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This study concerns travel times in a stochastic network in which units
move among the nodes that process the units. The network may be closed
or open, there may be several types of units and the processing at each
node may depend on the numbers of units at the other nodes. This is a
Jackson network when the nodes operate independently. The travel time on
a “route” in this network is the time it takes for an arbitrary unit to
traverse one of a series of nodes that constitute the route, when the
network is in equilibrium. An example is the time for a unit to move from
one set of nodes to another. We present an expression for the expectation of
a general travel time. We also characterize the distribution of the travel
time, and the sojourn times at the nodes, on an overtake-free path. This
includes the known results on the product-form distribution of sojourn
times at the nodes on overtake-free paths in Jackson networks.

1. Introduction. For a stochastic network, such as a Jackson network,
some typical travel issues are as follows:

1. How long does it take for a unit to travel from one sector (i.e., set of nodes)
to another when the network is in equilibrium?

2. How much time does a unit spend in a sector during its stay in an open
network?

3. How much time does a unit spend as a certain type of unit during its stay in
a sector?

Such travel and sojourn times are the subject of this study.

We consider travel times for a Markovian network process, like the pro-
cesses in [14], [12], [33] and [27], in which the processing rate of units at a node
may depend on the locations of units throughout the network, and its equilib-
rium distribution is not of product form. A Jackson network is a special case.
We define a general route &% as a collection of feasible paths, called simple
routes. The travel time on a route % is the time it takes for a unit to traverse
one of the simple routes in % chosen under the dynamics of the process, in
equilibrium. There is a one-to-one correspondence between the family of travel
times and the family of essentially all stopping times for a certain Markov
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chain representing the movement of a single unit among the nodes in discrete
time.

Even a simply-stated travel time, such as the time to travel from one sector
to another, is rather intricate. Some of the complicating factors are the
following:

. A travel time is not a stopping time of the network process.

. Units may overtake one another as they traverse the route.

. The processing at the nodes on a route may involve processor sharing.

. A unit may begin a traverse of a route and not complete it (e.g., a unit may
start to travel from sector J to sector K but may return to J or exit the
network before reaching K).

5. The status of whether a unit is traversing a route completely is typically not

known until the route is completed.

6. The distribution of a travel time is not with respect to the underlying

probability law of the network process, but it is with respect to the Palm

probability of the process conditioned that a unit begins a complete traverse
of the route.

DN =

Our main results are an expression for the expectation of a travel time for a
general route, and a characterization of the distribution of sojourn and travel
times on an overtake-free route. To prove these, we represent the network by a
Markov process that is more encompassing than the usual process depicting
the numbers of units at the nodes. This larger process monitors the route-
traversing status of each unit by looking into the future—it records whether
or not the unit will eventually complete the route. Functionals of this process
that determine travel times are (a) the point process of the number of units
that begin the route in a time period and eventually complete it, and (b) the
process representing the numbers of units at the nodes at any time that are
undergoing a complete traverse of the route.

We use laws of large numbers for these functionals and properties of Palm
probabilities to obtain the expected travel time on a route. This expectation is
directly proportional to the expected number of units traversing the route
completely; the expectation of the travel time is under the Palm probability of
the process and the expectation of the number of traversing units is under the
usual probability law of the process. We also establish a strong law of large
numbers for travel times. A corollary of our result is a Little law for the mean
sojourn time in a node or sector of a network. This also follows by standard
Little laws for queues as surveyed in [30] or [32], although it apparently has
not appeared in the literature.

Our characterization of the distributions of sojourn and travel times on an
overtake-free route is an extension of several earlier results. Suppose
W,,...,W, are the sojourn times of a unit that traverses the nodes r =
(ry,...,r;) in that order, and r is-an overtake-free simple route (Definition
5.1). Walrand and Varaiya [31] showed that, for an open Jackson network with
unlimited capacity, the W, ,..., W, are independent exponential random vari-

ables; Reich [22] proved thls 1n1t1a11y for queues in tandem. For a closed
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Jackson network, Kelly and Pollett [15] proved an analogous result that the
joint distribution of W, ,..., W, is a certain product form. Related results are
in [2], [5]-[8], [11], [15]-[25], [30], [31] and [4] is a survey.

We found that it is natural to treat these two results for open and closed
networks as one. For our more general network process, we prove that
W, ,..., W, has a similar product-form distribution regardless of whether the
network is closed, or open with limited capacity, or open with unlimited
capacity. In the latter case, the distribution of W, ,..., W, is such that they
are independent exponential random variables. This result extends our knowl-
edge of sojourn times on overtake-free paths in networks with dependent
nodes including open Jackson networks with limited capacity. We also show
that the distribution of the travel time on an overtake-free route % is the
mixture of distributions of random variables W, + --- + W, over all simple
routes r in . The distributions of these sojourn times are with respect to
certain Palm probabilities; this fact was only implicit in earlier analyses. Our
use of Palm probabilities provides short proofs and exposes some unnoticed
features of sojourn times.

The rest of this study is organized as follows. Section 2 describes the
network and travel times on general routes in the network. Our results on
expected travel times are presented in Section 3, and proved in Section 4.
Distributions of sojourn and travel times on overtake-free routes are in Section
5. We end in Section 6 by discussing how our results also apply to networks
with several types of units.

2. Preliminaries: Description of the network process and travel
times. We shall consider a basic stochastic network process, or queueing
network process, that is a generalization of the classical Jackson [13],
Gordon—-Newell [10], BCMP [3], Kelly [14] and Whittle [33] processes. Specifi-
cally, we consider a network in which discrete units (or customers) move
among m nodes, labeled 1,..., m, that process the units. We take m to be
finite; our results, with slight modifications, extend to infinite-node networks.
The state of the network is represented by the stochastic process

X(t) = (X,(2),..., X,(t), t=0,

that records the numbers of units at the respective nodes at time ¢. We assume
the units are indistinguishable. We discuss later how the results apply to
multiple types of units. A typical state of the process {X(¢): ¢t > 0} is a vector
n =(ny,...,n,) with nonnegative integer-valued entries.

In order to discuss both open and closed networks together, we assume that
the process X may represent either type of network and distinguish this by
the form of its state space as follows:

Closed network. A fixed number of units ¥ move among the m nodes and
‘the state space of X is

E={n:|nl =79}, wherelnl=n,+ - +n,,.
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Open network. Units enter the network from the outside, hereafter called
node 0, and move among the nodes for a while and eventually exit to node 0.
The state space of X is

E= {n:|n| < ¥}, if the network has finite capacity 7,
~ | {n:Inl <}, if the network has unlimited capacity (¥ = «).

The units move one at a time between nodes as follows. Suppose the process
X is in state n. A transition of X is triggered by the movement of one unit
from some node j to another node % in the node set

M= {1,...,m}, "if the network is closed,
~\{0,1,...,m}, ifthe network is open.

