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MULTIFRACTAL DIMENSIONS AND SCALING EXPONENTS
FOR STRONGLY BOUNDED RANDOM CASCADES

By RicHARD HoLLEY! AND EDWARD C. WAYMIRE?

University of Colorado and Oregon State University

The multifractal structure of a measure refers to some notion of
dimension of the set which supports singularities of a given order « as a
function of the parameter «. Measures with a nontrivial multifractal
structure are commonly referred to as multifractals. Multifractal measures
are being studied both empirically and theoretically within the statistical
theory of turbulence and in the study of strange attractors of certain
dynamical systems. Conventional wisdom suggests that various definitions
of the multifractal structure of random cascades exist and coincide. While
this is rigorously known to be the case for certain deterministic cascade
measures, the same is not true for random cascades. The purpose of this
paper is to pursue this theory for a class of random cascades. In addition to
providing a new role for the modified cumulant generating function (struc-
ture function) studied by Mandelbrot, Kahane and Peyriére, the results
have implications for the theoretical interpretation of empirical data on
turbulence and rainfall distributions.

1. Introduction. For a suitable notion of dimension, the multifractal
structure of a (possibly random) measure w on R¢, or more generally a metric
space (T, p), refers to the dimensions of the sets

(1.1) F(a) = {x € T: uBy(x) ~8*as § - 0},

as a function of the parameter a. Here B,(x) denotes a (closed) ball of radius
8 > 0 located at x and u By(x) ~ §* means

log 11 B5(x)
im ———=a
50 logé

In the event that the measure u has a continuous positive density on
T = RY, say, then any reasonable definition of dimension will provide a
(spiked) function of @ which takes the value d at a = d, and is otherwise the
dimension of the empty set. In the case of certain singular measures one may
obtain a less trivial dimension curve. For a simple example, let p + ¢ =1,
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820 R. HOLLEY AND E. C. WAYMIRE

0 <p # q <1, and take u to be the measure on [0, 1] defined by the prescrip-
tion

n

n
Y 027, ¥ g2 + 27| | = pH-ign T,
j=1

(1.2) In

Jj=1

where 0, €{0,1}, j=1,...,n, n > 1. Let § = 27". Write x = (0}, 05,...) in
binary with the usual convention for uniqueness. The mass of By(x) =

[Zr_ 027,210,277 + 27 ™) is pEi-1%gn~Xi-1% = (27 ")* for
j=1"j j=1"j

M=

g;log, p —

J

1 n
= =—— 1-— |1 .
a=a,(x) " - =10'j) 082 q

1

According to a classic result of Eggleston (1949), for a fixed 0 < y < 1, the
subset of numbers x in [0,1] for which (1/n)L}_,0; >y as n > o
has Hausdorff dimension —ylog, y — (1 — y)log,(1 — y). Therefore, the
Hausdorff dimension of F(a) will be given by

—v(a)log; y(a) — (1 — y(a))logy(1 - y(a)),
where y = y(a) is the solution to the equation
(1.3) —vylogap — (1 - vy)log,q =a.

We shall refer to this example as the deterministic binomial cascade.

While this conveys the spirit, the theory depends on the dimension function
which one has in mind. In practice, a value of “dimension” is theoretically
computed and/or empirically estimated from a variety of ostensibly different
vantage points. Often it is in the form of a scaling exponent which is then
interpreted as a dimension. In this paper we shall consider various versions
which are defined as follows.

Hausdorff dimension. Let B! denote an ith ball of radius r in an arbi-
trary cover of F(a) by countably many balls as indicated below. Then

(1.4) h(a) = inf{6 > 0: lim inf Y = 0}.
8—0 yU?_,BioF(a), r<b j=1

Box dimension. Assuming that the indicated limit exists, let

15 " y log m (6, a)

(1.5) (a) = 50 —log &

where m(8, a) is the smallest number of balls of radius at most § required to
cover F(a).

Singularity spectrum. This is a scaling exponent for the ‘““size’ of the set
of singularities of order a defined as follows. Suppose that u is compactly
supported and let A, denote the §-mesh cube of side length § located at the
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integer lattice site k; say by the lower left corner. Let
(1.6) Ns(a) = #{k: p(Ay) > 8.
Then, assuming that the indicated limits exist, define

.. log[Nj(a + &) — Ny(a —¢)]
I R e

Rényi dimension. Assuming that the indicated limit exists, let

. log Ms(h)
(1.8) (h = 1)D(h) =7(h) = lim ==
where
(1.9) My(h) = {,’{M(Ak)}h,

the prime indicating a sum over those cubes A, which meet the support of u
and are significant only in the case & < 0. The quantity D(h) is related to
Rényi information; cf. Rényi (1970). It occurs in the physics literature in
Grassberger (1983), Hentschel and Procaccia (1983) and Paladin and Vulpiani
(1984) under the name of generalized dimension. The exponent function 7(h)
will be referred to as a Rényi exponent here.

There is a somewhat simple formalism based on Legendre transform duality
and large deviation rates which makes various connections between the expo-
nents and dimensions indicated above appear to be quite plausible; for exam-
ple, see Jensen, Kadanoff, Libchaber, Procaccia and Stavans (1985), Halsey,
Jensen, Kadanoff, Procaccia and Shraiman (1986), Mandelbrot (1988), Tel
(1988), Grassberger (1983), Hentschel and Procaccia (1983) and Paladin and
Vulpiani (1984). However, it appears that essentially the only case in which
the computations and connections have been worked out rigorously are for
certain deterministic measures, most notably the deterministic multinomial
cascades defined by a measure u, depending on parameters b €N, p =
(Pos---»Pp_1), P; = 0, £821p, = 1, as follows. Let J = [0, 1] denote the unit
interval and let J(o), 0 =0,1,2,...,b — 1, denote a partition of J into &
subintervals of lengths b~!. Inductively, given J(oy,...,0,), o; €
{0,1,2,...,b — 1}, let J(oy,...,0,,0,.1), 0,,1 €{0,1,...,b — 1} denote the
partition of J(ay,...,0,) into b subintervals of sidelength 5~ **V. Define a
set function u by u(J) = 1 and for subsets J(oy,...,0,) of J by

(1.10) w(J(oy,...,0,)) =PyPs, """ Py, 0;€{0,1,...,0 —1}.

