The Annals of Applied Probabulity
1993, Vol. 3, No. 1, 28-55

PROCESSING NETWORKS WITH PARALLEL AND
SEQUENTIAL TASKS: HEAVY TRAFFIC
ANALYSIS AND BROWNIAN LIMITS

By ViEN NGUYEN

Stanford University

In queueing theory one seeks to predict in quantitative terms the
congestion delays that occur when jobs or customers complete for process-
ing resources. At present no satisfactory methods exist for the analysis of
systems that allow simultaneous performance of tasks associated with a
single job or customer. We present a heavy traffic analysis for the class of
homogeneous fork-join networks in which jobs are routed in a feedforward
deterministic fashion. We show that under certain regularity conditions the
vector of total job count processes converges weakly to a multidimensional
reflected Brownian motion (RBM) whose state space is a polyhedral cone in
the nonnegative orthant. Furthermore, the weak limits of workload levels
and throughput times are shown to be simple transformations of the RBM.
As will be explained, the “steady-state throughput time” (a random vari-
able) is expressed in terms of workload levels via the “longest path func-
tional” of classical PERT /CPM analysis.

1. Introduction and summary. In conventional queueing network the-
ory each arriving “customer’ is assumed to require certain ‘‘services,” and
those services are provided in sequential fashion at specified ““work centers”
or “stations” of the network. Equivalently, one may think in terms of *jobs”
that arrive over time, each job consisting of particular ‘“tasks’ that are to be
executed sequentially at specified work centers. Except for computer simula-
tion, no satisfactory methods exist for analysis of processing systems that
allow the simultaneous performance of tasks associated with a single job or
customer. Nevertheless, parallel processing is important in many areas of
application, including manufacturing systems, product development and paral-
lel computing. Hereafter, the term processing networks will be used when
referring to this larger class of systems, as distinct from the more familiar and
restrictive class of queueing network models, where sequential processing is
assumed. In this paper we analyze a class of processing networks called
fork-join networks. Loosely speaking, such a network processes a sequence of
statistically identical and independent ‘‘jobs.” Each job consists of a fixed
number of tasks whose order of execution is constrained by certain determinis-
tic precedence requirements. We assume that there is a ‘““server’’ or ‘ processing

Received July 1991; revised December 1991.

AMS 1991 subject classifications. 60K25, 60J65, 60K20.

Key words and phrases. Fork-join networks, processing networks, heavy traffic analysis,
reflected Brownian motion, sojourn time analysis, performance analysis.

28

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Applied Probability .

Www.jstor.org

PROCESSING NETWORKS 29

station” dedicated to each task, and tasks compete for resources at each
processing station in a first-in-first-out (FIFO) manner.

The distinguishing features of this model class are the so-called ““fork’ and
‘“join” constructs. A fork occurs whenever several tasks are allowed to begin
processing at the same time. In the network model, this is represented by a
“splitting”’” of the job into multiple tasks, which are then sent simultaneously
to their respective servers. A join node, on the other hand, corresponds to a
task that may not be initiated until several other tasks have been completed.
Components are joined only if they correspond to the same job; thus a join is
always preceded by a fork. If the last stage of operation consists of multiple
tasks, then these tasks regroup into a single job before departing from the
system.

The dependencies created by the fork and join constructs make this class of
network models highly intractable [2]. In light of this situation, we propose an
approximation scheme that is motivated by heavy traffic theory. We show that
in the heavy traffic limit, the vector of total job count processes converges
weakly to a reflected Brownian motion (RBM) whose dimension is precisely
the dimension of the network, namely, the number of processing stations.
Furthermore, the weak limits of queue lengths, workload levels, and through-
put times are shown to be simple transformations of the RBM. Previously,
when reflected Brownian motions have arisen as heavy traffic limits of queue-
ing networks, the state space of the RBM was a nonnegative orthant, but in
this application to processing networks, the state space is a nonsimple polyhe-
dral cone within the nonnegative orthant.

1.1. Some applications. Let us now consider two examples that illustrate
the different types of systems that one can model by a fork-join network. The
first is an assembly center which makes a particular product. Each job that
enters the system may be thought of as a kit of parts; after the arrival of a kit
the individual parts are routed to subassembly stations. When all the prelimi-
nary work (which may include several stages of minor assembly on some of the
parts) has been completed, the part undergoes final assembly and the finished
product exits from the system. Suppose that there are as many ‘‘processing
resources’ as there are operations. One can imagine that the individual parts
of each job are “routed” from one service center to the next as they are being
processed and assembled. As an example one can think of a production shop of
a coat manufacturer; Figure 1 (cf. page 77, [29)) illustrates the main operations
involved in the making of a coat. Note that a fork in the system corresponds to
a physical splitting of a job (in this case the parts of a coat), and a join
represents a physical assembly of parts.

Next, consider a builder of tract housing. An arriving ‘“job’’ here corre-
sponds to an authorization or a request to build another house. Suppose that
all houses in the tract are similar enough to be regarded as identical. The
. building of each house requires the completion of numerous tasks which are
subject to certain precedence constraints; Figure 2 (cf. page 311, [18]) gives an

30
it
,-—;=5'¢]&5:2'~-_
ce=="l- . S OSe Tt m.-al
P - . . s~ L .

" '__— ’l ~ ~~~. —-——,
Sleeves FWIS B¢:ks Collars Pockets Lining, etc.

Other
subassemblies

I Subassembly 1 I I Subassembly 2 I

Subassembly 3
Subassembly 4

I Final assembly |

Y

I Pressing and inspection I

\

Finished coat

Fic. 1. An assembly system: a coat shop.

Construction order

(1) Excavate
(2) Foundation
(3) Rough wall

(5) Rough exterior
plumbing

(6) Rough electrical
work

(4) Roof

(7) Exterior siding
(8) Exterior painting

(9) Rough interior
plumbing

(10) Wall board
)

‘ (12) Interior painting)

(11) Flooring

(14) Interior fixtures

(13) Exterior fixtures

Finished house

Fic. 2. Construction of a house: the task graph.

PROCESSING NETWORKS 31

Finished
house

Construction
order

Fic. 8. Construction of a house: the network.

example of the tasks involved in building a house and the associated prece-
dence requirements.

Suppose that the builder has one crew of workers dedicated to each of these
tasks. Rather than picturing the crews as moving between work sites, one can
consider the logically equivalent scenario in which crews remain stationary
and houses ‘“travel” from one crew to the next to receive service. Hence the
task graph in Figure 2 can be represented by the network shown in Figure 3,
and one may think of a job, or a house that is being constructed, as working
itself through the network in the order shown. Once the house is completed,
that is, all necessary tasks have been performed, it ‘“‘departs from the network.”
In this example there is no physical splitting of a job or assembly of compo-
nents. A fork in this context is used to enable simultaneity of operations,
whereas a join requires the completion of several tasks before a successor
operation can be undertaken. In this sense the fork and join constructs are
only logical operators.

For a survey of other interesting applications readers can refer to the papers
by Baccelli and Makowski [2] and Mandelbaum and Avi-Itzhak [22].

1.2. A brief literature survey. Baccelli and Liu [1], Baccelli and Makowski
[2], Baccelli, Makowski and Shwartz [3] and Baccelli, Massey and Towsley [4]
have established stability conditions for a class of fork-join networks that
subsumes the models considered in this paper. In the special case where the
interarrival and service times are mutually independent sequences of indepen-
dent, identically distributed (i.i.d.) random variables, with mean interarrival
time A~ ! and mean service time 7; at station j, their condition reduces to
AT, <1, j=1,...,dJ; this is the usual stability condition associated with
conventional queueing networks.