Then the new state of X is denoted by T;,n, which is the vector n with one
less unit at node j and one more unit at node k. For example, Tysn is the
vector n with n4 replaced by n; + 1. The movement of the units and their
processing at the nodes are such that X is a Markov jump process. We assume
that its transition rates

q(n,n') = }tig)lt_lP{X(t) =n'|X(0) = n}

are of the form

(1) q(n n!) - {)\Jkd).](n), if n' = T-‘ikn € E for some J’k EM’

Here A;, > 0 and ¢; is a positive function on E. The value ¢;(n)Z;A, is the
rate at which units depart from node j when X is in state n. The ¢,(n) can
be viewed as a service intensity at j that may depend on the entire vector n.
This generality, which is not present in the classical models, allows for a
variety of congestion-dependent processing schemes [27]. A ;; is the intensity at
which units departing from j move to k. We define the routing probability

(2) pjk=)‘jk/z)‘jz, J,keEM,
l

0, otherwise.

which is the probability that a unit departing from node j moves to k. We
assume, with no loss in generality, that the Markov matrix {p;,} is irreducible.
Then there are positive numbers w; that satisfy the routing equations

(3) w; )y Ajp = P Wy, JEM,
keM keM

and w, = 1 when the network is open. Then w;/X,w, is the equilibrium
distribution for {p;,}. Under these assumptions, the process X is irreducible.
We will also assume that X is-positive recurrent. This is automatically true
when the state space E is finite. And it is true for the open network with
infinite E, under condition (4), if and only if the sum of the terms on the right
side of (5) below over all n in E is finite.
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The following result from [27] characterizes the equilibrium distribution of
the process X.

THEOREM 2.1. Suppose there is an | € M such that, for each n € E and
JkeEM,

(4) ¢;(n)bp(Tjn)¢)(Tyn) = ¢u(n)¢;(Thin) ) (Tjn).
Then the equilibrium distribution of X is

(5) m(n) =cd(n) ﬁ wi, n ek,
J=1

where ¢ is a normalizing constant and ® is a positive function on E defined
recursively as follows. For v = 0,1,...,7, define

{n €E:|n| =v}, if the network is open,

E _
v {(n€E:n,=v—v}, ifthenetworkis closed,

where | is any fixed element of M. Then set ®(n) =1, n € E,, and, for
v=12,...,v, define

(6) ®(n) = ¢(Tyn)$;(n) ' ®(Tyn), nek,.

This definition is equivalent to
- -1
®(n) = kU1¢1(3k—1)¢jk(3k) ) n€k,
where s, is any sequence such that s, € E,, and s, = T};s;,_, k= 1,...,7.

One can prove Theorem 2.1 by showing that the 7 given by (5) and (6)

satisfies the partial balance equations
m(n) X q(n,Tyn) = X m(Tyun)g(Tyn,n), jEM,n€kE.
keM keM

This says that when X is in state n the rate of movement of units out of j
equals the rate of movement into j. Summing these equations over j yields
the total balance equations that = must satisfy. The equilibrium distribution
7 is not of product form. In fact any positive probability on E can be the
equilibrium distribution of such a network. The normalizing constant and
other performance parameters can be computed by Monte Carlo estimators.
These and other properties are discussed in [27] and [29].

The following examples illustrate the difference between classified networks
with independently operating nodes, and a network with dependently operat-
ing nodes.

. ExampPLE 2.2 (Jackson networks). Suppose the nodes operate indepen-
dently such that the departure intensity ¢ (n) for j # 0 is a function ¢;(n ;) of
only n;. If the network is closed, then (4) is automatically satisfied and =
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reduces to the product form
m n, 1
m(n) =c I—[lw;’f I—[1¢>j(v) )
J= v=

If the network is open, then one can show that (4) is equivalent to ¢,(n) =
a(|n|) for some positive function «. In this case, 7 is

[n|

m(n) =c[la(k-1) hm w ﬁ¢j(u)‘1.
k=1 Jj=1 v=1

ExampLE 2.3 (Tree-like network with load balancing). Suppose the net-
work is open and the routing intensities A;, are such that the network is
tree-like: There is one root node and each unit moves from the root to a leaf
node. Suppose ¢;(n) = y;(d;(n)), where d ;(n) is the total number of units at
all the nodes up the tree from j (those that can eventually be reached from j)
and v; is a positive function. Then vy,(d;(n)) is the intensity at which the
d ;(n) units higher up in the tree “pull” units from j to balance the conges-
tion [y;(v) decreases as v increases]. Also, assume as above that ¢,(n) = a(|n|).
Then (4) is clearly satisfied and

In d,(n)

m(n) =c[la(k-1) .m wi [T v(») "
k=1 Jj=1 v=1

We shall study travel times for the basic network process described in
Theorem 2.1. Our definition of a travel time is as follows. A simple route

of the network is a vector r = (r,,...,r,) of nodes in M such that A, , -
A, - > 0 and only r, may be node 0. A unit upon entering r; traverses the
route r if it proceeds to nodes ry, ..., r; in that order in the next / — 1 moves.

DEFINITION 2.4. A route #= (£, 7,{S,: r € %)) consists of a collection
Z of simple routes, a start set . and a collection of time-recording sets S,
with the following properties:

(a) The start set is any subset
#<{(j,k): j €M,and k = r; for some r € #}.

A unit triggers the start of the route # when and only when it moves from
node j to node %k for some (j, k) € /7.

(b) Each r = (ry,...,r) € # is such that (r,,r,, ) & S, forl <s <l - 2.
This ensures that a unit’s move on r from r, to r,,; cannot trigger a new
start on the route Z#. It may be possible that (r,_,, 7,) € ., in which case the
last move on r from r,_; to r; triggers a new start.

(c) No route in Z is the initial segment of another: There are no two routes
cr,r'in # with (r],...,r)) =r and [ <]'. This ensures that a unit ends the
route % when and only when it ends one of the simple routes in Z#.

(d) For each route r € %, the S, c{1,...,1} is a subset of stages at which
travel time is recorded.
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A unit traverses the route % if it moves from j to k for some (j, k) € . and,
therefore, it traverses one of the simple routes in &% completely beginning with
node k. The unit’s travel time on the route & is the time spent in nodes {r,:
s € S,} on the simple route r in # it traverses.

Note that the travel time on a route pertains to a ‘““complete traverse” of
the route. If a unit begins a route and exits before completing it, then we do
not regard this as a travel time (e.g., a unit beginning a traverse from sector J
to sector K may exit the network or return to J before hitting K). In other
words, we consider travel times that are manifest. This convention ensures
that the travel time is finite; it may take any value in (0, ) since the sojourn
time of X in any state is exponentially distributed.