Then u has a unique extension to a probability measure on the Borel subsets
of J which is referred to as the multinomial cascade; see Figure 1. The
effective partition number b = #{i: p, > 0} may be viewed as a large-scale
intermittancy parameter for the multinomial cascade. For this class of exam-

ples the rigorous theory connecting the various exponents and dimensions
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F1c. 1. Trinomial cascade.

defined above is quite complete; for example, see Brown, Michon and Peyriére
(1990), Tel (1988), Falconer (1990) and Cawley and Mauldin (1991).

The random cascades are essentially obtained by replacing the factor p, in
(1.10) by W(ay,...,0,)b ", where the W(a, ..., d;) are i.i.d. mean one nonneg-
ative random variables, say distributed as W. The random variable W is
referred to as the cascaded variable and its distribution is referred to as the
cascaded distribution.

Frisch and Parisi (1985), who invented the term ‘“‘multifractal,” first sug-
gested that certain cascade models found in the statistical theory of turbulence
and extensively studied by Kolmogorov (1941, 1962), Novikov and Stewart
(1964), Yaglom (1966), Mandelbrot (1974), Frisch, Sulem and Nelkin (1978)
and more recently Benzi, Paladin, Parisi and Vulpiani (1984) and Meneveau
and Sreenivasan (1987) should provide important examples of measures hav-
ing a nontrivial multifractal structure in the sense being described here.
However, the authors know of no examples within the theory of random
cascades where the formalism connecting the exponents and dimensions is
worked out rigorously.

Recent data analysis and computer simulation have also provided evidence
of similar structure in the spatial distribution of rainfall; see Schertzer and
Lovejoy (1987), Lovejoy and Schertzer (1990) and Gupta and Waymire (1990,
1992). Interestingly, hierarchical random measure representations of spatial
rainfall distributions have been prominent in the hydrologic and atmospheric
sciences since their introduction by Le Cam (1961).

Our main objective is to extend the results illustrated by the deterministic
.multinomial cascade to the random cascades. For the problems to be addressed
here, we take d = 1 without loss of generality. In the next section the random
cascade is defined, some preliminary results are noted and the main results of
this paper are stated. In Section 3 we compute h(a) and b(a). In Section 4 the
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singularity set is studied from the point of view of the Rényi exponents 7(h).
In particular, we establish the existence of 7(A) and further show it to coincide
with a basic structure function under certain conditions on the distribution of
the cascaded variables. The connections between the results of these computa-
tions and the spectrum of singularities f(a) are largely understood in terms of
certain soft analysis results. These are discussed in some concluding remarks
in Section 5. However, some simple counterexamples to the existence and
Legendre transform duality between exponents given in Section 2 should be
noted. In any case, all of the dimensions and exponents can be related to the
spectrum of singularities under certain conditions which, in the generality of
this paper, are in some sense sharp. Most significant to practical applications
of the results given here is the insight gained into the way in which singularity
spectra may determine the random cascade model via a transform of the
underlying cascaded distribution. The implications of our results for the
uniqueness problem are also noted in the final remarks.

2. Random cascades: Preliminaries and statements of results. Let
T :={0,1,...,b — 1}V and regard each o := (0}, 0,,...) € T as providing the
successive vertices (a,), (04, 05), (01, 05, 05), ..., (01, 04, ..., 0,),... of a unique
path through the b-ary tree T rooted at the vertex @. The parameter b is
referred to as the cascade branching number. It is convenient to give T the
product topology metrized by p(o,n) = b 2", where a(o,n) = #vertices
common to o, n and represents the common ancestry of o, 7. Then T may be
viewed as the completion (or boundary) of the countable graph T. Also,
By-w(0) = J(oy,04,...,0,) = [L7_,0,67,L}_,0;b™7 + b~"). In particular, this
makes the computation of the Hausdorff dimension with respect to the tree
metric the same as using the Euclidean metric on the unit interval; see
Kahane (1985), pages 128-131, and Furstenberg (1970).

Let W(oy,...,a,), for

n=12,...,(0p,...,0,) €T= U (0,1,...,b — 1}",
n=1

be ii.d. nonnegative mean one random variables and weight the vertices by
W(o) = W(oy,...,0,). Then the mass per unit volume (density)
w(By-«(c))/b~™ is obtained as the product W(c)W,(o) --- W, (o) along the
path determined by the first n generations of o. Define
dfn(x) = Wl(U)WZ(U) o Wo(o), xedJ(oy,...,0,),
o= (01,...,0,,...).

Then the sequence of random measures defined by the density (Radon-
Nikodym derivative) u,(dx) = ¢,(x) dx, n > 1, is easily checked to a.s. have a
weak* limit u, since for each bounded continuous function f on J, the
sequence {/f; fdu,} is an L;-bounded martingale with respect to the sequence
&, = o{W(oy,0y,...,0,): 0, €{0,1,2,...,b — 1}}).

The problems of nondegeneracy of the limit measure, divergence of mo-
ments and the a.s. calculation of the dimension of the support of u, are

(2.1)
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X, (h) \ xb* (o) = inf (ah + x, (h)

Fic. 2. The MKP function and related Legendre transform.

treated in Mandelbrot (1974) and Kahane and Peyriére (1976). In particular,
the basic structure function, to be referred to as the MKP-function, analyzed
to obtain solutions to these problems is a ‘“‘modified cumulant generating
function” defined by

(2.2) xp(h) =log, EW" — (b — 1).
In particular, one has the following theorem; see Figure 2.

