x, t \in \mathbb{R}^d$.

PROOF. We have, using (5),

$$\Gamma(h * g) = \left| \sum_{i \le n} W_i h * g(X_i) \right| = \left| \int_{\mathbb{R}^d} \sum_{i \le n} W_i g(t) h(X_i - t) dt \right|$$

$$\leq \int_{\mathbb{R}^d} g(t) \left| \sum_{i \le n} W_i h(X_i - t) dt \right|$$

$$\leq b \int_{\mathbb{R}^d} \left| \Gamma(h^t) \right| dt.$$

Taking expectations, we get

$$E \sup_{\|g\|_{\infty} \le b} \Gamma(h * g) \le b \int_{\mathbb{R}^d} E |\Gamma(h^t)| dt.$$

Using Cauchy-Schwarz twice, we have

$$\begin{split} \int_{\mathbb{R}^d} & E \big| \Gamma(h^t) \big| \, dt \le \left(\int_{\mathbb{R}^d} \! \left(E |\Gamma(h^t)| \right)^2 dt \right)^{1/2} \\ & \le \left(\int_{\mathbb{R}^d} \! \! E \Gamma^2(h^t) \, dt \right)^{1/2}. \end{split}$$

For $l \ge 1$, we consider the function h_l on \mathbb{R}^d defined as follows. If $N(x) > 2^l r$, then $h_l = 0$, while if $N(x) \le 2^l r$, then $h_l = (2^l r)^{-d}$. Thus

(6)
$$\int_{\mathbb{R}^d} h_l(x) dx = 1.$$

We now combine Lemmas 7 and 9.

LEMMA 10.

$$E\sup_{\|g\|_{\infty}\leq b}\Gamma(h_l*g)\leq 2bn^{1/2}\eta^d(2^lr)^{-d/2}.$$

PROOF. Consider $t \in \mathbb{R}^d$, and

$$A_t = \left\{ x \in [0,1]^d; h_l^t(x) \neq 0 \right\} = \left\{ x \in [0,1]^d; N(x-t) \leq 2^l r \right\}.$$

Consider the indicator function 1_{A_t} of A_t . By Lemma 7, we have

$$E\big(\Gamma^2\big(1_{A_t}\big)\big) \leq 2n|A_t|\eta^{2d}.$$

Thus, setting $a_l = (2^l r)^{-d}$, we have

$$E\left(\Gamma\left(h_{l}^{t}\right)^{2}\right)\leq 2a_{l}^{2}n|A_{t}|\eta^{2d}$$

and

$$egin{aligned} \int_{\mathbb{R}^d} & Eig(\Gammaig(h_l^tig)^2ig) \, dt \leq 2n\, \eta^{2d} a_l^2 \! \int_{\mathbb{R}^d} \! |A_t| \, dt \ & = 2n\, \eta^{2d} a_l^2 ig| \, Big(0, 2^l rig) ig| \ & = 2n\, \eta^{2d} a_l^2 a_l^{-1} = 2n\, \eta^{2d} a_l \, . \end{aligned}$$

The result follows by Lemma 9. □

We now complete the proof of Lemma 5.

Consider a number q large enough that $2^q r \ge D$. For a function f on \mathbb{R} , we set

$$f_1 = f - f * h_1,$$

 $f_{q+1} = f * h_1 * \cdots * h_q.$

For $2 \le l \le q$, we set $\xi_l = h_1 * \cdots * h_{l-1}$, and we set

$$f_{l} = (f - f * h_{l}) * \xi_{l} = (f - f * h_{l}) * \xi_{l-1} * h_{l-1}.$$

Thus $f = \sum_{i=1}^{q+1} f_i$. Consider the class

$$\mathscr{L}' = \{ f : \mathbb{R}^d \to \mathbb{R}; f \text{ Lipschitz}, f(0) = 0, ||f||_{\infty} \le D \}.$$

We have

(7)
$$E \sup_{f \in \mathscr{L}'} |\Gamma(f)| \le \sum_{l=1}^{q+1} E \sup_{f \in \mathscr{L}'} |\Gamma(f_l)|.$$

For $f\in \mathscr{L}'$, we have $\|f-f*h_l\|_{\infty}\leq 2^l r$, since $\int h_l(x)\,dx=1$ and $h_l(x)=0$ for $N(x)\geq 2^l r$. It thus follows that if one sets $g_l=(f-f*h_l)*\xi_{l-1}$, then $\|g_l\|_{\infty}\leq 2^l r$. Thus for $l\leq q$, we have, by Lemma 10, and since $r=\eta n^{-1/d}$,

$$\begin{split} E \sup_{f \in \mathscr{L}'} \left| \Gamma(f_l) \right| &\leq 2^{l+1} n^{1/2} r \eta^d (2^{l-1} r)^{-d/2} \\ &= \eta^{1+d/2} 2^{1+(l-1)(1-d/2)} n^{1-1/d}. \end{split}$$

The same argument actually works for l=q+1, since now $||f||_{\infty} \leq D \leq 2^q r$. Thus, from (7), we get, since $d \geq 3$,

$$\begin{split} E \sup_{f \in \mathcal{L}'} \left| \Gamma(f) \right| &\leq \eta^{1+d/2} n^{1-1/d} \left(\sum_{l \geq 0} 2^{2-l/2} \right) \\ &\leq 14 \eta^{1+d/2} n^{1-1/d}. \end{split}$$

To finish, it suffices to show that

$$E \sup_{f \in \mathcal{L}'} |\Gamma(f)| = E \sup_{f \in \mathcal{L}} |\Gamma(f)|.$$

But this is the case since each function of $\mathscr L$ is the restriction to $[0,1]^d$ of a function of $\mathscr L'$. \square

Acknowledgment. This result was conjectured by W. Rhee, who found applications to the study of the Travelling Salesperson Problem in \mathbb{R}^d [3].

REFERENCES

- [1] AJTAI, M., KOMLOS, J. and TUSNADY, G. (1983). On optimal matchings. *Combinatorica* 4 259-264.
- [2] Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization, Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, N.J.
- [3] RHEE, W. (1992). On the Travelling Salesman Problem in many dimensions. In Random Structures and Algorithms. To appear.
- [4] RHEE, W. and TALAGRAND, M. (1987). Martingale inequalities and NP-complete problems. Math. Oper. Res. 14 91-96.
- [5] SHOR, P. (1985). Random planar matching and bin packing. Thesis, MIT.

University of Paris VI 4 Place Jussieu 75230 Paris Cedex 05 France DEPARTMENT OF MATHEMATICS OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210