ExamPLE 2.6 (Travel times). A basic example is the time it takes for a unit
to travel from J to K. Its defining sets are

S=dxI, R=JI'xK, 8,=(1,...,1-1},
=1

where I = M\(J U K). The sets {S,} are useful for representing various
scenarios for recording travel times on a route. For instance, if one were
interested in the time a unit spends in the network sector I in the first five
movements while traveling between J and K, then one would use S, =
{s: r, €I, s < 5}. A few more travel times are:

1. The total time a unit spends in J as it passes through an open network.

2. The time between a unit’s one-step move from J to K and its next one-step
move from J' to K'.

3. The time it takes for a unit to visit node j five times.

We show later that the family of all routes (and hence travel times) is
equivalent to the family of all stopping times of the Markov transition proba-
bilities p;;, for a single unit moving in M.

3. Expected travel times. Throughout the rest of this study, we let
{X(¢): t = 0} denote the network process described in Theorem 2.1 and let #
denote a route for the network. We shall consider a generic travel time
T = T(Z) for a unit traversing # when the system is in equilibrium. This
requires an explanation.

To define T precisely, we must specify an assumption on how the nodes
process the units. Typically, the total processing intensity ¢;(n) at node j is
allocated to the n; units there according to some processor-sharing rule. For
instance, a first-come-first-serve, single-server rule allocates all the ¢>j(n) to
the first of the n; units to enter node j, and an egalitarian processor-sharing

" rule allocates an equal amount of the ¢,(n), namely ¢;(n)/n;, to each of the
n ; units. For our network, we shall assume that the processing rule at node j
allocates the proportion «;,(n;) to the vth of the n; units to enter j, where
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Xy, (n;) = 1. This assumption is consistent with X being a Markov pro-
cess; the numbers of units at the nodes do not depend on the processing rule,
and so we did not specify a rule when defining X.

We shall now represent the network by a Markov process that “looks’ into
the future of the process X to determine the route-traversing status of each
unit. To this end, we will label the units as follows. If a unit is traversing
r € % completely and it is at node r,, for some s = 1,...,/, then the unit is
said to be of type sr (the unit is at stage s on the router). Otherwise, the unit
is of type 0: It is not traversing any r, or it is making only a partial traverse of
some r. We represent the evolution of the network by the process

Y(t) = (Y (t):v=1,...,X,(¢),j=1,...,m), ¢t=0,

where Y, (¢) denotes the type of the vth of the X;(#) units to enter node ;.
Under the assumptions on X and the processor-sharing rule, the process Y is
Markovian. Its transition rates are described below in the proof of Theorem
3.1, where it is also established that Y is irreducible and positive recurrent.
Note that Y is not simply a network process with multiple types of units as in
section 6; the equilibrium distribution of Y is more intricate (in fact we do not
know it).

With the broader depiction of the network by Y, we can now lay out the rest
of our notation. The number of units that begin a traverse of % up to time ¢
and complete it is

(7) Na(t) = T 1((Y(u-),Y(x)) €B), t=0.

u<t

Here B denotes the set of pairs (y, y') representing the movement of a unit
from j to %k for some (j, k) € . and the unit entering % is of type 1r, for
some r € %, signaling that it will complete the route r. Let {Y*(¢): ¢ > 0}
denote a stationary version of Y (we use an asterisk to represent ‘‘stationary
version”’). Similarly, let N denote a stationary version of N,,; this is defined
as in (7) with Y* in place of Y.

We shall consider the Palm probability distribution P° of the process Y *
“conditioned” on the event that a unit begins the route # at time 0 and
completes it. The P° is defined (see for instance [1] or [9]) by

P°(A) = E[[( ] L(Y*(-+1) € A)N;(dt)}/E[N;(o, 1]],

0,1
where A is a measurable set of sample paths of the Y process in which at time
0 a unit begins a traverse of # and completes it.

The travel time on % of a unit entering it at time 0 is what we are denoting
by T. The distribution of T is therefore with respect to P°. We will also
consider the sequence of times T,,T,,..., where T}, = T,(Z%) is the travel
time of the kth unit to begin and complete a traverse of #. These times may
be overlapping when units may overtake one another and do not finish % in
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the order they begin it. By the standard ergodic limit theorem,

limv! Y T,=E%T) as.
v k=1
Note that the sequence T, is generally not stationary under the original
underlying probability distribution of the process Y (or even under the distri-
bution of Y*). However, T, is stationary under the Palm probability P° of
Y*, and the distribution of each T, under P° is the same as that for T. This
follows because P° is invariant under a shift in time by an amount 7,, where
7, is the time at which the kth unit begins a complete traverse of .%.

Our analysis will involve two more stochastic processes. The number of
units that move from node j to node % in [0, ¢] is

(8) Nu(t) = ¥ 1(X(u) = Ty X(u -)),  t=0.

u<t

The number of units that are traversing % at time ¢ and complete it is

m X,®
(9) Xgp(t)= Y X 1Y, =srforsomere#,s€8,), t=0.

Jj=1v=1

This counts units that are in a stage s € S, at which travel time is recorded.
Let X*, N}, X%, denote stationary versions of the processes X, N;,, X,
respectively. The processes N}, X%, are expressible as in (8) and (9), respec-
tively, with X*, Y* used in place of X,Y. With a slight abuse of notation, we
let EXY, = EX%(t), EN5 = ENZ(1) and we define EX}, EN}; similarly.

Our results will also involve the following probabilities for the movement of
a single unit. Let &, &,,... be a Markov chain with transition probabilities
Pjr = A;/LA;, representing the discrete-time movement in M of a single
unit. The probability that the unit starting at r; completes the simple route
r=(ry,...,r)is

p(r) =Dry, Prpr,

and the probability that the unit starting at % finishes the route % is
[o(#) = X p(r)l(r =k).

re#
The probability that the unit in equilibrium is traversing %# completely and is
at a stage where travel time is recorded, conditioned that the unit is at node j,
is :

Z Z P{(fo,fl) 6/’(51"”’51) =r|§s =J}

re#ses,

> Z Z P{¢y = i}pyup(r)1(r, =k, 1y =j) /P& =]},

(i,k)e SreRseSs,

pj(%)
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where ¢, is stationary, so that P{¢, =j} = w;/¥, c yyw,. Then

pj(g?)=wj_1 E W;P;p, EP(") E (ry=Fk,r,=j).
(i, kyes re® se.S

The following result gives an expression for the expectation of a travel time
and some related laws of large numbers.

THEOREM 3.1. For a route % of the network process X,

(10) E°[T(%)] = EX%/EN,
where ‘
(11) EX%= Y p(#)EX},
j=1
(12) ENék?: Z fk(g?)E f;-
(j, ke

Furthermore, with probability 1,

v

(13) limv~! Y, T,(%) = E°[T(®)],
voe k=1
(14) lim ¢! ("X g(u) du = EX3,
t— o 0
(15) lim¢ !N, (t) = EN&.
t— o

Our proof of Theorem 3.1 is in the next section. Although the expression
(10) is rather simple, the computation of its terms may be difficult for
complicated routes. Tractable examples are given shortly. Note that the proba-
bilities p(#), f,(#) are functions of #,w, p,, that do not depend on the
distribution 7 for X*, while ENj (which we describe shortly) and EX
depend on 7 but not on %. The simplest travel time is the following sojourn
time.