THEOREM 2.1 [Kahane and Peyriére (1976)]. Let W denote a random
variable which has the common distribution of the W(o)’'s and MKP-function

Xb(h).

(i) (Nondegeneracy) If —D = x,(1—)=EW log, W — 1 < 0, then
E, ([0,1]) > 0, and conversely.

(ii) (Divergence of moments) Let h > 1. Then Z_ = u ([0, 1] has a finite
moment of order h if and only if h < h, = sup{h > 1: x,(h) < 0}. Moreover,
EZ! <o for all h > 0, if and only if W is essentially bounded by b and
P(W=15)<1/b.

(iii) (Size of support) Assume that E(Z_log Z,) < «. Then pn, is a.s. sup-
ported by the random set

logb /'LooBb_"(Cr)

n—o

supp( o) = {a eT: lim = EW log, W — 1}

of Hausdorff dimension D = —x;(1) = 1 — EW log, W.

ReEMARK 2.1. (i) The nondegeneracy asserted in Theorem 2.1(1) is also
equivalent to EZ_ = 1. ‘
(i) Related results are also given by Ben (1987) and Williams (1990) under
a more general condition on the elements of the cascade of  =[0,1]. In
» particular, the i.i.d. mean one assumption is replaced to cover the case when
: b—-1
(2.3) E% Y W(o) =1,

o=0
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where the nonnegative random vectors
(W(0),w(1),...,W(b-1)),(W(0,0),W(0,1),...,W(0,b - 1)),
(W(1,0),W(1,1),...,W(1,b - 1)), (W(2,0),W(2,1),...,W(2,b - 1)),...
(W(oy,...,0,,0),W(0y,...,0,,1),W(0y,...,0,,2),...,
W(oy,...,0,,b—1)),...

are i.i.d. and, while integrals of continuous functions need not form a martin-
gale, the integrals of indicators of subgrid cells do form a martingale and this
is enough to prove existence of a limit cascade measure. However, for the
results here we assume that the cascaded variables are i.i.d. throughout.

In view of Theorem 2.1 the tails of the total mass distribution depend
critically on the essential supremum of the cascaded variables. Similarly,
probabilities of small values of the total mass depend on small values of the
cascaded variables in a way which will also be made more precise below and in
later sections. To avoid certain technical problems in analyzing the singulari-
ties along the lines indicated in the previous section, some of which appear to
be serious, we shall primarily focus on cascaded variables of the type described
in the following definition.

DerFINITION 2.1. A nonnegative cascaded variable W will be said to be
strongly bounded below if P(W > a) = 1 for some positive number a. W will
be said to be strongly bounded above if P(W < b) = 1, where b is the cascade
branching number.

As do Kahane and Peyriére (1976), we rely on the following theorem of
Billingsley (1965) for the computation of Hausdorff dimension. In preparation
first note Billingsley’s generalization of Hausdorff dimension given as follows.
Let u be a probability measure on [0, 1] and define the u-dimension of a Borel
set F by

(2.4) dim,(F) = inf{6 > 0: lim inf Y u'(B,) = 0}.
60 U?_B;oF, m(B)<8 ;1

Observe that if 0 < u(F) < 1, then dim (F) = 1.

THEOREM 2.2 [Billingsley (1965)]. Let u and v be probability measures on
[0,1]. If

_ log uB,-»(o
Fcl{oeT: lim —&u——b——(—lﬁ ,
n—o longb-n(a)

then
: dim,(F) = ydim (F).

The following formulas are basic to the study of random cascades.

-
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ProposITION 2.3. Let AY, i=1,2,..., b*, be an arbitrary enumeration of

the kth generation b-adic subintervals J(oy, ..., a;) of [0,1]. Then:
. di .

@) wn(8) T ZP (D pa(8y),  nki=1,...,b%,
where ZM, (i) is distributed as the total mass, w,,_,((0, 1], and is independent
of m(A%).

(ii) o 8) T ZB()uy(8y), nzki=1,...,b%
where Z¥)(i) is distributed as the total mass, u([0, 1]), and is independent of

Proor. The proof of (ii) follows from (i) by taking a limit. To prove part (i),
proceed as follows. First write

Aik = J(El"“’(—fk)'
Then
Z /.Ln(J((_fl,...,Ek,a'k+1,...,O'n))

Opi1r-++30p
W(a,)W(5,,5,) - W(Fy,...,5,)b "
X Y, W(oy,...,5,04.1)

Opi1se0r0p

[

P«n(Aik)

cr W(&-l,...,&-k,ak+1,...,a-n)bn_k
dist . _ _
= up(8%)Z,_1(F1,- ., T%)-

This defines Z , (i) = Z,_,(Fy,...,5). O

An important special case of Proposition 2.3(ii) which will be used to study
the distribution of total mass is the identity
i b-1
di .
(2.5) L =07 T WZ93),
i=0
where the Z{(i), i = 0,1,...,b — 1, are i.i.d. distributed as Z,.

The representation furnished by Proposition 2.3 may be viewed jointly for
i=1,2,...,b" While marginally the quantities u,(A%), i =1,2,. .., b, are
identically distributed they are, of course, not independent. The correlations
among the masses at various scales may be computed from the tree structure
of the cascade. However, the Z®,(i), i = 1,2,...,b* and the Z®(), i =

1,2,...,b%, respectively, are ii.d. In fact, for each % one may define i.i.d.
random measures £ on [0, 1], distributed as b *u,, such that

..\ dist . .
(2.6) o AD) = LB MDY (AD).