It is known that fork-join networks exhibit stationary behavior, but the
specifics of that behavior are not understood. The simplest example of a
fork-join network is the fork-join queue (see Figure 4). In this system an
. arriving job immediately forks into K tasks, which are to be served simultane-
ously; the job is completed when all K tasks have been finished. Even for this
simple class of network models, few analytical results are available (see, e.g.,
[9, 10, 21, 22, 23]). Due to the intractability of fork-join networks, several

32 V.NGUYEN

> >
IJH]—@—»

:ﬁ]i—®->

Fic. 4. A fork-join queue.

efforts have been made to find reasonable bounds or approximations for such
systems. Nelson and Tantawi [23] have proposed an approximation for the
throughput time of the fork-join queue with Poisson arrivals and exponentially
distributed service times at each queue. The formula proposed in [23] derives
from a combination of theoretical results and empirical data. The works by
Baccelli and Liu [1], Baccelli and Makowski [2], Baccelli, Makowski and Shwartz
[3] and Baccelli, Massey and Towsley [4] have been directed at finding bounds
for the throughput time of fork-join networks. The bounds were obtained
using results from stochastic ordering and the theory of associated random
variables. The tightness of these bounds, however, has not been investigated.

One approach that has proved effective for studying otherwise intractable
queueing networks is to analyze these systems in the so-called ‘“heavy traffic
limit.”” In this approach various processes associated with the conventional
queueing network are shown to converge (after an appropriate scaling) to a
diffusion process as the traffic intensity at each station in the network
approaches one. For open queueing networks, certain processes such as queue
length and workload level have been shown to converge to a multidimensional
diffusion process called a reflected Brownian motion (RBM) in an orthant.
The interested reader is referred to Harrison and Reiman [15] for a rigorous
definition of RBM in an orthant.

Although the method of heavy traffic analysis has been applied successfully
to conventional open queueing networks [8, 14, 25, 27, 28], not much progress
has been reported regarding its applicability to networks with fork and join
contructs [12]. A recent work by Varma [30] offered a heavy traffic analysis of
fork-join networks. Varma was able to show weak convergence for certain
processes of interest; however, he was unable to characterize the limiting
processes in a useful way. His results reveal that the limiting processes can be
expressed via complex functions of a multidimensional Brownian motion, but
these mappings are never explicitly defined.

Although several of the results discussed here were also obtained indepen-
dently by Varma, an important contribution of this paper, which does not
appear in Varma’s work, is the characterization of various limiting processes
in terms of a certain reflected Brownian motion whose state space is a
polyhedral cone in the nonnegative orthant. In particular, the total job count
process is characterized in the limit as a J-dimensional RBM, where J is the
number of processing stations in the network. In addition, the limiting work-

PROCESSING NETWORKS 33

load process is shown to be a simple transformation of the job count process;
this transformation can be interpreted naturally in terms of the original
processing network. Finally, the heavy traffic limit of the throughput time
process is expressed in terms of workload levels and processing times via the
“longest path functional” of classical PERT /CPM analysis.

As the results in Nguyen [24] indicate, the characterization of the limiting
processes as functions of a multidimensional RBM enables steady-state analy-
sis of these processes. Conditions can be established for the limiting processes
to have stationary distributions. Furthermore, algorithms can be developed
that numerically solve for these distributions, from which one can obtain
approximate performance measures. The success of the characterization relies
heavily on identifying the correct representations for the processes of interest,
and the next two sections will be devoted to defining these processes and
developing the representations.

1.3. Preliminaries. The results obtained in this paper, which involve con-
vergence of normalized stochastic processes to a limit process, derive from the
theory of weak convergence of probability measures on metric spaces. In the
setting of this paper, the metric space is D’[0, 1], the r-dimensional product
space of right continuous functions on [0, 1] that have left limits, endowed with
the Skorohod topology. We denote by p and d the uniform metric and
Skorohod metric, respectively. The choice of [0, 1] as a time interval is merely a
matter of standardization; furthermore, extension to the half line [0, «) can be
easily handled [31]. Throughout the paper weak convergence is denoted by = .
The standard reference for weak convergence is Billingsley [6].

Let D’, denote the set of x € D" which satisfy x(0) € R’,. We will denote
by D, the set of elements ¢ in D that are nondecreasing and satisfy 0 <
¢(t) < 1; that is, D, is the set of time transformations on [0, 1]. Next, for ~ a
measurable mapping, let D, be the set of discontinuities of .

In each of our heavy traffic limit theorems, the weak limit obtained is a
reflected Brownian motion whose state space is a polyhedral cone in the
nonnegative orthant. A brief explanation of how such a process behaves will be
given in Section 5. For a more detailed description of multidimensional RBM
see the works by Harrison and Reiman [15] and Harrison and Williams
[16, 17]. For the special case of RBM’s of the form considered in this paper,
readers should refer to Nguyen [24]. A Brownian motion process having drift
vector 8 and covariance matrix I' will be denoted as (8, ')BM; likewise, a
reflected Brownian motion with these drift and covariance parameters, reflec-
tion matrix R, and state space is S is denoted as (S, 6, I', R)RBM.

We end this section with a few words regarding' notation. We will not
distinguish between the writing of vectors and scalars. Unless otherwise

_stated, a vector is always taken to be a column vector. The letter e is used to
denote the vector whose components are all 1’s (the dimension of the vector
should be clear from context). In addition, diag(x, ..., x,,) is used to represent
an m X m diagonal matrix whose diagonal elements are x,,..., x,,. Finally,
for x a real number, | x| denotes the integer part of x.

34 V. NGUYEN

2. Model definition. This paper is concerned with the analysis of a
homogeneous fork-join network in which jobs are routed in a feedforward,
deterministic fashion. The network is composed of ¢/ single-server stations,
indexed by j = 1, ..., J. We assume that each server works at a constant rate
of 1. The network has an input stream of homogeneous jobs and we denote by
A the average arrival rate of new jobs. The processing of each job requires the
completion of J tasks. Each task is performed at a specific single-server
processing station, and the task performed at station j is referred to as task j.
The mean service duration at station j, or equivalently, the mean completion
time of task j, is 7;. To rigorously prove our heavy traffic limit theorems, some
additional distributional assumptions are required for the interarrival and
service times. These assumptions will be stated in Section 4.

The order in which tasks are performed is specified by a given set of
precedence constraints, which may allow some tasks to be performed in
parallel and may require that others be performed sequentially. Task i is said
to be an immediate predecessor for task j if upon completing task i the job
moves immediately to station j. If such is the case, we also call j an
immediate successor of task i. The precedence relationships can be expressed
via a precedence matrix P = (P;;) defined as follows:

1, iftask { is an immediate predecessor for task j,
0, otherwise.

(21) P, = {

(Because all elements of the precedence matrix P are 0’s and 1’s, routing is
clearly deterministic.) We assume that there is a column and row permutation
of P such that the resulting matrix is strictly upper triangular; in terms of the
model, this means that we consider only systems in which tasks are not
repeated. With this restriction, one can assume without loss of generality that
the numbering of stations is such that if task i cannot be started until task j
has been completed, then i > j. Thus one can picture a job flowing through the
network in a deterministic and feedforward fashion, always moving from lower
numbered stations to higher numbered ones.

The set of immediate predecessors to station j, denoted as &(j), is defined
to be the set of stations whose departing jobs proceed directly to station j, that
is,

P(j)={ie(1,...,d}: P, =1}.

Let p(j) be the cardinality of the set Z(j), or in words, p(j) is the number of
stations whose output feeds directly into station j. Next let () be the set of
immediate successors of station j, that is,

) =lie{1,...,J): P, =1}.

. As an example, for the network-depicted in Figure 5, #(3) = {1, 2}, p(3) = 2
and (1) = {3}. It will be useful to think of new arrivals to the network as
originating from a “dummy’’ station 0, and departures from the network as
destined for a “dummy’’ station J + 1. With that interpretation in mind let us

PROCESSING NETWORKS 35

— : ; ()—

Fic. 5. A simple fork-join network.

define
A(0) = (i: 2(i) = 2},
P(J + 1) ={i: (i) = T}
and then redefine
Z(i) = {0} forie ~(0).