ExampLE 3.2 (A Little law for sojourn times). Suppose W, is the sojourn
time of a unit in the set of nodes J. Then (10) yields the Little law
EO(WJ) =L;/A,,
where

L,= ZEX;F, )‘J=a*2wi2)‘ij-
JjEJ ) 1¢d jEJ
These quantities are also limiting averages as in (13)—(15). This result can also
be obtained directly, without the Y process, by Little laws as in [30] or [33]; it
apparently has not appeared in the literature.
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In light of this example, one might wonder whether there is a significant
class of travel times that can be analyzed as easily without the cumbersome
look-ahead process Y. Unfortunately, essentially any travel time aside from
sojourn times, even the time to go from J to K, requires the information from
Y. The sojourn time in o/ is transparent because once a unit enters J there is
no possibility it will not complete the sojourn, and the route-traversing status
of the unit is determined solely by its current location (look-ahead information
is not needed). Due to the subtleties of travel times, their properties have not
been uncovered as quickly as other network properties have over the last 30
years. Bear in mind that the dependent nodes and nonproduct-form equilib-
rium of the network process are not a complicating factor of our analysis. We
chose the basic network process as a vehicle for studying travel times because,
for our purposes, it is essentially as simple as the Jackson process, but it
encompasses so many more networks like Example 2.3; see [27] and [29] for
further illustrations.

In Theorem 3.1, the expected number EN} of units that move from j to %
per unit time is called the throughput from j to k. An expression for this
quantity is as follows. Here and later we refer to the following set (i.e., E with
its capacity reduced by 1 unit):

E, if the network is open with unlimited capacity,
E' = {{n:In| <v — 1}, ifthe network is open with capacity 7,

{n:In| =v — 1}, if the network is closed with 7 units.

ProrosiTiON 3.3. For each j,k € M,

(16) EN}; = tli_l)lolot_ll\]jk(t) =a*w;A;, a.s.,

where

(17) a*=w; ' Y, w(Tyn)d,(Ton)
neFE'

for any fixed I € M, and I = 0 is a convenient choice when the network is open.
If there is a node | € M such that ¢,(n) is independent of n; and ¢(n) is
independent of n; for each j # I, then

(18)

a* — 1, if the network is open with v = o,
c/c', otherwise,

where c' is the normalizing constant of the distribution m in (5) on E'.

Proor. By a law of large numbers for Markov processes,

EN}, = tlin;lot‘1 Y YX(u)=TyX(u-))= ¥ m(n)q(n,Tyn) as.

u<t nekE
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By (5) and (6), we have w(n)¢;(n) = w;w; 'w(T;;n)$,(T;;n), and so
ENj, iAW D) m(T;n) ¢, (Tyn).

nekE
Then changing the variable n to Tj;n yields (16). Expression (18) is a special
case of (17). O

We now present some examples of Theorem 3.1. We will use the Markov
chain ¢, representing the movement of one unit by p;,. We also use its
reversed-time version, which is a Markov chain with transition probabilities

P = wwi oy, j,keM.

COROLLARY 3.4. Let J, K be disjoint subsets of M, let I C L be subsets of
M\ (J U K U {0}), and let T be the tzme a unit spends in I while traveling in L
between J and K. Then

EO(T) = E [ai(_aiEXi*] [a* E w; Z Aja |,

iel jedJ leL
where «; is the absorption probability given by

a;= Y pt+ X paa, i€L
rekK leL

and a; =1 or 0 according as i € K or € M\(L U K), and «; is defined
szmzlarly with p;, and dJ in place of pj;, and K. The a; is the probabzlzty that
the chain ¢, starting at i eventually enters K before enterzng M\(L UK).

Before establishing this result, we record some special cases.

1. The expected total time spent in I while traveling through an open network

is
m
¥ EX? / [ £ 0
iel -1
2. The expected time to travel from J to K is

Y [a;a,.EX*] o Y w ¥ A,,a,},

ieL jed leL

where L = M\ (J U K U {0}).
3. The expected time to enter K in an open network is

E [ai(_aiEX*] E Aozaz
ieL leL

where L = M\ (K U {0}).
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4. The expected time between visits to  in a closed network is

Yy EX;"/(a* Y w; E)tﬂ).

i&dJ jeJ l&d

5. The expected time between visits to / in an open network is as in Corollary
34 with K=dJ and I =L = M\ (J U {0}).

6. The expected time spent in I for a unit that enters I from J and exits I
into K is given by Corollary 3.4 with L = 1.

It is natural to view some travel times, including those above, as a duration
of time between certain one-step movements or transitions of a single unit. To
this end, we say that a unit makes a J#transition at step v if (¢,_,¢,) € %,
where #c M X M.

CoroLLARY 3.5. Suppose T is the amount of time a unit spends in I
between an Atransition and a Jtransition, and the unit makes only
Liransitions between the Atransition and JF-transition. Assume
Zc{l,...,m}? and AN £ and KN £ are empty. Then

EXF|X.p5a” (i, k)| X, p;a(i, 1
(19) EO(T) _ E i £ kDir @ (l )][ Y la(l )]
iel [a Z(j,k)e/wj)‘jkzzpkza(k,l)]

)

where

(20) a(i,j) = X D+ by pja(J,l), (i,j)e”?
(G, keX G,Des

and a(i, j) = 1 or 0 according as (i, j) € ¥ or & KU _.Z; and

a”(i,j)= X px+t X pra~(il), (ji)es
k,DeS Uies

and a“ (i, j) = 1 or 0 according as (j,i) € A/ or & AU _ZL.

ReEmARKS. The a(i, j) is the probability that the two-dimensional chain
(¢,_4,&,) starting at (i, j) moves in .~ and eventually enters K before
entering M2\ (#'U _ZU {(0, 0)}). These absorption probabilities are the unique
solution to (20). The « < (i, j) are analogous absorption probabilities for the
reversed-time chain (¢, £,_;), and the entry set is ./ (instead of .%"). The
travel time T in Corollary 3.4 is the special case of T in Corollary 3.5 with
S=J XL, /=L XL, %=LXK and L =M\(J UK U {0}).

Proor. The T is the travel time on the route with start set . and
R={(ry,...,):(r,_1,1) EX,(ry_q,1,) €EL\(FSUX),2<5s <},

S, ={s:r, eI}, re.
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Then by elementary reasoning for the Markov chain {¢,}, it follows that
fk(%) = Z pkla(k’l)r’

(k, et
pi(R) = §p;;a*(i,k)][;pi,a(i,l)].

Using these expressions in (10) along with Proposition 3.3 yields the expres-
sion for E%(T). O
The following are travel times whose expected values are given by (19).

1. The time between which a unit makes a one-step transition from J to K
and its next one-step transition from J' to K'. Here I = M, ./=dJ X K,
K=dJ XK' and L= M?\ ¥.