Fér the methods of this paper an important use of the above representation
is in the analysis of the behavior of the tails of the total mass distribution as
given by the following results.
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PropPOSITION 2.4. Assume that x,(1) < 0. If P(W=0) =0, then
P(Z = 0) = P(u(A%)) = 0) = 0. On the other hand, suppose that the distribu-
tion of the cascaded random variable W has an atom at 0, say P(W = 0) = r >
0. Let y = P(Z, = 0). Then

P(/‘Lw(Ain) = 0) =1- (1 - Y)(l - r)n’
where vy is the smallest positive solution to

y=(r+(@1-r)y)’

Proor. The condition on the MKP-function guarantees nondegeneracy of
u, and y < 1. Let us first calculate y. In view of the basic recursion, one has
b-1

di
Z, b1 Y WZ.(i),
i=0

where Z (i)’s are i.i.d., independent of the W’s, and distributed as Z,. Thus,
b
y ={P(WZ, = 0Oy ={r+v- r'y}b.
In particular, notice that this makes y a fixed point of the probability
generating function of the binomial distribution with parameters r and b.
It is the smallest positive solution since, by convexity of the function y —
{r + y — ry}®, the only solution y < 1 is the smallest positive solution. Now,

let W,, ..., W, denote the cascade variables along the path leading to A’,. Then
by Proposition 2.3 one has

P(n.(4}) =0)

=P|TIWz() = 0)

j=1

_»p :_(JI{W,= o)) +v=e| O %~ 0]

-(1- Y)P(JQI{WJ' B 0}) .

- L (=D T P(Wy= 0, W, =0) +y
k=1

1<j;< *+r <Jp=n
n
= I (P ey
: k=1

=1-n1-a-r"}+y. O
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CoroLLARY 2.5. (i) If the cascaded variable W is strongly bounded above,
then Z,, has moments of all positive orders. (ii) If the cascaded variable W is
strongly bounded below, then there are positive constants c,, ¢, such that

¢(r) = Ee % < che ",
with

O0<y=——"—<1.

In particular, Z,, has negative moments of all orders.

Proor. The assertion (i) is a special case of Theorem 2.1(ii). To prove (ii),
one proceeds as follows. From (2.4), we have

6(br) = (Ee=""2)® < (Ee~272)" = ¢¥(ar).
Let ¢(r) = ¢(r'/7), (b/a)” = b. Then
b\ b
lﬂ(b?‘) = lﬂ((;) 7‘) = (j)(;rl/’)') < d)b(rl/)') = lﬂb(r).
Let x(r) =log y(r), x; = x(1) = log ¢(1) < 0. Then x(b) < by,, x(b"*!) <
bx(b™) < b™*y,. Thus,
x(d")

lim sup b < X1

n—>ow

Given r > 0, let n(r) be a nonnegative integer for which 5" < r < p™("+1,
Then, since y(r) is monotonically decreasing,

x(r)  x(b*")

r - bn(r)+1
and therefore
. (r) X1
limsup — < —.
row T b

Thus, there exist 0 < ¢;, |e| < » such that for all r > 0,
x(r) <c—cyr.

Take ¢, = e°, then for all r > 0, ¥(r) < c,e ™" and therefore ¢(r) < coe =",
O

, We will close this section with a few simple examples and counterexamples
to the Legendre transform formalism and then with the statements of our
main results.



EXPONENTS FOR RANDOM CASCADES 829

ExampLE 2.1. The heuristic idea behind the Legendre transform formalism
is that leading term asymptotics suggest

(2.7) My(h) ~ Y 8%hs~f(@ ~ gmintha—fla)

and therefore
(2.8) 7(h) = —min{ha - f(a)} = max{—ha — (=f(a))} = (=F)*(—h),
(2.9) f(a) = min{ah + 7(h)} = —7*(—a),

where the asterisk denotes Legendre transform. The following simple exam-
ples show that the duality is more delicate than the formalism shows. Let
k= 3A; X 8, + 3\, where A, is one-dimensional Lebesgue measure on [0, 1],
Ag is two-dimensional Lebesgue measure on [0, 1] X [0, 1] and §, is the Dirac
unit mass measure at 0. Then

1, ifa=1,
h(a) = {2, ifa=2,
0, otherwise;

1, ifa=1,
f(a) =2, if a =2,

—o, otherwise.
Note that these functions are not convex. On the other hand,

[-2(h-1), fh<1,
T(h)_{—(h—l), ifh>1,

. _fa, ifl<acx<?2,
n}lm{ah +7(h)} { —ow, otherwise.

Since Lebesgue measure may be viewed as a cascade measure, this simple
example can be reformulated as a multinomial cascade. In particular, one can
also easily construct continuous singular measures similarly to this by a base 5
deterministic multinomial cascade; see Brown, Michon and Peyriére (1990).

ExampLE 2.2. While the Hausdorff dimension of a Borel set will always
exist, the same is not the case for the exponent functions 7(k), f(a). To obtain
an example, simply let K, be the union of 2" subintervals of [0, 1] of equal
lengths [, where 1, < 3l,, [, = 1, but such that [, has two subsequences
converging to 0 at distinct rates. Assign measure 27" to each of the intervals
of K, and note that this extends to a measure concentrated on K = N K,,.

The main results of this paper can be stated as follows.

THEOREM 2.6 (Hausdorff dimension). Assume that the cascaded random
variable W is strongly bounded above and below and has mean 1. Let a be
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such that xj(a) = inf,{ah + x,(h)} > 0. Let

EW" log, W
p(h) = —zwr —
Then
p(h) =1-a
has a unique solution h = B. If
w o\l
F ( wi.) ~ %’
then

h(a) = dim F(a) = x}(a).

THEOREM 2.7 (Rényi exponent). Assume that W is strongly bounded above
and below and that EW?" /(EW")2 < b. Then, with probability 1,

(k) = lim 2EMa(R)

n—oo nlogb =Xb(h)’

THEOREM 2.8 (Spectrum of singularites). Assume that W is strc;ngly
bounded above and below and that EW?'/(EW")2 <b for all h. If the
spectrum of singularities f(a) exists, then

f(a) = xi()
and
xo(h) = (=F)*(-h),
where f(a) denotes the closed convex hull of f.