Thus (0) is the collection of stations to which a job proceeds immediately
(perhaps after splitting) upon arrival to the network, and (J + 1) represents
the final stage of processing. In Figure 5, #(0) = {1, 2} and &#(4) = (3}.

It will also be convenient to associate with each station j = 1,...,J a set of
p(j) different waiting rooms or ““buffers.” Each buffer associated with station
Jj corresponds to a different immediate predecessor i € (), and whenever a
service is completed at such a station i, one can think of the departing task as
entering a buffer corresponding to the pair (i, j). The task remains in the
buffer until it can be joined as necessary and then served. The total number of
buffers is K = Z}’: 1p(j), and rather than indexing buffers by (i, j) pairs, it
will be notationally convenient to index them by 2 =1,..., K. For each
station j = 1,...,J we define #&(j) as the set of buffers £ that are incident to
Jj. Thus each buffer £ € %(j) corresponds to a station i € &(j), and tasks
departing from station i enter buffer % as a preliminary to service at station j.
We let s(k) be the source of buffer k, that is, the station whose output feeds
into buffer & [if £ € ~(0), then s(k) = 0], and define the destination of buffer
k to be d(k) =j if k € #(j). For the network in Figure 5, d(4) = 3 and
s(4) = 2.

A station i € {0,1,...,J — 1} is said to be a fork node if (i) has more
than one element, and a station j € {1,..., J} is said to be a join node if ()
has more than one element (a station may be both a fork node and a join
node). At a join node a task is said to be complete or to be a unit if all of its
components have entered their respective buffers.)

We assume that tasks compete for resources at each station in a FIFO

. manner. At nodes that do not involve a joining of tasks, this simply means that
the tasks are served in the order of their arrival. At join nodes, the arrival time
of a task is defined to be the arrival time of a complete unit, or equivalently,
the arrival time of the last component of the task. Such a service discipline can

36 V. NGUYEN

be characterized as a local policy because it considers only station-level infor-
mation. The question may arise as to what effect such a policy would have at
the system level; namely, does this policy process jobs in the order of their
arrivals to the network. Because jobs are generated from one arrival stream
and all jobs have the same ‘“route” through the network, the station-level
first-come-first-serve discipline does in fact preserve the ordering of the jobs.
In other words, tasks never overtake each other, and the policy stated here is
equivalent to the global scheme of serving tasks in the order of arrival of the
associated jobs.

3. Representations for processes of interest. To state the heavy
traffic limit theorem, it is convenient to construct the basic stochastic pro-
cesses associated with a fork-join network by taking as primitive a collection of
“unitized” interarrival and service time random variables. Let (), %, P) be a
probability space on which are defined sequences of random variables {u (i),
i >1}and {v;(i),i > 1}, j = 1,...,J, where u(i) and v,(i) are strictly positive
with unit mean. As will be explained in the next section, we require very weak
assumptions regarding the joint distribution of these J + 1 sequences of
unitized variables. However, readers may find it helpful to think in terms of
the concrete case where each is a sequence of i.i.d. random variables and the
J + 1 sequences are mutually independent. From these sequences, the interar-
rival times and the service times for the network are constructed by setting the
interarrival time for the ith job to be A ~'u(i), and its service time at station j
to be 7;v,(i). Recall that A is the average arrival rate for new jobs and 7; is the
mean service time at station j.

To construct the external arrival process generated by the normalized
interarrival times {u(i): i > 1}, set ©(0) = 0 and define

k
N(t) =max{k: Y A 'u(i) <t).
i=0
For j=1,...,d, let Vi(¢) be the partial sums process associated with the
service times at station j,

[¢]
V() = ¥ 70,(0)
i=1

and set
(3.1) L;(t) = V,(N(t)) = 7jv;(1) + -+ +7;0;,(N(t)).

The process L j(t) is called the total workload input process for station j; it is
the sum of all service times at station j for customers or jobs that enter the

, network during [0, ¢]. Note that L (¢) includes service times corresponding to
services that may not be completed, or perhaps even started, until after time ¢.
Set

(3.2) £;(8) =L;(¢) — ¢

PROCESSING NETWORKS 37

because ¢ is the potential amount of work that can be processed in ¢ units of
time, £;(¢) is the difference between the workload input and the potential
workload output, and for this reason it is called the total workload netflow
process at station j. The vector processes V, L and ¢ are then defined in the
natural way.

Let us choose an “external” station j € #(0), fixing j until further notice.
Set A (¢) = N(¢) and for k € #(j) let A,(¢) = N(?). [In this case (/) has
exactly one element.] Next let M(¢) = L (¢) and X;(¢) = £,(¢). Because exter-
nal arrivals enter station j, A j(t) is the number of jobs that have actually
arrived to station j by time ¢, and A,(¢) may be interpreted as the number of
tasks that have entered buffer £ by time ¢. Similarly M;(¢) is the amount of
work that has arrived at station j in [0,¢] and X;(#) is the corresponding
netflow process.

We now claim that there exist unique processes W; and I; which simultane-
ously satisfy the following three properties:

(3.3) Wi(t) =X;(t) + I,(¢) =0 forall > 0;
(3.4) I;(-) is continuous and nondecreasing with I;(0) = 0;
(3.5) I,(-) increases only at times ¢ when W;(¢) = 0.

That (3.3)-(3.5) uniquely define W; and I; comes from Section 2.2 of [13];
furthermore, I; is given by

Ij(#) = - inf {Xj(s)}‘

One interprets I; as the cumulative idleness process for server j and W; as the
immediate workload process at station j. That is, W;(¢) corresponds to the sum
of the impending service times for all jobs that are present in buffers incident
to j at time ¢, plus the remaining service time of any task that may be in
service. These representations of unfinished work and idleness are standard in
the literature of queueing theory (cf. Benes [5)).

To define the counting process associated with the sequence of service times

at station j, set v;(0) = 0 and define

S(t)—max{k E v()<t}

Let B,(¢) =t — I,(¢) be the amount of time server j spent working in [0, ¢],
and define

(3.6) D,(¢) = 5,(B,(t)),
(3.7) @r(2) = Ax(f) — Dy(2) = 0.

Equation (3.6) identifies D;(¢) as the number of services completed at station Jj
in [0,], or equivalently, the number of tasks that have departed from the
station by time ¢. It then follows from the previous interpretations that @,(¢)

38 V. NGUYEN

represents the queue length process at buffer £ at time ¢ (the number of tasks
waiting in buffer & plus any job being serviced at station j).

In an inductive manner, these definitions can be extended to all stations in
the network. Consider a station j such that all immediate predecessor stations
have been ‘“treated,” that is, if i € (), then for each I € %(i) the processes
X,(#), W(t), I(t), D,(¢) and Q,(¢) have been defined. For such a station j and
each buffer & € #(j) one defines the arrival process to be the departure
process from its source,

(3.8) Au(t) = Ds(k)(t)'
Next, set
A.(t)= min A,(1).
J() ke%‘(lj) (%)

One can interpret A ,(¢) as the number of complete jobs or “units” that have
arrived to station j by time #. We take the convention that work is associated
with job units so that incomplete jobs present no work to the server. With
such an accounting procedure the immediate workload input process and
immediate netflow process for station j are defined, respectively, via

M,(t) = Vi(A;(8)) = 7;[v;(1) + -+ +u;(A,(0)]
and
X;(t) =M;(t) —t.

The workload process W;, the idleness process I;, the departure process D;
and the queue length processes @, are then defined exactly as in (3.3)-(3.7).
The vector processes A, A, X, W, I, @ and D are then defined in the obvious
manner.

Let

(3.9 U(t) = &(¢t) +1(¢).