2. The time a unit spends in I in an open network as it moves through nodes
with increasing indices. Here .= {0} X M, %= M X {0} and -Z= {(j, k):
J < k}. ,

3. The time between two successive one-step transitions of a unit from J to K
and each transition of the unit takes it to a lower indexed node or to the
next highest indexed node. Here I = M, /= %=J X K and .= {(j, k):
k<jork=j+1and j< M}

We end this section by describing how routes and hence travel times are
associated with stopping times of the movement a single unit via the Markov
chain ¢, with transition probabilities p;,. For the start set ., consider the
stopping time

o =min{v > 2: ¢, = 0or (&,_1,¢,) € S}
This minimum is + when the set is empty. The 7, is the time, measured in
node movements, at which the single unit moving under p;, either exits the
network or enters the start set .~.

Fact 3.6. There is a one-to-one correspondence between the family of
routes % and the family of finite stopping times 7 of ¢, that satisfy 2 < = < 7.

Proor. If 7 is a finite stopping time of ¢, with 2 < 7 < 7, then the set
RB,={(ry,...,rs):7=1when &, =ry,...,&=r,1> 2}

is such that (#,, ./, {S,}) is a route for any S,. Conversely, if (%, 7, {S,}) is a
route, then 7= min{v > 2: £,,...,¢§, € %} is a stopping time of ¢, with
2<7<7, 0O

4. Proof of Theorem 3.1. We begin by describing the structure of the
process Y(¢) = (Y,,(¢)), where Y;,(¢) denotes the type of the vth of the X (¢)
units to enter node j. Under the assumptions on X and the processor-sharing
rule described above, it follows that the process Y is Markovian. Suppose Y is
in state y = (y;,: v=1,...,n;(y), j=1,...,m) and the vth of the n(y)
units to enter j moves to node & (j, & # 0). Let ¥’ denote the resulting state of
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Y. The transition rate for the movement from y to y'is
(21) Ajk¢j(n1(y)’ ) nm(y))ajv(nj(y))‘)/k(ij’y;znk(y’))’
where

Yi(sr,(s+1)r)y=1, forre#,1<s<lI,
Yi(a,0) =1~ f,(#£), fora=0or!lrforsomere %,
vi(a,1r’) = p(r"), for r' € #, where a = 0 or Ir for some r € %,

Yi(a,B) =0, otherwise.

One can easily specify transition rates similar to (21) for units moving from 0
to & or from j to 0. Recall that X is irreducible and % consists of feasible
paths. Consequently, the process Y is irreducible on its (relevant) state space.
Furthermore, it is positive recurrent as we will show in the next part of the
proof. Our argument does not require knowledge of the equilibrium distribu-
tion of Y (we do not know its form and suspect that it is as intractable as some
of the infamous networks involving blocking or routing to the shortest queue).
We are only using Y as a vehicle for analyzing the other processes.

To prove E%(T) = EX%/EN%, we will use the regenerative structure of Y.
To this end, consider a fixed node k2 and r € % such that (j, k) € . for some
J and r; = k. Let y° denote a state of Y with n,(y°) = v,, n,(y°) =0, for
Jj#k,and y,, = 1r, 1 <v < v,, for fixed v, [ie., each unit in £ came from
some node j such that (j, k) € . and each of the v, units will make a
complete traverse of r]. Such a state of Y is always possible for a feasible v,
(v, = v when the network is closed, and v, can be any integer less than v for
an open network). Let 0 < 7, < 7, < ‘- denote the successive times at which
the process Y enters the state y°. We first show that E(r, — 7,) is finite. Let
n® be the state defined by n% =v, and n§ =0, j#k, and let Z,,Z,,...
denote the times between successive returns of X to n°. Then

Y
T2 — 7174 Z Z;,
i=1
where y denotes the number of returns of X to n° between two successive

returns of Y to the state y°. Then vy is a geometric random variable indepen-
dent of the Z;’s and its parameter is the probability

T wpy e € )]

k

that each of the v, units at node % starts the route and traverses r completely.
Therefore E(r, — 7,) = EZ,Ey < «. This also proves that Y is positive recur-
rent.

Since Y is Markovian, it is.regenerative at the times 7, 7,,..., and so we
have the following consequences. The process X, is regenerative at the times
‘7, with respect to the increasing o-fields of events of Y, which includes the
events of X ,; see Serfozo [28] for the subtleties of choosing various o-fields for
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regenerations. Then by the strong laws of large numbers for stationary and
regenerative processes,

EX%— lim¢™ ['X%(u) du
0

t—

(22) limt‘lfOthg(u)du

t—> o

E[/Tng(u) du]/E(Tz —r) as.

Similarly, the increments of the process N, are regenerative at the times 7,
and so

(23) EN% = limt™'N(t) = E[Na(72) = Na(71)][E(72 = 71) 2.

Also, the sequence T; is regenerative over the discrete times N(r;), and so

v N‘gp(Tz)
(24) EO(T) = lim ™! E T,=E Z T; /E[N@(Tz) - Ngf(ﬁ)]'
voe =l i=Nglr)+1

Next, observe that, by the definitions of T;, X, and 7;, it follows that

Nglry) g
(25) Y Ti= [ Xa(u)du— W, + W,
i=Ng(Tl)+1 71

Here W, denotes the remaining time spent on the route % after time ; for
those units that entered it in the time period (r;_;, 7;] (here 7, = 0) (there are
v, such units by the definition of y°). Note that the integral in (25) is just
another way of recording the total time that units spend traversing % during
the period (74, 7,]. Since Y regenerates at each 7, the W;, W, are independent
and identically distributed. Thus, the expectation of the left side of (25) equals
the expectation of the integral in (25). Using this result in (24) and then
applying (22) and (23) we obtain E°(T') = EX%/ENJ, which is assertion (10).
To prove (11), first observe that we can write
m X

(26) X5(t) =Y X Uy,

j=1v=1
where U, = (Y} € {sr: r € %, s € S,}). Let £5,&5,... denote a stationary
Markov chain on M with transition probabilities p;,. Under the assumptions
on X, if a unit is at node J, then its history of nodes visited is independent of
the number of units at j. Using this and elementary sample path probabilities
of Markov chains, we have

E[ULIX (0] = £ F P& €0 €/ (¢ ) = r1€8 =lpy ().
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Thus,

m

EX%(t) = E{ Y E
J=1

J

X5 @)
z UMXﬁ(t)}

3 Pi(Z)EX](t).
-1

This proves assertion (11).
To prove (12), first observe that we have the equality in distribution

N
(27) N;(l) =d' Z E UkV’
(j,h e v=1
where U,;, U,,, ... are independent Bernoulli random variable with P{U,, =

1} = f,(#), independent of N;;(1). Then taking expectations of the terms in
(27) yields (12). The remaining assertions (13), (14) and (15) were established
in (24), (22) and (23), respectively. O

5. Sojourn and travel times on overtake-free routes. This section
describes the distributions of sojourn times and travel times on overtake-free
routes. The following definition of an overtake-free route is a variant of that in
[4], [6], [7], [15], [20], [25] and [31].