3. Computation of Hausdorff and box dimensions h(a),b(a). We
assume throughout that u, is nontrivial, that is, EW log, W < 1 (cf. Theorem
2.1).

Lemma 3.1.  If Z is a positive random variable having finite moments of all
orders h > 1, then for any ¢ > 0,

Y. b"P(log Z > ne) < .
Proor. Choose & > 1 such that
ehs > b.
Then by Markov’s inequality,
’ EZ"

P(logZ >ne) =P(Z>e") < —. mi
(e")
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LemMa 3.2. If Z is a positive random variable such that ¢(r) = Ee™ "% <
coe ", r >0, for some 0 <y <1, ¢, ¢, > 0, then

Y. b"P(log Z < —ne) < o,

Proor. Let n = e "°. Then, for r > 0,
¢(r) =Ee ™ > e ™P(Z < n),
so that
P(Z <m) <e™$(r) < coe™m e,
Taking the infimum over r, we obtain
P(Z <n) < cye™rm—er,
In particular, therefore, one gets by minimizing the indicated exponent
P(Z <n) <cqexp{—c'n 7/EM}
where
¢ = c{/(l—v),yv/(l—v)(l — ,yl/(l—v)) > 0. O
ReEmARK 3.1. Th% condition of Lemma 3.2 may be relaxed to ¢(r):=
Ee 2 < cpeden ™ r > 0, for some 8 > 0, c,, ¢; > 0, without changing the
conclusion. However, the stronger assumption is already satisfied under the
conditions on the cascaded variables which will be assumed here; cf. Proposi-
tion 2.5. In considering extensions of these results, one should note that if, for

example, W is uniform on [0, 2], then Z_ can easily be checked using (2.5) to
have a gamma distribution with

2 2
= < —cylogr
$(r) (2 + r) = Go¢ ’

that is, 6 = 0.
For a positive mean one random variable W, define

3.1 pViloaW _ d,  ewe
when indicated moments exist (also see Figure 3).
Lemma 3.3. If Wis a positive mean one random variable which is strongly

bounded above and below and such that P(W = 1) < 1, then p(B) is increasing
and continuous, p(0) = E log, W < 0, p(1) = EW log, W > 0, and

* (i) ;im' p(B) = log, W,

(ii) Jlim_p(B) = log| Wl
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A »(B)
log ,IWIl ]

1

og, IWII__]

Fic. 3. Graph of p(B).

where |Wll. and ||[Wll-. denote the essential supremum and essential infi-
mum of W.

Proor. The signs of p(0), p(1) follow from Jensen’s inequality. The numer-
ator and denominator of p(8) are continuous and the denominator is positive.
To see that p(B) is increasing, simply observe that

dp  EWPEWP(log, W)* ~ (EW* log, W)’
dp (EW#)?

EWP log, W\*
B - 7%
E|lw (1og,,W T )

- 7 > 0.

The indicated limits as 8 — + « follow by dividing the numerator and denomi-
nator by (|W| 1. F £)?, respectively. O

As before, the MKP-function is given by

(3.2) xp(h) =log, EW" — (h — 1).
One may easily check that x,(4) is convex with y,(1) = 0. Define
(3:3) xi(a) = inflah + x,(h)} = —x§ (—a),

where * denotes the Legendre transform.

"LEMMA 3.4. Let W be a strongly bounded mean one cascaded variable.
Then for any a satisfying x}(a) > 0, the equation

p(B)=1-a



EXPONENTS FOR RANDOM CASCADES 833

has a unique solution B = B(a). Moreover, for B = B(a),

xi(a) = aB + x,(B)

| WE
E(EWB log, EW‘B) <1.

Also, there is a & > 0 such that for h = 1 + 6,
EWFh
(EW®)"

and

<ph 1t

Proor. First observe that
xi(a) >0
implies

b b
1 — =1-1 Wl <a<1-1 Wlie =1 —_—
%8 [ 0gsIWlk < @ < 1 = log,[Wll-. = log,, g

since, for all A > 0,
0 <ah + xy(h) = ah +logy EW" —h + 1= {a — 1+ log,|Wls}k + 1,
and therefore, for all &~ > 0,

1
a—1+ logbIIWIIh > —Z.

Let & — © to get the indicated lower bound on «, and then consider the
similar inequalities for A < 0 to get the upper bound.
So unique solvability follows from considerations in Lemma 3.3. Also,

d EW" log, W
E(ah+xb(h))=a— 1+ W =0
at
p(B) =1-a.
Therefore,
xi(a) = aB + x,(B).
So

EW?P %8 gye
=B(1 - a) — log, EW?
., " =1-[Ba +log, EWF — (B - 1)]
=1 — inf(ah + x;(h))
=1-xl(a) <1.

wh wh
f ) 59 - g,
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To complete the proof of the lemma, observe that
h
EwWE ph-1
(EW?)"
if and only if
log EWA" < h log(bEW#) — log b.

The values of the left and right sides of the equality agree at A = 1. The
right-hand side is a line of slope log(bEW?) and the left-hand side has the
smaller slope EW? log W#/EW?* since

wh Wh
d

TWP log, TWP <1. a

Observe from Lemma 3.4 that for such cascaded variables W,
(3.4) xi(a) >0
if and only if, for p(B) = 1 — a,
(3.5) E(i_)ﬁ> l
bl-= b

Let W be a strongly bounded cascaded variable with mean 1. For each «
such that yj(a) > 0 construct a dual cascade with cascaded variables dis-
tributed as

w8
e Twe
where
p(B)=1-a,
by replacing the values of W(a, ..., 0,) with Wy(o, ..., 0;), sample point by
sample point, for (oy,...,0,) € T. Let u, , denote the resulting cascade

measure and let Z, , denote the total mass. In view of Lemma 3.4 and
Theorem 2.1(i), the measure is nontrivial if x}(a) > 0. Also by Lemma 3.4 and
Theorem 2.1(ii) one has

(3.6) EZL? < oo
and, in particular,
(3.7 EZ, glog Z, 5 < .