The process U,(¢) represents the amount of unfinished work destined for
station j that is present anywhere in the system at time ¢. In particular, U;(¢)
may contain work corresponding to jobs which at time ¢ are still queued at
stations preceding j. Hence, U; could alternatively be called the total workload
process for station j. Similarly, let

(3.10) Z(t) = eN(t) — D(t),

where e is the vector of 1’s. The process Z,(¢) represents the total number of
jobs in the system at time ¢ that still need service at station j, and is called the
total job count process. Suppose that i € () is a station preceding j, and %
is the buffer corresponding to the (i, j) pair [i.e., s(k) = i]. It is clear that the
total job count for station j equals the sum of the total job count for station i
and the number of tasks found in buffer k. In fact, it can be shown from (3.7)
and (3.8) that for each k& € #(j),

(3.11) Z;(2) = Qu(?) + Z;(2).

PROCESSING NETWORKS 39

The final task at hand is to define the throughput time, or sojourn time, of a
job, which is the length of time between the job’s arrival and its subsequent
departure from the system. Note that this time interval includes both waiting
times and service times. Let T'(¢) be the throughput time of the next job to
enter the network after time ¢. A formal definition will be developed via
inductive definition of intermediate processes T(?),...,T,(¢), where Ti(¢) is
interpreted as the throughput time through station j, which is the time
interval between the arrival epoch of a job and when it completes service at
station j.

Let ®(¢) be the random process defined by

®(¢) = A" 1u(1) + - +A"u(N(E)) + A~ (N() + 1).

One interprets ®(¢) as the arrival epoch of the next job to enter the network
after time ¢. For each station j € #(0), let

®,(t) = B(t),
Ty(2) = W;(®,(2))-

Because station j € .#(0) is among the first stations to be visited, ®;(¢) is the
arrival time of this job to station j. Furthermore, because jobs are served in a
first-in-first-out manner, the amount of time this job must spend at station j
is precisely the amount of work found at station j immediately after arrival
(which includes the service time associated with the new arrival). Thus T)(¢) is
the total sojourn time of the job through station .

For other stations in the network, the random processes ®,(¢) and T(¢) are
inductively defined as follows. Suppose that j is a station such that T,(¢) has
been defined for each i € £(j), and set

(3.12) ®,(¢) = ®(¢) + max Ty(T),
ieZ(j)
(3.13) T(t) = max Ti(t) + W;(®,(¢)).
e ()

Recall that the arrival time of a job is taken to be the time at which its last
component arrives. (If j were a join node, there could be a gap between arrival
times of the various components of the job.) Thus, max, . gz, T,(¢) is the
amount of time that elapses until the job “arrives” at station j and ®,(¢) is
precisely its time of arrival. Hence T(¢) corresponds to the throughput time
through station j. Setting

T(t) = max {T;(t)},

() jega(JH){ Q)

one can conclude that T'(¢) is the total sojourn time corresponding to the next
job to enter the system after time ¢.

4. A sequence of systems in heavy traffic. The analytical methods
developed here apply to systems that satisfy conditions of ‘“heavy traffic.” The

40 V.NGUYEN

traffic intensity at station j is defined to be
(4.1) pj = AT;.

The system is said to be stable if p; < 1 for j = 1,...,dJ, and it is said to be in
heavy traffic if p; is “approximately”” 1 for each j. The precise formulation of
our heavy traffic limit theorem requires the construction of a ‘‘sequence of
systems,” indexed by n, whose corresponding traffic intensities p{* converge
to 1 for all j.

Recall that the interarrival times and service times for the network are
defined in terms of the basic sequences of unitized random variables
{u@@): 1> 1}, {v;(i): i =1}, j=1,...,J. To construct a sequence of fork-join
networks we further require sequences of positive constants {A"), n > 1},
{ri, n =21}, j=1,...,J. In the nth system of the sequence, the interarrival
times and service times are taken to be u(i) = u(i)/A™ and v{"(i) =
7{™v;(i), respectively. Thus for the nth system, A is the arrival rate of new
jobs and Tj(") is the mean service time at station j. Define the traffic intensities
p{™ as in (4.1) using A and r{™ in place of A and ;.

The convention here is to denote a parameter or a process associated with
the nth system by the superscript ‘“(n).” For example, N refers to the
external arrival process in the nth system. For j=1,...,Jand 2 =1,..., K,
define the centered processes

N™(¢) = N®(t) — A™¢, Vj(")(t) = V(|t]) — =M|¢t],
AP(t) = AP(2) =A™t AP(t) = AP(2) - XMt

A A _1
L(t) = Ly(¢) = e, S{W(2) = SM(t) — (14™) ¢

The results in this paper apply to processes that have been ‘“scaled.”” Let K™
denote a “generic”’ process associated with the nth system. The scaled version
of the process K, denoted as K", is defined via

K"(t) = n"Y2K™(nt).

Hereafter, when we say a ‘“‘scaled” process and write the process with a
superscript “n,” we mean a process whose space and time dimensions have
been scaled in the manner specified above.

It is assumed that the following conditions hold for the input processes of
the network. First, the arrival rates and mean service times converge to finite
constants,

AM > A and Tj(n)—)Tj, i=1,...,d.

This implies that p{ — p, = A;7; for all j. Furthermore, it is assumed that
there exists a J-vector 6 = (6,,...,0;) such that for each j=1,...,d,
—® < §; <®and

(4.2) n?(p{ — 1) > 0, asn - o.

Condition (4.2) is called the heavy traffic condition. It requires not only that

PROCESSING NETWORKS 41

p; = 1 at each station, but also that the rate of convergence is ‘““sufficiently
fast” and is uniform for all stations. Finally, it is assumed that there is a
J X J covariance matrix I' such that the following functional central limit
theorem holds as n — o:

(4.3) (N™, V", L") = (N* V* L*), where L* is a (0,T) Brownian
motion and N*,V* are also Brownian motions with zero drift.

To explore the implications and restrictions of assumption (4.3), write the
scaled netflow process (3.2) as

E1(t) = Lp(t) +n'/?(pl™ — 1)t.

One can conclude from assumptions (4.2) and (4.3) that

(4.4) (N7, ¢") = (N*¢*), where £ is (6, T)BM.
Moreover, it follows from (3.1), (3.2) and assumption (4.3) that
(4.5) £5(2) = V#(At) + ;N7 (¢) + 0t

Next, recall that S; is the counting process associated with the partial sums
process V,. From Theorem 1 of [19], (4.3) implies that

(4.6) S* = S* where V¥(t) = —73/28*(¢).
Finally, consider the special case in which {u(i), i > 1} and {v,(i), i > 1},
J=1,...,dJ, are mutually independent sequences of ii.d. random variables

such that u(i) and v;(i) have squared coefficients of variation c¢2 and cZ;,
respectively (the squared coefficient of variation of a random variable is defined
to be its variance divided by the square of its mean). Then N is a renewal
process with rate A™), and a simple application of the functional central limit
theorem for renewal processes [6] proves that N" = N*, where N* is
(0, Ac2)BM. Because Lg”) is a compound renewal process, L" converges to
(0, I)BM by Theorem 2.1 of [32]. In particular, the covariance matrix is of the
form

2(.2 2 R
(4.7) o)m-j(csj-l-ca), 1=7,
Y)\Tichﬁ, 1 #].

To summarize, the assumptions needed for the analysis are of two types.
First, the heavy traffic condition (4.2) must hold. Second, the sequences of
interarrival times and services times must jointly satisfy a functional central
limit theorem. The latter assumption is a fairly weak constraint on the
distributions of interarrival and service times. Convergence can be shown to
hold even when these stochastic quantities are not i.i.d. Several generaliza-
tions have been made to the basic functional central limit theorems mentioned
here, with the aim of allowing some dependencies and perhaps mild nonsta-
tionary in the quantities of interest. For a more detailed discussion of the
available extensions, we refer the reader to Glynn [11].

42 V. NGUYEN

5. The heavy traffic limit theorem. We now state our main results,
which say that the limits of various scaled stochastic processes associated with
the fork-join network can all be described in terms of a certain reflected
Brownian motion whose state space is a polyhedral cone in the nonnegative
orthant.