DerFINITION 5.1. A simple route r = (ry,...,r,) is overtake-free if the fol-
lowing conditions are satisfied:

(a) The ry,...,r, are distinct and each one of these nodes i serves units on
a first-come-first-served basis with processing rate ¢,(n) = u;, independent
of n.

(b) Each feasible path from r, to any i € {ry,..., r;} for any unit must pass
through r,,,, s <l Ge,if p, ; p;;, *** p;; >0, thenr,. , €{j,...,J,,i}D.

(c) For each s = 1,...,1 — 1, let B, denote the set of nodes on all feasible
paths from r, to r,,, that contains r,r, , only at the beginning and end
nodes, respectively, and B, contains r, but not r, ;. Think of B, as the nodes
between r, and r,,,. For each j € B, the rate ¢,(n) is independent of
{n,: k & B,}. And, for each k ¢ B, U -+ U B,_,, the processing rate ¢,(n) is
independent of {n;: j € B, U --- UB,_}.

A general route &% is overtake-free if each r € & is overtake-free.

Note that units traversing an overtake-free simple route r finish it in the
same order in which they start it. Furthermore, a unit’s sojourn time at any r,
is not affected, even indirectly, by the presence of units that start r later than
it did. Units traversing a general overtake-free route % may overtake one
another if they are traversing different simple routes in %.

For the following result, we suppose that {X(¢): ¢ > 0} is the network
process we have been studying with the additional assumption that ¢,(-) = 1
when X represents an open network. Assume that r = (r,...,r,) is an
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overtake-free route for X. The equilibrium distribution of X is therefore

(28) m(n) =c®(n)[lw}, nekE,
j=1

where

(29) CD(n) = (I)I(nl):“'r—ln" cee ,ur_lnrt

andn;=(ng:iel),I=M\{r,...,r} with ®, defined as in (6) on the set of
relevant n;. We will also use the distribution

w'(n) = c®(n) Hupy, nek,
J-1

where E' is E with its capacity reduced by one unit [recall (Proposition 3.3)].
Note that 7' = ¢ !¢’ and ¢’ = ¢ when X represents an open network with
unlimited capacity (E' = E). In general, just think of 7’ as a distribution like
7, only on the space E'. :

For a unit traversing an overtake-free route r, let er’ AU W,l denote the
unit’s sojourn times at the respective nodes. The next result describes the joint
distribution of these times under the Palm probability P2(-) of the process Y *
conditioned that a unit traversing r enters node r, at time 0. Here s = 1,...,
[+ 1and r,,, is an arbitrary, fixed node in M. We also describe the distribu-
tion of a travel time T(%#) on an overtake-free route %, under the Palm
probability P° of Y* conditioned that a unit begins a traverse of % at time 0.

THEOREM 5.2. Suppose that r = (ry,...,r;) is an overtake-free route. Then
the joint Laplace transform of W, ,..., W, under Pl is
ES [exp(—2W,, — -+ —2W, )]
(30) “, ny+1 “, n,+1
= Z m'(n)| —— ce [ — ,
nekl’ zZ + My z + K,
which is the same for any s =1,...,1 + 1. Hence, if X represents an open
network with unlimited capacity, then W, , ..., W, under P? are independent
exponential random variables with respective rates p, — W,,...,H, — W,

Furthermore, for an overtake-free route %,

(31) PUT(#) <t) = T a(r)PLW, + - +W, <t}] ¥ a(r),
re# re®

where the distribution of W, ,..., W, is as described in the preceding state-
ments, and

(32) a(r) =wr_112wipir1p(r)1((i’rl) € /).

'REMARKS. The right side of (30) being independent of s means that a
unit’s sojourn times W, ,..., W, look the same to the unit at any one of its
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movements along the route. For instance, a unit entering the route (s = 1)
sees its future sojourn times as being the same as when it finishes the route
(s =1 + 1) and looks back at the times and wonders what they were. We prove
(30) by induction on [, similar in many respects to that in Kelly and Pollett
[15]. The differences are that we exploit Palm probabilities explicitly rather
than implicitly and use the independence of (30) on s + 1 as a shortcut in the
induction. Also, Theorem 5.2 applies to networks whose nodes not on the route
may have congestion-dependent service rates that satisfy (c) in Definition 5.1,
and to networks with multiple types of units as described in Section 6. O

Our proof of Theorem 5.2 uses the following lemma. Associated with P2,
we let X% = (X?,..., X?) denote the numbers of units at the respective nodes
at time 0, excluding the moving unit that is traversing r and entering r, at
time 0. This X is sometimes called the “disposition of the unmoved units” at
time 0. The following result says that a unit traversing r and moving into r,
“sees” the rest of the units with distribution 7' (the moving unit sees a time
average). Similar MUSTA properties are in [27]; they are variants of arrivals
seeing time averages (ASTA).

LeEmMmA 5.3. Under the assumptions of Theorem 5.2,

(33) PYX°=n) =w(n), neE.

Proor. Associated with the stationary process Y*, let N(n) denote the
number of units that enter node r, in the interval (0,1] and see the other
(unmoved) units in state n. Let N,,.(n) denote the number of these units
entering r, that are traversing r. By the definition of P2,

(34) PJ{X°=n} = E[N,(n)]/ ¥ E[N,.(n)].
n'ek
We can write N,,(n) = E¥WU, , where k = r, and U,;, U, ... are indepen-

dent Bernoulli random variables independent of N(») and

n, = P{U,, = 1} = Bw, ' ¥ w;pjr,p(T).
(G, rpes”

Here B;, = 1if k is inside {ry,...,r;} and B, = P, , if £ = r;,;. This 7, is the
probability [like p,(%#)] that a unit entering % is traversing r completely. The
structures of N,,(n) and N(n) are such that

E[Nsr(n)] = nkE[N(n)] =M AZM”T(TOjn)q(TOjn,TOkn)‘

From (5), we know that

m
7(To,n) = cwjd)(TOjn)i:I—[1 wl.
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And from (6) [with ¢,(-) = u, and Ty ;n in place of n]and (29), it follows that

(I’(Tojn) = /"Lr1¢j(T0jn)_1(D(T0r1n) = ¢j(T0jn)41(I)(n)'

Combining these observations with (34) yields the assertion (33). O
We are now ready to address the main issue.

Proor or THEOREM 5.2. We will prove (30) by induction on the route
length [ (for all network processes of this form). For simplicity, renumber the
nodes such that (ry,...,r,) =(1,...,1). The time W, is the sum of X? + 1
independent exponential service times for the X units already at node 1 at
time 0 plus the unit moving into 1. Consequently,

0
™ )X1+1
21ty .