LEMMA 3.5. Let W be a strongly bounded mean one cascaded variable. Let
- xi(@) > 0 and p(B) =1 — a. If-

E( id
W

B

1
>_
b,
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then for all h > 1,
EZ}! 5 < .

ProoF. In view of Theorem 2.1(ii) it is enough to show that for all 2 > 1,
EW#Fh
(EW#)"
As in the proof of Lemma 3.4, for this it is enough to show that for all A > 1,
log, EWF" < h log,(bEW?) — log, b.

Again the left and right sides agree at A = 1, and the right side is a line of
slope log,(bEW?). Therefore, it suffices to show that for all A > 1 the slope of
the left side is less than log,(bEW®). That is, it suffices to show for all A > 1,

bhL

< log,(bEW®).

Now, the left side is the derivative of a convex function and therefore increas-
ing in A. Therefore,

EWPFk log, W# . EWPF" log, WP
P O )
= log, W&
< log,(bEW?). O

ReMARK 3.2. To see that the condition (3.4), or equivalently (3.5), is in this
much generality a sharp condition for Lemma 3.5 to hold, consider the
following example. Take, for 0 < g <p<1l,p+qg=1,b=2,

2p, with probability 2,
(3.8) W= P TP ,,yf
2q, with probability 3.

Then

E(||vtfvuw)ﬁ=E(bK)B‘

We are now ready to compute the h(a).

ProoF oF THEOREM 2.6. Let x}(a) > 0 and p(B8) = 1 — a. The dual cascade
M g is nontrivial by Lemma’ 3.4. In fact, by Proposition 2.4, u., 40, 1] is
- positive with probability 1. Also, W, is strongly bounded below since W is
strongly bounded above and below, and Z, ; has finite moments of all orders
h > 1 by Lemma 3.5. By Proposition 2.5(1i1), Lemma 3.1, Lemma 3.2 and the
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Borel-Cantelli lemma, it follows that with probability 1,

log Z{M(i)
sup —— >0 asn >
1<i<b™ n
and
log Z{) (i)
sup —ni—-— -0 asn — x,

1<i<b™

where Z(i), 1 <i < b", are i.i.d. distributed as Z, and Z, z(i), 1 <i <b", are
iid. distributed as Z, ;. Remove the indicated set D = D; U Dy of probability
0 from (), where D,, D, denote events where the above limits fail, respec-
tively. Let

logb l‘l’oo,BBb_"((T)

“ @),

Then on Q — D we have, by the definition of F(a) in Section 2 and Proposi-
tion 2.3, o € F(a) if and only if

Fy(a) = {0: lim

n—oow

IOgb [.Lme-n(O')
m

n—w -n

x7_, log, W(oy,...,0;) —n +log, Z(oy,...,0,)

o =

= lim

n—o —n

1 n
=1- lim — ) log, W(oy,...,0;).
n—»oonj=1

Similarly, on Q — D, o € Fy(a) if and only if
log, ,um,BBb-n(cr)

T =l
xs(a) nljﬁo “n
- tm i , log, %(0'1,...,%) —n + log, Zw’ﬂ(ol,...,on)
n—oow —n

1 - lim d Y log, W(ay,...,0;) + log, EW?

n—o N j=1

1 n
=[5’(1 — lim - Y, log, W(oy,...,0;)

+ log, EWF — (B — 1)
Jj=1 R

+ x5(B)-

1 7
=B(1 — lim — ) log, W(ay,...,0;)
n—>oonj=1

b

Using Lemma 3.4 and Theorem 2.1, one has u,, zFg(@) = p, (0, 1D > 0 with
probability 1. It therefore follows from Billingsley’s Theorem 2.2 that with
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probability 1,
h(a) = dim F(a) = dim FB(a) = X};(a) dimum,ﬁ Fﬂ(a) = X};(a). O

ReEMARK 3.3. It is possible to relax the technical condition required by
Lemma 3.5 to purely a condition of strong boundedness if one applies our
estimates on the left and right tails of the total mass of Z,_ to recent Hausdorff
dimension results of Lyons and Pemantle (1992).

The computation of the box dimension b(«) is trivial and somewhat unin-
teresting since it is saturated by the Hausdorff dimension of the tree (for the
tree metric). However, we include it for completeness below.

ProposiTION 3.1. If F(a) # @, then b(a) = 1.

Proor. Observe that if o = (04, 0y,...) € F(a), then for any n and arbi-
trary 7,...,0, €{0,1,...,b — 1}, the point (7,...,5,,0,,1,0,19,...) must
also belong to F(a). Therefore, it takes at least 5™ balls of radius at most 4"
(in the metric of the tree defined in Section 2) to cover F(a). For arbitrary
radius 8 > 0 choose n such that 57"~ ! < § < b™" and apply the same reason-
ing. O

4. Computation of Rényi exponents 7(h). We assume throughout
that u, is nondegenerate, that is, for the cascaded random variable
EW log, W < 1 (cf. Theorem 2.1). In this section we shall focus on the Rényi
exponents 7(h) defined in (1.8). Throughout this section A%, i = 1,2,..., b%,
will continue to denote the b-adic intervals at the kth generation of the
cascade. Also, whenever convenient W and Z will be used to denote generic
random variables with the distribution of the cascaded variables and the total
mass, respectively. Define, taking 6 = 67",

(4.1) N(a) = #{i: pAL) > b~}
and
pn
(4.2) M, (h) = X po(A%).
i=1

As a warm-up, to get some insight into the relationship between exponents,
assume that the cascaded variables are strongly bounded above and below and
note that for § = ™", and using Proposition 2.3,

b'l
EM,(h) =E ¥ po(4,)
i=1

(3 = b"b "*(EW")"EZh

= (b'"*EW")"EZ}.
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In particular,

X2 ul (A

(4.4) Lowe(BD) oo 1e,
(bl—hah)

(4.5) log EM,(h) = nlog bx,(h) + log EZ!.