Recall that d(%k) denotes the station corresponding to the destination of
buffer %, while s(k) is the station corresponding to its source. Let A be a
K X J matrix whose elements A,; (k =1,...,K and j =1,...,J) are given
by

1, if j=d(k),
(5.1) Ayi=1{—-1, ifj=s(k),

0, otherwise.
Using the matrix A, we now define S to be the following polyhedral cone in
J-dimensional space:
(5.2) S ={xeR’: Ax > 0}.
It can be verified that S is contained in the nonnegative orthant, and that the
cone has a total of K distinct faces. Define the kth face of S to be

F,={xe8S:A,x=0},

where A, is the kth row of the matrix A.

THEOREM 5.1. Suppose that assumptions (4.2) and (4.3) hold. Then
(U, Z2",Q", W I") = (&,U*,Z%,Q*,W*, I%),
where foreachj=1,...,Jand k € B(j):

(5.3) &*isa (0,I') Brownian motion;
(5.4) U* = ¢* + 1%

(5.5) ,ZF =UY;

(5.6) Qi =Zf —Z3, Z5(t) =0;
(5.7) Qf(t) =0 forallt>0;

(5.9) If(-) is continuous and nondecreasing with I¥(0) = 0; and

I () increases only at times t when

5.10 .
() Qi (t) = 0 foratleastonek € #(j).

Observe that properties (5.4), (5.6), (5.7) and (5.9) simply restate (3.9),
(3.11), (8.7) and (3.4), respectively. In other words, those characterizations of
the limit processes are ‘“‘exact” in the setting of the original model. Property
(5.10) is also a restatement of (3.5). One can interpret the workload process

PROCESSING NETWORKS 43

W;(t) as the amount of work associated with ‘“complete’ jobs at station j.
Hence server j has no work [W;(¢) = 0] if one of the incident buffers to station
J has no customers, that is, Qk(t) = 0 for some k € #(j).

Property (5.3) is a direct result of assumptions (4.2) and (4.3), as demon-
strated in (4.4). Properties (5.5) and (5.8) are approximations of the original
model and may be interpreted as a law-of-large-number effect. One can think
of 7, as the long-run average amount of work associated with each job of
server j. In heavy traffic the number of jobs waiting to be served tends to
infinity so one would expect the average relationship to hold under some
appropriate scaling. It turns out that in the heavy traffic scaling, this long-run
average is in fact observed at every time point, as demonstrated by (5.5) and
(5.8).

Using the characterization of @7 in (5.6), property (5.10) may be equiva-
lently stated as

I*(-) increases only at times ¢ when A,Z*(¢) = 0 for at
least one k € %(j).

Coupling the above statement with (5.4), (5.5) and (5.9), one has the following
set of properties for the vector of total job count processes Z*:

(5.11) Z¥ =7 Y (&F + 1),

(5.12) I*(-) is continuous and nondecreasing with I*(0) = 0,

(5.13) I¥(-) increases only at times ¢ when |
A,Z*(¢) = 0 for at least one £ € Z(j).

Setting

(514) R = diag(r{%,...,7;'), w=R6 and Q=RIR,

statements (5.3) and (5.11)-(5.13) collectively identify Z* as a J-dimensional
(S, u, Q, R)RBM.

A rigorous treatment of the RBM can be found in [24]; we only briefly
describe its behavior here. The RBM Z* is constrained to lie in the state space
S. In the interior of the polyhedral cone S, Z* behaves as a J-dimensional
Brownian motion with drift vector u and covariance matrix (. When the
process hits a boundary face F,, k € #(j), it is instantaneously ‘pushed
back’’ into the interior of S in the direction R, the jth column of R. One can
think of the behavior at the boundary as an instantaneous ‘‘displacement’ in a
direction characteristic of the boundary surface struck. The amount of pushing
is the minimum amount needed in order to keep the process inside the state
space S.

In previous analyses of traditional queueing networks, the natural state

. space of the limiting processes is.the nonnegative orthant. By linear transfor-
mations, the class of limiting processes is equivalent to the class of RBM’s in
simple polyhedral domains. (A d-dimensional polyhedron is simple if at most d

of its faces intersect.) The RBM’s that arise in this study are novel in that the

44 V.NGUYEN

corresponding state space is typically a nonsimple polyhedral region (see
Section 7 for an example). Specifically, these RBM’s cannot be mapped into the
well studied class of RBM’s in the orthant.

THEOREM 5.2. Under the assumptions of (4.2) and (4.3),
(T"Tr,...,Tr) = (T*,TF, ..., T,

where
T*= max T/,
JEAJI+1)
T = ‘max TF + W7, TE =0,
ieP(j)

and W;* is defined as in Theorem 5.1.

It is important that the proposed method first derives an approximate joint
distribution for workload levels at the stations of a fork-join network. Methods
that are presently used for approximate analysis of conventional network
models, such as Whitt’s Queueing Network Analyzer [33], treat congestion
levels at the various stations as if they were independent (this is the meaning
of the term ‘“decomposition approximation”), and produce as output only
estimates of the average workload levels or average customer delays at various
stations. This approach is completely unsatisfactory for fork-join networks,
where the whole focus is on throughput time. Our ultimate output is an
approximation for the entire distribution of throughput times experienced by
arriving jobs, taking account of the dependencies that exist among workload
levels at various stations, and of the complicated longest-path functional that
maps workload levels into total throughput time.

To be more specific, one has the following representation for the throughput
time process:

(5.15) T*(1) = L(W*(1)),

where I: C/ — C is the familiar ‘“longest-path functional” associated with
critical path analysis of PERT/CPM. This is an example of the “snapshot
principle” first enunciated by Reiman [26]. In the heavy traffic scaling, the
fluctuation in workload levels is negligible relative to the length of time that a
job spends in the system. Hence one can take a ‘“snapshot’ of the system at
the time of the job’s arrival to represent its state during the job’s entire
sojourn. Thus, sample path by sample path, the throughput time is calculated
via classical critical path analysis, with sums of workload levels taking the
place of (traditional) task times. In fact, expression (5.15) brings it all back to
the starting point, with a “new take” on parallel processing: With the correct
interpretation of “task times” (which turns out to be waiting times), the
"analysis of a processing network with parallel and sequential tasks reduces to a
sample path by sample path analysis of a PERT /CPM network; the results of
this paper provide the underlying probabilistic structures necessary to com-
plete that analysis.

PROCESSING NETWORKS 45

6. Proof of the heavy traffic limit theorem. It will be convenient to
assume that the limiting arrival rate satisfies A < 1. Because this simply
amounts to choosing an appropriate time scale, there is no loss of generality.
With this assumption, on the other hand, theorems may be developed in
D0, 1] without intermediate rescaling. Furthermore, since the assumption
implies A < 1 for all sufficiently large n, one can also assume for purposes of
establishing limit results as n — « that A < 1 for all n. The proofs that will
be presented here are modeled after those of Peterson [25].

6.1. Proof of Theorem 5.1. The proof is a straightforward exercise in
induction with the help of the continuous mapping theorem. The induction is
on d(j), the “depth” of station j, defined in the following way. For j € .(0),
set d(j) = 1. Next, consider a station j such that d(i) has been defined for all
stations in its predecessor set Z(j). The depth of station j is given by

d(j) = max{d(i):i € £(j)} + 1.

To begin, consider .#(0), the collection of stations with depth 1. Let us choose
a station j € (0) and denote by k € #(j) its one incident buffer. From
Sections 3 and 4, the scaled workload process at station j is defined by the
following three statements:

(6.1) Wr=¢r+ 1020,
(6.2) I*() is increasing and continuous with 1'(0) = 0,
(6.3) I7*(-) increases only at times ¢ when W;"(¢) = 0.