Egge 30, <

Taking the expectation E of this and using Lemma 5.3, we obtain (30)
for [ = s = 1. For the case [ = 1, s = 2, consider the reversed-time version
{X(¢): t = 0} of the process X. The transition function of X is

q(n,Tyn) = w(n) 'w(Tpn)q(Tpn,n)
=Xjk¢j(n),

where A & = w; 'wyAy;. This X therefore has the same form as X, and its
equilibrium distribution is the same as that for X, since ® = ® and w, = w;.
Now, by viewing X in reverse time, it follows that

(35) Ef.(e”™) = Ej(e”™),

where W, is the sojourn time for the process X. Since X is the same form as
X, expression (30) for [ =s =1 applies to the right side of (35), and so
E (e*™) equals the right side of (30).

Now, assume (30) holds for all routes of length 1,...,1 — 1 for some [.
Suppose r is a route of length I. We first consider (30) for the expectation E?,
with s = 2; this pertains to the conditioning event that a unit traversing r
moves from r, to r, at time 0. Let

J =By, K=B,uU - --UB,_; U{l}, L={1,...,m}\(JUK),
where B, is the set of nodes between nodes s and s + 1 (Definition 5.1). Let
!
Z = exp(— Y sts).
s=2

, Since r is overtake-free, W, and Z conditioned on X° are independent
under PJ. Furthermore, W, depends on X° only through the values of
X9 =(X): jedJ), and Z depends on X° only through the values of Xp.
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Therefore,

Eg[e7"Z|X°] = B3 [~ | XJ]| B3 [ 21 X§]
= 8(XJ)h(Xg),

where g and h are nonrandom functions. Then using Lemma 5.3, we have
ES(e"Z) = B[ g(X3)h(XP)]

(37) = ¥ 7(n)g(n,)h(ng).

nek’

(36)

The overtake-free property of r ensures that ¢;(n) is a function of only 7 ; if
J € J. Similar statements hold for processing rates at nodes in K and in L.
Therefore, we can write

(38) m'(n) = c"my(ns)mr(ng)m(ng),

where

T (ny) =c;P,(n,) H wj
jed

is a probability measure with normalizing constant c¢; and ®, is defined as in
(29); the 7y, 7 are defined similarly. Substituting (38) in (37), we have

E (e "™Z)
(39) =c¢" ¥ m(n)g(n,) L mx(ng)h(ng) ¥ m(ny),

n; €K, ng€E, nyeE;
where E, ={n;: In j/ <v -1},
Ey,={ng:lngl <v—1Inyl =1}, Ey={ny:(n,,ng,ny)isin E'}.

Our next step is to apply the induction hypothesis to the first two sums in
(39). To this end, let X denote an open network process on the nodes J with
state space E, and transmon rates

‘f(nJ’TjknJ) =Xjk¢j(nJ)’
where
Liggwidy, ifj=0ked,
A=A Zieariis ifk=0,j€d,

A otherwise.

Jjk?

This process X’ has the same form as X and can be viewed as X on the node

set J. An easy check shows that &; = w; and so the equlhbrlum distribution of

X, is ;. For this process X, consider the route r* = {1} of length 1. Clearly
£, (e M1XS) - £(X3),

where g is as in (36). Then using Lemma 5.3 for X, and the induction



TRAVEL TIMES IN NETWORKS 249

hypothesis, we have

Y mi(ng)g(n,) = EAgr'[g(

N

9] = Eg,(e==™)

nyeE,
(40) ni+1
M1
= X 77'J(nJ)( 7 ) .
n, ek, 21 T My
We can define a similar process X x on E, and, for the route r' = (2,...,1), we

get, under the induction hypothesis,
L me(ng)h(ng) = BL.[h(XR)] = E(2)
ng€E,y

ngt+l

(41) Mg

ZS+I'LS

l
= Z WK(”K)H

ng€E, s=2

Substituting (40) and (41) in (39) and combining terms using (38), we obtain
(30) for s = 2.

To complete the induction, we will show that the left-hand side of (30) is the
same for each s. The times W, ..., W, are determined by the disposition X° of
the unmoved units at time 0 and related service times, independently of the
node r, into which the moving unit enters. Consequently,

Psor{W1 <ty,...,W < tllXO} = H(X"?),
where H is a function on E’ independent of s. Hence, by Lemma 5.3,

P{W, <¢,...,W, <)) =ES[H(X")] = ¥ #'(n)H(n)

nekg’

and this is independent of s as suggested.

We now prove the second assertion of Theorem 5.2. Under the hypothesis
that X represents an open network with unlimited capacity, we have 7' = 7.
Then using expression (28) for 7 in (30), we can write

Esor[exp( —z Wy — - _ZIVVZ)]
1 . © wj ny
=CZ¢I(”I)HW{”HM,‘(ZJ‘+MJ') )
n; el Jj=1 n,=0 Zj + M
The first sum is over n; =0,1,... for { € I. Recall that the normalizing

constant ¢ is defined by
l o
ct=Youn) [Twr [T X (w/n,)".
n; iel Jj=1 n,=0

Combining these expressions with their geometric series summed yields

. 1
,-LA—w.

42 EQ [exp(—2W, — --+ —2,W))] = ——J—L—)

(42) [ p( 1 1 z)] jl:[l Z - w
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This proves that the W,,..., W, under P? are independent exponential ran-
dom variables with respective rates u, — wy,...,u; — w;.

Our last task is to prove (31). For r € %, let A, denote the event that the
unit beginning a traverse of % at time 0 selects r € & for its traverse. From
the transition rates of the process Y in Section 4, it follows that

PYA} =a(r)/ X a(r).
re%

The a(r) is the probability that, in equilibrium, a unit at node r; came from
some node ¢ with (i, ;) € 7 and the unit will traverse r completely. Then

PYT(#) <) = ¥ P(T(R) <tIA,)PA4,),
re#

which equals the right-hand side of (31). O

6. Networks with multiple types of units. In this section, we point
out how the results above also apply to certain networks with multiple types of
units. This is accomplished by simply keeping track of each unit’s type via
another subscript on the processes.

Consider the network as above with the additional feature that each unit
carries an attribute (or class label) from a finite set A. A unit’s attribute may
change over time, possibly depending on the unit’s location or its transitions.
We represent the network by the process

X(t) ={X,;(t):a€A, je{l,...,m}}, t=0,

where X, ;(¢) denotes the number of « units at node j at time ¢. We assume
that X is a Markov process with features consistent with those above. If X is
in state n ={n,;: « €A, j €{1,...,m}}, a typical transition is triggered by
an « unit at node j moving to node % and entering there as a 8 unit. The rate
of this transition is

‘I(n, Taj,Bkn’) = )‘aj,ﬁk¢aj(n)~

We make all the assumptions in Section 2 and at the beginning of Section 3 for
this new process. The only difference between this process and the one above is
that here we are using the double subscript «j instead of simply j. This type
of network process is a generalization of the BCMP and Kelly networks in
which the attribute o« may determine a routing status or processing rate at a
node.