Now, consider that by the Cramér-Chernoff large-deviation theory [cf.
Deuschel and Stroock (1989)] one also has, writing A}, = J(&y,...,0,) and
noting the independence with the prefactors Z(i),

1 .
—n(a+e) i —n(a—¢)
- log P(b < poA,) < b )

1 12
= —logP[(1—a—¢)loghb < — Y logW(7y,...,0)
n n._4
(4.6) Jj

1
+;lome(i) <(1-a+e¢)ogb

~ = inf x*(h),
(l—a—e<h/logb<l—a+e)
if ElogW & (logb — alogb — ¢ log b,log b — alog b + ¢ log b). Therefore,
E{N,(a +¢) — Ny(a — &)}
= b”P(b"‘("‘”’ < ,u,w(Ain) < b‘”(“‘e))

(4.7)
~exp{n logb — n inf X*(h)}
(l—a—e<h/logb<l—a+e)
*(h
=exp{nlogb|l — inf X" (R) .
(1—a—s<h/logb<l—a+e) logb

By convexity, for suitable a values one has for large n and small &,
log E{N,(a + ¢) — N,(a — ¢)} o1 x*(log b — alog b)
(4.8) nlogd log b
= —x3(—a).
Thus, the expected value of the Rényi exponents and spectrum of singularities

occur in Legendre transform pairs and take values which, under certain
additional conditions, we will see in the next section to be almost sure as well!

ProoF oF THEOREM 2.7. First observe that from the proof of Proposition
1.2 one sees that :

Z?: 1#%( At ) .

S n=1,2,...
(b1 9EXT)
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is an L'-bounded martingale with respect to {#). Therefore, by the sub-
martingale convergence theorem one has that

im Zf:l:u'}rlz(Aln)
"o (Ewhbl—h)”

exists a.s. and defines a random variable Y, say.

Write
SR8 | IRAA)ZI) TR AN)EZE )
(Ewhbl—h)" (Ewhbl—h)n (Ewhbl—h)" ©

—A, +B,.

We now see that A, - 0 and B, —» Y' := YEZ! with probability 1 as n — o,
While the latter assertion is obvious by the first observation above, the former
follows by observing

B[S wh(85,)(22G) - E2D))’
(Ethl—h)2”

Var(A,) =

L2 Buit (&) Var(Z)
(Ewhbl—h)zn

1 Ewz \"
S Zh
b (EWH)*

In particular, EA, = 0 and =, Var(A,) < « under the conditions stated at the
outset. Thus, A, — 0 a.s. by Chebyshev’s inequality and the Borel-Cantelli
lemma. Now

el k(A n
e og—l—M—(—),; + log(EW"b1=h)
_ logZilul(d,) (EW"p' ")
lim = lim
n—w nlogb n—o nlogb
log( EW"b1~")
= ———~ =y,(h). O
log b Xs(h)

REMARK 4.1. Observe that for the case of the random binomial example the
required moment ratio bound is satisfied for all A. That is, for p + ¢ = 1,

p,q>0,

(4.9) W

’

2p, w.p
B 2q, w.p.

1
T

1

2
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one has

(4 10) Ew2h _y p2h + q2h
: (EWh)2 p?h + g% + 2phgt”

In particular, using Theorems 2.6 and 2.7 and the results of Eggleston’s
theorem given in Section 1 for the deterministic cascade, one obtains a proof
that the dimensions and exponents for the random binomial cascade respec-
tively coincide with those of the deterministic binomial cascade. The same is
also true for the multinomial cascades. This has important practical implica-
tions for the analysis of turbulence data in Meneveau and Sreenivasan (1987).

REMARK 4.2. Note that if W< ¢ as. and if P(W=1¢)=p > 0, then for
h >0,

EW 2h t2h 1

(EWh)z = PR = l? <b
for
4.11 1
. > —.
(4.11) P>

REMARK 4.3. For an example of a strongly bounded cascaded distribution
where the moment ratio bound is not satisfied take W to be uniform on [3, 2]
and A sufficiently large.

REMARK 4.4. The uniqueness problem for random cascades refers to the
problem of when the cascaded distribution is uniquely determined by the
exponents for the singularity sets. Observe that by Theorem 2.7 it follows that
within the class of strongly bounded random cascades satisfying the moment
ratio bound for all %, one does get that the cascaded distribution is uniquely
determined by the Rényi exponents.

5. Computation of singularity spectrum f(a). This section relates
the computations of the previous sections to the spectrum of singularities f(a)
of a random cascade ., whenever f(a) exists (as an extended real-valued
function). Notice that since the limit (1.7) defining the spectrum of singulari-
ties f(a) for a random cascade u = u., is measurable with respect to the tail
sigma-field of countably many i.i.d. random variables W(o), o € T, the func-
tion f(a) is deterministic.

We shall provide two general theorems from which the main theorem will
follow. As noted in Example 2.1, the spectrum of singularities need not be
concave. However, using the Cauchy-Schwarz inequality in (1.9), one can
easily see that it is always the case that the Rényi exponent 7(%) is a convex
function.
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THEOREM 5.1. Let f: B — R be an arbitrary extended real-valued function
and let

() ={(x,5):y =2 f(x)}.
Now let f denote the convex hull of f defined by
f(x) = inf(y: (x,5) € &(f)},

where &(f) is the smallest closed convex set containing &,(f). Let f*, f*

denote the Legendre transforms of f, f, respectively, defined by
f*(A) = sup{rx — f(x)},  f*(A) = sup{rx - f(x)}.