Furthermore, (6.1)-(6.3) and Proposition 2.2.3 in Harrison [13] imply the
elegant representations

It = ¢(7)(0) = - inf {&7(s))
W (8) = w(&7)(t) = &7(8) + &(£7)(1),

where both ¢, : D, — D are continuous mappings under the metric p. Let
Vln = (é-n’ ijn’ Ijn,Q]'el, Zjna (]jn’ d(.]) = 1’ k € ‘%(J))

ProposiTioN 6.1. V" = Vi = (¢* W*, I*,Qf, Z*,U*, d(j) =1, k€

J 27
#(j)). Here, £* is a (8,T) Brownian motion. Furthermore, for each j with

d(j) = 1 and k € %()),
WH=¢8+1F20,
I7(-) is continuous and nondecreasing with I*(0) = 0,
I7(-) increases only at times t when W*(¢t) = 0,
TJQ;: = WC'*’
Z7 = &5,

* *
i =1,25.

46 V. NGUYEN

Proor. Let x = (x,,...,x,) € DY, y € D, and consider the mapping de-
fined by

h(x,y) = (x,y, (ﬁ(xj)’ ¢(xj)’d(j) = 1)'

Since ¢, ¢: D, — D are continuous mappings under the metric p, it follows
that P{(¢*, N*) € D,} = 0 and thus by the continuous mapping theorem
(Theorem 5.1, [6]),

h(em, N™) = (&m, ", W, I7,d(j) = 1)
= (&, N*) = (& N*W* 1*,d(j) =1),
where W* = ¢(X) and I = ¢(X7¥).

Now c0n31der the time transformation Y(t) = t + W(¢). Recall that the
only “source” of input to station j € (0) is the external arrival stream, so
tasks do not need to be joined prior to service at j. This implies that at time
Y;(¢) all current work in buffer & € #(j) will be processed and all current
tasks in the buffer will have departed from the station. Hence D{"(Y")(¢)) =
AQY(¢) and (3.7) reduces to
(6:5) QY1) = AP (Y1) - AP(2).

In words, (6.5) states that tasks found in buffer & at time Y;(#) are precisely
those tasks that have arrived since time ¢. Define 1?']" and 17j” as

Yr(t) = n~ VY M(nt) — nt) = W(¢),
Yr(t) =n Y (Y (nt)) = ¢ + Wr(2),
respectively, where Wj”(t) = n"'W(nt) = n~/?*W;*(¢). Then,
QT (1)) = n (AP (Y™ (nt)) - AP(nt))

(6.4)

(6.6) o R R
= Ay (T2(1)) — An(t) + AMY(2).

Because W = W*, Theorem 5.5 of [6] implies that W}” = 7 where n(¢) = 0
Applying the continuous mapping theorem, one arrives at
1) (en, Nm, W, 17,97, %7, d()) = 1)

= (& N*, W, I, Y, Y5, d()) = 1),

where Y* = W* and Y* =y with x(¢) = ¢. Recall that for & € #(j) and
jE /(O) A” N™ To apply the random time change theorem (Section 17,
[6D), let

an(t) = Yr(e), ifYr(e) <1
’ t, otherwise.

Then, a} = x and consequently A” oa? = N*oy. Note that A” °a? and
A" Y" have the same value at ¢ 1f a”(t) = "(t) the probablhty of wh1ch
goes to 1 as n tends to infinity. Thus applylng the continuous mapping

PROCESSING NETWORKS 47

theorem to the first two terms of (6.6), one has
(6.8) AroYr—Ar = N*ox—N*=nq.
It then easily follows as a consequence of (6.6)-(6.8) that

gn’Nn,W'n’I.n’Qno?ln’dj =1ake‘@]
(69) (I Qo Y, d(J) ()
= (& N*W* IF,Qf,d(j) = 1, k € 4(j)),

where @} = AW*. In heavy traffic, 1 = p; = Ar;, so the limiting process @} can
also be expressed via QF = 7, 'W/*.

Since P{W;* € C} = 1, the inverse random time change theorem (Theorem
A.1) may be applied to show that for each j € #(0) and k& € #(j),

d(QF,Q;-Y") = o.

[The fact that I_C” is not bounded by 1 can be resolved by the same truncation
argument as in the proof leading up to (6.8).] Thus, by Theorem 4.1 of [6],

(6.10) € = Q.

It remains to establish convergence for the total workload and total job
count processes. For each j € #(0) and k € #(j),

Zp(t) =N"(t) — D (¢) = Ak(¢) — D' (¢) = Qr(¢)
and
U (t) = €1(8) + I(£) = W(2).

Hence it follows from (6.9) and (6.10) that Z!' = Z} and U;" = U}*, where
Zr =@Qf, U*=W* =12 and that the convergence is joint with
(€™, W 1, Qp, d(j) = 1, k € &(j)). Hence the proposition is proved. O

What remains is simply an inductive argument to extend these results to a
feedforward fork-join network. Define the composite vector processes

V= (N en, wr 1, Qp, 2, Up, d(j) <d, k € B()))
and

Vi=(N* & W15 QF, 2, Ux, d(j) <d, k € B(j)).
Suppose that joint convergence has been established for V}, that is,
. (6.11) vV = V¥

and the limiting processes (&, W, 1F,QF, ZF, U*) satisfy the conditions of
Theorem 5.1 for all d(j) < d and k& € ().

48 V. NGUYEN

PRrOPOSITION 6.2. V., = Vi, . Furthermore, for eachjwith d(j) <d + 1
and k € B(j), the following hold for all t > 0:

(6.12) W*(t) = Xj(¢) +I}(¢) 20,

(6.13). X (t) =V (a) + 7,A%(¢) + 62,

(6.14) I#(-) is continuous and increasing with I} (0) = 0,

(6.15) I¥(-) increases only at times t when W;*(¢) = 0,

(6.16) Qi (t) = Ai(t) — SF(e) + 77 'IF(¢) + 77105t

(6.17) Z3 (1) = QE(t) + Ziu(0),

(6.18) U(t) = & (8) + I7(2),

where A% = N* = Z¥,,, A% =min, 4, A% and ¢* is a (6,I) Brownian
motion.

ProOF. Let us choose a station j of depth d + 1. Because A’,:(t) = N™@®)

= Z(), A (2) = min, ¢ g A7(¢) and d(s(k)) < d for each k € %(j), one

can apply the continuous mapping theorem to the induction hypothesis (6.11)
to obtain

vr A An d(j)=d+1,ke B(j
(6.19) (Vi A, An, () (/)

where A%(t) = N*(t) — Z%,(t) and A%(¢) = min, ¢ 4.;, A}(t). Define A =
‘1A(”)(nt) the scaled immediate netflow process can be written as

Xr(t) = n—l/z(Vj(n)(A(Jn)(nt)) — 7MAG(nt))
+ V(AP (nt) — XPnt) + n'/2(p0 — 1)t
= (7 o&s)(2) + 7fmAL(2) + n2(pf® ~ 1)t

From Theorem 5.5 of [6], the convergence of A” in (6.19) implies that A" =f,
where f(¢) = At. The continuous mapping theorem together with the random
time change theorem and the joint convergence of (6.19) yield
(6.20) Xr = Xr=(V¥o f)(t) + 7,A%(t) + 65t

J

where the convergence is understood to be joint with the vector in (6.19) and

- with all j such that d(j) = d + 1. [Again, the fact that A"() may exceed 1 can
be handled by a truncation argument as in the proof of Propos1t10n 6.1.]

The scaled workload and idleness processes for station j are expressed as

= y(X}), I = $(X]), and the scaled queue length process at each buffer

PROCESSING NETWORKS 49

k € #(j) is given by

1 (n)
(n)B (nt)
7;

Qr(2) = n V*(AY(nt) — X¥nt) — n=2| SI(B(nt)) —

1
T(ﬂ)n"l/z(nt - B}"’(nt)) +
J

+ 1/2(p§n) 1)t

(n)
7

n 1 1/2 (n) _
A1) - (B (t)) o) I(2) + T (F’J 1)t,
J J
where B7(t) = n"'B{nt) = t — n"'I{"(nt). Because ¢ and ¢ are continu-
ous mappings,
(X, W Ir,d(j) =d +1) = (XFWrIFd(j)=d+1),

L A s L)oo
where W* = ¢(X¥) and I} = ¢(X}). It then follows that EJ’-’ = y with
x(#) =t, and again applying the continuous mapping theorem, one obtains
Q7 = @ with
Qi (t) = A%(t) — Sjf(¢) + 7' (t) + 770, ke B(j).