A route & is defined in the natural way with a simple route r = (ry,...,r,)
being a vector with elements of the form r, = a,j, € A X M. Viewing each
pair aj in A X M as a ‘“node,” one talks of each unit moving in A X M
according to a Markov chain ¢, £;, ... with transition probabilities

Paj gt = Aaj,ph/ 2uhajiyt-
vl

The results in Section 3 and 5 apply to the new setting; just replace j, &, 7, ...
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throughout by «j, Bk, vl,... . For instance, (10) would read

E°[T(R)] = Lp(RVEXY/ L fa( R)VENS g
aj (aj, BR)eS

The attribute « adds another dimension to the description of a route. For
example, as in Corollary 3.4, one might be interested in the time T a unit
spends in I as an A; unit (i.e., its attribute is in A; C A) while traveling in L
between J and K. An additional restriction might be that the unit starts from
J as an A unit, travels in L as an A, unit (A; D A);), and ends in K as an
Ay unit. In this case, the E°(T') is as in Corollary 3.4 with J, K, L replaced by
A;XdJ, A, X K and A; X L, respectively.

REFERENCES

[1] Baccernl, F. and BremauDp, P. (1987). Palm probabilities and stationary queues. Lecture
Notes in Statist. 41. Springer, New York.

[2] BARBOUR, A. D. and SCHASSBERGER, R. (1981). Insensitive average residence times in general-
ized semi-Markov processes. Adv. in Appl. Probab. 13 720-735.

[3] Baskert, F., CHANDY, K., MUNTZ, R. and Pavacios, P. (1975). Open, closed and mixed
networks with different classes of customers. J. Assoc. Comput. Mach. 22 248-260.

[4] Boxma, O. J. and DADUNA, H. (1990). Sojourn times in queueing networks. In Stochastic
Analysis of Computer and Communication Systems (H. Takagi, ed.) 401-405. North-
Holland, Amsterdam.

[5] Burkg, P. J. (1968). The output process of a stationary M/M /s queueing system. Ann.
Math. Statist. 39 1144-1152.

[6] DabuNa, H. (1982). Passage times for overtake-free paths in Gordon-Newell networks. Adv.
in Appl. Probab. 14 672-686.

[7] Dabuna, H. (1986). Cycle times in two-stage closed queueing networks: Applications to
multiprogrammed computer systems with virtual memory. Oper. Res. 34 281-288.

[8] FavoLLE, G., [aAsNOGORODSKI, R. and MiTrani, I. (1983). The distribution of sojourn time in a
queueing network with overtaking: Reduction to a boundary value problem. In Perfor-
mance ’83 (A. K. Agrawala and S. K. Tripathi, eds.). North-Holland, Amsterdam.

[9] FrankeN, P., Konig, D., ArNDT, V. and Scumipt, V. (1982). Queues and Point Processes.
Wiley, New York.

[10] GorpoN, W. J. and NEwEgLL, G. F. (1967). Cyclic queueing systems with restricted queue
lengths. Oper. Res. 15 266-278.

[11] HEMKER, J. (1990). A note on sojourn times in queueing networks with multiserver nodes.
J. Appl. Probab. 27 469-474.

[12] HorpuUK, A. and vaN Dk, N. (1983). Networks of queues, part I: Job-local-balance and the
adjoint process; part II: General routing and service characteristics. In Proceedings of
the International Seminar on Modelling and Performance Evaluation Methodology.
Lecture Notes in Control and Inform. Sci. 60 79-135. Springer, New York.

[13] Jackson, J. R. (1957). Networks of waiting lines. Oper. Res. 5 518-521.

[14) KeLLy, F. P. (1979). Reversibility and Stochastic Networks. Wiley, New York.

[15] KeLLy, F. P. and PoLLETT, P. K. (1983). Sojourn times in closed queueing networks. Adv. in
Appl. Probab. 15 638-656.

[16] KNEssL, C. and MoRRISON, J. A. (1990). Heavy traffic analysis of the sojourn time in tandem
queues with overtaking. Queueing Systems 8 165-182.

[17] Kook, K. (1989). Equilibrium behavior of Markovian network processes. Ph.D. dissertation,

, Georgia Institute of Technology.

[18] KueHN, P. J. (1979). Approximate analysis of general queueing networks by decomposition.

' IEEE Trans. Comm. 27 113-126.

[19] LEMOINE, A. J. (1987). On sojourn time in Jackson networks of queues. J. Appl. Probab. 24 -

495-510.



252 K. H. KOOK AND R. F. SERFOZO

[20] McKENNA, J. (1989). A generalization of Little’s law to moments of queue lengths and
waiting times in closed, product-form queueing networks. J. Appl. Probab. 26 131-133.

[21] MELAMED, B. (1982). Sojourn times in queueing networks. Math. Oper. Res. 7 223-244.

[22] REicH, E. (1957). Waiting times when queues are in tandem. Ann. Math. Statist. 28
768-773.

[23] REmMAN, M. 1. (1982). The heavy traffic diffusion approximation for sojourn times in Jackson
networks. In Applied Probability—Computer Science, The Interface (R. L. Disney and
T. J. Ott, eds.) 409-421. Birkh&duser, Boston.

[24] ScHASSBERGER, R. and DADUNA, H. (1983). The time for a round trip in a cycle of exponential
queues. J. Assoc. Comput. Mach. 30 146-150.

[25] ScHASSBERGER, R. and Dabpuna, H. (1987). Sojourn times in queueing networks with multi-
server nodes. J. Appl. Probab. 24 511-521.

[26] SErFOzO, R. F. (1989a). Poisson functionals of Markov processes and queueing networks.
Adv. in Appl. Probab. 21 595-611.

[27] SErFOzO, R. F. (1989b). Markovian network processes: congestion-dependent routing and
processing. Queueing Systems 5 5-36.

[28] SErFozo, R. F. (1992). Applications of the key renewal theorem: crude regenerations.
J. Appl. Probab. 29 384-395.

[29] SErFozo, R. F. (1992). Queueing network -processes with dependent nodes and concurrent
movements. Queueing Systems. To appear.

[30] WALRAND, J. (1988). An Introduction to Queueing Networks. Prentice-Hall, Engelwood Cliffs,
NJ.

[31] WALRAND, J. and VARrAlva, P. (1980). Sojourn times and overtaking condition in Jacksonian
networks. Adv. in Appl. Probab. 12 1000-1018.

[82] WHITT, W. (1991). A review of L = AW and extensions. Queueing Systems 9 235-268.

[33] WHITTLE, P. (1986). Systems in Stochastic Equilibrium. Wiley, New York.

ELECTRONICS AND TELECOMMUNICATIONS SCHOOL OF INDUSTRIAL AND
RESEARCH INSTITUTE SYSTEMS ENGINEERING

P.0.Box 8 GEORGIA INSTITUTE OF TECHNOLOGY

DAk DoEc Dan J1 ATLANTA, GEORGIA 30332

DAE JEON

KOREA