Then
Fr() = ().

Proor. Clearly,_f(x) < f(x). Thus, f*(A) < f*(A) for all A. Therefore, if
f*(A) = +o, then f*(A) = f*(A). Thus, it suffices to show that if f*(1) < x,
then f*(A) < f*(A). Let A be such that f*(A) < ». Then for all x,

f*(A) = Ax — f(x),

that is, f(x) > Ax — f*(A) for all x.

Therefore, &( f) lies above the line y = Ax — f*(1), so that &(f) also lies
above the line y = Ax — f*(A). Thus, f(x) > Ax — f*(A) for all x. It follows
that

f*(A) = sup{Ax — f(x)} < sup{Ax — (Ax — f*(X))} = f*(A). o

CoroLLARY 5.1. Let f: #— R be an arbitrary extended real-valued func-
tion and let f be the convex hull of f. Then [ = f**.

PRroOF. Since f is convex and lower semicontinuous, one has f** =f. O

THEOREM 5.2. Let u be a nonnegative a.s. finite random measure on [0, 1]
such that

f;LBa(x)

= -y <0 .S.
Bl ogs = V<0 @

and for which f(a), a.s. exists as a deterministic extended real-valued function
which is not identically —x. Then 7(h) exists and is given by

(k) = (=F)*(=h),  F(a) = —r*(=a) = 7'(a).

Proor. The proof is sample point by sample point after the indicated sets
of, probability 0 are removed; however, we suppress the dependence on sample
points. Recall the definition of M (k) given by (1.9) for 0 < 6 < 1. Since the
largest number of disjoint subintervals of [0, 1] of length & is O(5~1), one has
f(a) < 1. If f(a) is finite, then given an arbitrary number y > 0 there are
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positive numbers ¢, §, such that for 0 <& <y, 0 <8 < §,,
87 @ < gN < §7 7@,
where by an obvious abuse of notation we write
dN = Nj(a + &) — Ny(a — ¢).
So, for such an «, 0 <& < gy, 0 < A, one has for A > 0,

log M;(h) S IOgE'(k:8“+‘<;:.(A,¢)58"‘_5):u'h(Ak)
—logé —log 6

log Bah +ey+y—f(a)

TTog 8 =f(a) —ah —ey -,

and similarly for A < 0,

log M(h) S lOgE,(k:8“*“<;¢(A,¢)55"“5)/~"h(Ak)
—logé —log &

lOg Bah—e'y+7—f(a)

“log =f(a) —ah +ey —y.

If f(a) = —o, then log My(h)/— log & > f(a) — ah. In any case it follows for
all a that
log M(h)

h?l}glf Tg& = f(a) —ah,
and therefore
log M (h
li?l,iélf g—ng(S) > sgp{f(a) —ah}.

For the reverse inequality again let y > 0. Let u[0,1] = Z < «. Notice that
since f(a) must have at least one finite value (by hypothesis of the theorem),
sup{f(a) — ah} > —x. First consider h > 0. Choose A, so large that
1 — hA, < sup{f(a) — ah}, and choose A_ such that §4-> Z. Then

log My(h) _ 10g{Tu: wap < (8) + Tias wapz ot (40)}
—logé ~ —log 6
_ 10g{0(571)8" 4} + Tt waaz st (A1)}
- —log &
3 log{o(l)a—supa(f(a)—ah) + Z'(k:p.(Ak)zaA*-)/'Lh(Ak)}

! —log é

To bound the second sum, partition the interval [A_, A, ] into r subintervals
A =ay<a;< -+ <a,=A, of lengths ¢ not exceeding ¢,. This induces a



EXPONENTS FOR RANDOM CASCADES 843

partition of [§4+, 64-] which will cover {k: 64+< u(A,) < k < §4-}. Thus,
log My(R)  log{O(1)ssurelft)=ah) 1 yr_ §=v=fla)gha;=h(/2)
<
—logs —log &
log{&‘s“pa(f(")“’h)(O(l) + rg—v—h(e/Z))}

—log é
It now follows for A > 0 that

log M;(h)

lim sup - < sup{ f(a) —ah}.

50 —log s

For the cases h < 0 one proceeds similarly by choosing B > v, A, sufficiently
small that 1 — hA, < sup{ f(a) — ah}, and partitioning the interval [A ,, B]
into s subintervals of lengths ¢ not exceeding ¢, so that with 2 < 0,

log M,(h) < 10g{ Tk wap <540 (Ag) + Tt wcaps 540" (A4))

—logd “log o
< log{zr(k:M(Ak)<8A+}/~Lh(Ak) + 0(5—1)5hA+}
- —log 6
lOg{Z,(k:u(AkKsM)Mh(Ak) + 0(1)5"supa(f(a)—ah)}
- —log 6
lOg{Zj=18—7—f(aj)8haj_h(€/2) + 0(1)5*Supa(f(a)—ah)}
- —log &
log{8 ~=wpdll(®=ehl(Q(1) + 5677~ H¢/D))
< . °
—log §

To see precisely how the Legendre transform formalism works between the
MKP-function yx, and the spectrum of singularities f(a) under our specialized
conditions, let w, be the random cascade measure for strongly bounded
cascaded variables such that EW?2"/(EW?2)" < b for all h. Then, in view of
Theorem 2.7, Corollary 5.1 and Theorem 5.2, if the spectrum of singularities
f(a) exists for the random cascade, then

(5.1) f(a) = xt ()
and
(5.2) xs(R) = (=F)*(=h).

In particular, under at least some conditions, by taking the convex hull of the
spectrum of singularites, one obtains a basic structure function of the cascaded
variables.
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