It remains to prove the convergence results for the total job count and total
workload processes, but this is straightforward because U*(t) = ¢/(¢) + 17(¢)
and Z(¢) = Qy(#) + Z},(t) for each k € %(j). One can thus use the contin-
uous mapping theorem to conclude that V7 , = Vj ,, where for each j,
U¥ = ¢f + I} and for each k € #(j), ZF = Qf + Z,;,. O

Substituting (6.16) in (6.17) and noting that A}(z) = N*(¢) — Z},(¢), one
can express the vector of total headcount processes as

ZF(t) = A%(t) — Sf(t) + 7'M (8) + 7710, + Z%,(¢)

(6.21) * * —17% -1
=N*(t) = Sf(t) + 7, I (t) + 1, °0;¢.

Substituting the expression for ¢* (4.5) into (6.18), one obtains
(6.22) UF(t) = 7, N*(t) + VF(At) + I*(t) + 0,t.
With the characterization of S* and V* given in (4.6), one can conclude from
(6.21) and (6.22) that
(6.23) ,ZF(t) = U*(¢).
Finally, note that

min t min A*(t) — S*¥(t) + 77U*(t) + r710.¢
(6.24) kEQ(J)Qk()) #(8) = 57(0) + o L7 (E) + 77

= A% (t) — SF(t) + 7 'L () + 7710t

50 V.NGUYEN

Comparing (6.24) with (6.12) and (6.13) and applying (4.6), one arrives at

(6.25) Tj(k?%?j) Q;;(t)) — W (1)

Theorem 5.1 is thus proved. O

6.2. Proof of Theorem 5.2. We now turn to the proof of Theorem 5.2,
which characterizes the distribution of the limit sojourn time process. Let o
and @ be scaled processes defined as ®"(¢) = n~'®™(nt) and P}(t) =
n=1®(M(ne). :

LEMMA 6.3. (W™, ®,T" je A0)= (W*, x,;, T, j € #(0), where for

’ J? g

each j € A(0), x,(t) =tand T} = W*.

Proor. Recall that T;(¢) = WJ-”(C_I)J-”(t)). The process ®(¢) is bounded by

t<PM(t) <t + max u™(i).
1<i<N™(@#)+1

Let r™(t) = max, _; . yogy4q @) and 77(¢) = n~'r"X(nt). From Lemma
3.3 of [20], [IF"]l = supy ., 1/F"(®)] = 0. Letting x be the identity mapping
x(®) = t, it follows that

d(@”,,\/) < p(@",x) <|7F*l = 0,

so ®" = y. Since ™ = ®™ for each j € (0) and x, = x are constant
elements of D, one has the following joint convergence as a simple conse-
quence of Theorem 5.1:

(6.26) (Wr, @, j e #(0)) = (W*x;, i€ A0).

Because W* and y; are continuous with probability 1, Theorem 5.5 of [6]
applies to give

(Wr, @, Wredr, jeA(0)) = (W*x,W*je.A(0),
hence
(W op, 1, j e A(0) = (W*x,, T j € #(0),
where T/ = W*. O
By an inductive argument we can now extend these results to the remaining
stations in the network. Suppose that for depth level d, one has established
(Wn, @, T, d(j) <d) = (W*x;, T d(j) <d),

where T = max; . »;, T;* + W;*. Let us consider stations j with depth d + 1.
For each of these stations, the intermediate sojourn time is given by

170 = g, 17 0) W7 (F0)

PROCESSING NETWORKS 51

where

dr(t) = d"(¢) + n~ % max T/ (t).
ie @)
From the inductive hypothesis 7" = T/* for i € Z(j), so it follows from the
continuous mapping theorem that max;. gz, T;" = max; g, I;*. Conse-
quently, n~"/? max; ¢ 5;, T,* = m, where n(¢) = 0, and one has Pr = y; with
x;(t) = t. Imitating the proof of Lemma 6.3, one can show that

(W, @p, T, d(j) <d + 1) = (W*x;,T7,d(j) <d + 1),

where
TF = max T+ W*.
ie Pj)
Finally, T"(¢) = max; c s 1, I;"(t), hence it follows from the continuous
mapping theorem that 7" = T*, where

T* = max T}
jeFPJ+1)

7. Approximating a fork-join network with RBM. For practical pur-
poses, the following question is obviously key: How does one approximate a
fork-join network using results from the previous section? Theorems 5.1 and
5.2 state that for large n the vector of processes (Z",W",Q",T") is well
approximated by (Z*, W*, @* T*), where Z* is (S,pu,Q, R)RBM, and
W*,Q* T* are simple transformations of Z*.

Take a fork-join network in heavy traffic with J single-server stations; for
ease of exposition let us consider only systems whose interarrival times and
service times are statistically independent sequences of i.i.d. random variables.
As in Section 2, we denote by A the average arrival rate of new jobs and by ¢2
the SCV of interarrival times. Processing times at station j have mean 7; and
SCV cfj. Precedence requirements for the execution of tasks are expressed in
terms of a precedence matrix P. To approximate this fork-join network, choose
n such that n'/%(1 —p;) is of order 1 for each processing station j. For
example, one may choose n = 100 when p; is near 0.09 for each station j.
Viewing n as fixed, the scaled processes (Z", W", @", T ™) can be approximated
by the processes (Z*, W*, @*, T*). To obtain an approximation for the original
processes (Z, W, Q, T) associated with the network model, one simply ‘“‘un-
does” the scaling. The reader can verify that one arrives at (Z° W° Q°,T°) as
the appropriate approximation for (Z, W, @, T), where Z° is (S, u°, Q, R)RBM
and W9, Q° T are defined in terms of Z° as in Theorems 5.1 and 5.2. The
parameters of the RBM (S, u% Q, R), are computed from the data of the
* network model via ’

n’=R(e—p)
(here e denotes the J vector of 1’s), and (4.1), (4.7), (5.1), (5.2) and (5.14).

52 V. NGUYEN

Fic. 6. A polyhedral cone.

As an example, consider the network in Figure 5. The parameters of the
corresponding RBM are given by u = R(e — p),) = RT'R’, with

pj=ATja

R = diag('rfl, 751, 7'3_1),

2 2 . .
/\Tj(csj+c§), i=j,

L= 2 -
AT;TC, 1#].

The state space associated with this process, shown in Figure 6, is described by
S ={x € ®3 Ax > 0} with

1 0 0

| o 10
A=l_1 o 1

0 -1 1

The resulting RBM, like all RBM’s that arise as heavy traffic limits of
fork-join networks, differ from those associated with heavy traffic limits of
traditional queueing networks in that the state space is a nonsimple polyhedral
region. It turns out, however, that the extant analytical theory of RBM’s in the
orthant can be extended to this setting (see Nguyen [24]). Results analogous to
those in [16] regarding steady-state characteristics of the RBM can be estab-
lished. Furthermore, with minor modifications, the numerical method by Dai
and Harrison [7] for obtaining steady-state distributions of RBM in the orthant
c¢an also be applied to this setting. With this algorithm, one can compute the
steady-state distribution of the limiting RBM, from which approximate
steady-state performance measures of the processing network can be calcu-

PROCESSING NETWORKS 53

lated. Further investigation and clarification of these issues are clearly of
prime importance in future research.

APPENDIX
A. The inverse random time change theorem.

THEOREM A.1 (Inverse random time change theorem). Suppose that X,
D, ®, € D, and x is the identity function defined by x(¢) = t. If X, o ®, = X,
b, = xyand (X C}=1, then X, = X.

Proor. By Theorem 15.5 of [6], it suffices to prove convergence under the
uniform topology. Denote the uniform metric is denoted by p, and the modulus
of continuity in the uniform topology by

w(x,8) = sup |x(s) —x(t)].
|s—t|<d
For fe D and h € D, consider the following conditions: (a) p(f e h, f) > &,
®) m(foh,8) > e and(c) p(h, x) > 8. Suppose we can show that if (a) is true,
then either (b) or (¢) must be true. Then, for all n, §, ¢,

{w0:p(X,°®,,X,) >} C{o:w(X,d,,8) >¢e} U {w:p(P,, x) > 5}

Since y € C, p(®,, x) = 0. By assumption, X, o®, = X with P{X € C} = 1,
hence X, o ®, is C tight. Consequently, p(X, - ®,, X,) = 0 and by the con-
verging together theorem, X, = X.

To complete the proof, we need to show that (a) implies either (b) or (c).
First suppose that (a) is true and (b) is false, that is,

(A1) 0sup1| foh(t) —f(t)]|>e
and
(A.2) |foh(s) —foh(t)|<e, O<ts<1,ls—t<a.

These two conditions imply the existence of a #, 0 < ¢t < 1, such that h(s) # ¢
for all t —8 <s <t+84. Since h is continuous and nondecreasing, either
h(t — 8) >t or h(¢ + 8) < t. In either case,

sup |h(t) —t)[> 9,
O0<t<1

that is, p(h, y) > & and (c) is true.
Now suppose that (a) is true and (c) is false, that is, we have condition (A.1)
and ’

(A.3) |h(t) —t| <58, O0<t<1.

Fix an arbitrary ¢. Then for ¢ — 8 <s <t + 8, it must be the case that

54 V. NGUYEN

h(t — 8) < h(s) < h(¢ + 8) by the monotonicity of A. But from (A.3),
t—26 <h(t—-90)<t,
t<h(t+98)<t+5s.

Since h is continuous, there exists an s, £ — § < s < ¢ + § such that A(s) = ¢,
implying that

sup |foh(t) ~foh(s)|>e

|s—¢tl<d

by (A.1). Hence (c) is true. O

Acknowledgments. This paper is taken from the author’s Ph.D. disser-
tation, written under the supervision of J. M. Harrison. The author’s interest
in this area of research is in part due to the influence of M. I. Reiman; the
author is indebted to Dr. Reiman for many helpful discussions and clarifica-
tions. S. Varma is thanked for making available his early results on the
analysis of some similar network models. The editors’ and referees’ comments
on the first draft of this paper significantly improved its presentation. Finally,
financial support by Bell Laboratories Graduate Research Program for Women
during the author’s graduate career is gratefully acknowledged.

REFERENCES

[1] BacceLry, F. and Liu, Z. (1990). On the execution of parallel programs on multiprocessor
systems—a queueing theory approach. J. ACM 37 373-414.

[2] BacceLLy, F. and Makowskr, A. M. (1989). Queueing models for systems with synchronization
constraints. Proceedings of the IEEE 77 138-161.

[3] BacceLL, F., Makowski, A. M. and SHWARTZ, A. (1989). The fork-join queue and related
systems with synchronization constraints: stochastic ordering, approximations and
computable bounds. J. Adv. Probab. 21 629-660.

[4] BacceLLl, F., MassEy, W. A. and TowsLEY, D. (1989). Acyclic fork-join queueing networks.
J. ACM 36 615-642.

[5] BENES, V. (1963). General Stochastic Processes in the Theory of Queues. Addison-Wesley,
Reading, MA.

[6] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[7] Da1, J. G. and HARRISON, J. M. (1992). Reflected Brownian motion in an orthant: Numerical
methods for steady-state analysis. Ann. Appl. Probab. 2 65-86.

[8] Da1, J. G., NGUYEN, V. and REmMaN, M. 1. (1992). Sequential bottleneck decomposition: A
decomposition approximation for open queueing networks. Unpublished manusecript.

[9] FraTTO, L. and HaHN, S. (1984). Two parallel queues created by arrivals with two demands I.
SIAM J. Appl. Math. 44 1041-1053.

[10] FrarTo, L. and HauN, S. (1985). Two parallel queues created by arrivals with two demands
II. SIAM J. Appl. Math. 45 861-878.

[11] GLynN, P. W. (1990). Diffusion approximations. In Handbook on OR & MS 2 (D. P. Heyman
and M. J. Sobel, eds.) 145-198. North-Holland, Amsterdam.

[12] HarrisoN, J. M. (1973). Assembly-like queues. J. Appl. Probab. 10 354-367.

[13] HaRRISON, J. M. (1985). Brownian Motion and Stochastic Flow Systems. Wiley, New York.

[14] HARRISON, J. M. and NGUYEN, V. (1990). The QNET method for two-moment analysis of open
queueing networks. Queueing Systems 6 1-32.

[15] HarrisoN, J. M. and REmmaN, M. L. (1981). Reflected Brownian motion on an orthant. Ann.
Probab. 9 302-308.

PROCESSING NETWORKS 55

[16] HarrisoN, J. M. and WiLLiams, R. J. (1987). Multidimensional reflected Brownian motions
having exponential stationary distributions. Ann. Probab. 15 115-137.

[17] HarrisoN, J. M. and WiLLiams, R. J. (1987). Brownian models of open queueing networks
with homogeneous customer populations. Stochastics 22 77-115.

[18] HILLIER, F. S. and LIEBERMAN, G. J. (1986). Introduction to Operations Research. Holden-Day,
Oakland.

[19] IcLEHART, D. L. and WaitT, W. (1969). The equivalence of functional central limit theorems
and counting processes and associated partial sums. Technical Report 121, Dept.
Operations Research, Stanford Univ.

[20] IcLEHART, D. L. and WHitT, W. (1970). Multiple channel queues in heavy traffic, I and II.
Adv. in Appl. Probab. 2 150-177; 355-364.

[21] KnNEssL, C. (1988). On the diffusion approximation to a fork and join queueing model. Applied
Math Research Paper AMS88, Dept. Mathematics, Statistics and Comp. Sci., Univ.
Illinois, Chicago.

[22] MaNDELBAUM, M. and Avi-ITzHAK, B. (1968). Introduction to queueing with splitting and
matching. Israel J. Tech. 6 376-382.

[23] NELsON, R. and TanTaw, A. N. (1988). Approximate analysis of fork-join synchronization in
parallel queues. IEEE Trans. Comm. 37 739-743.

[24] NGuYEN, V. (1990). Heavy traffic analysis of processing networks with parallel and sequential
tasks. Ph.D. dissertation, Dept. Operations Research, Stanford Univ.

[25] PETERsON, W. P. (1991). Diffusion approximations for networks of queues with multiple
customer types. Math. Oper. Res. 16 90-118.

[26] REmMAN, M. 1. (1982). The heavy traffic diffusion approximation for sojourn times in Jackson
networks. in Applied Probability—Computer Science: The Interface 2 (R. L. Disney
and T. Ott, eds.) 409-422. Birkh&duser, Boston.

[27] REmMAN, M. 1. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9 441-458.

[28] REmMaN, M. I. (1988). A multiclass feedback queue in heavy traffic. Adv. in Appl. Probab. 20
179-207. .

[29] ScuMENNER, R. W. (1981). Production /Operations Management: Concepts and Situations.
Science Research Associates, Chicago.

[30] VArRMaA, S. (1990). Heavy and light traffic approximations for queues with synchronization
constraints. Ph.D. dissertation, Dept. Electrical Engineering, Univ. Maryland.

[31] WuITT, W. (1970). Weak convergence of probability measures on the function space C[0, «).
Ann. Math. Statist. 41 939-944.

[32] WurrT, W. (1971). Weak convergence theorems for priority queues: Preemptive-resume
discipline. J. Appl. Probab. 8 74-94.

[33] WaITT, W. (1983). The queueing network analyzer. Bell. System Tech. J. 62 2779-2815.

SLOAN SCHOOL OF MANAGEMENT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE , MASSACHUSETTS 02139

