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FIRST PASSAGE PERCOLATION FOR RANDOM
COLORINGS OF 74
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Mathematical Sciences

Random colorings (independent or dependent) of Z? give rise to
dependent first-passage percolation in which the passage time along a
path is the number of color changes. Under certain conditions, we prove
strict positivity of the time constant (and a corresponding asymptotic
shape result) by means of a theorem of Cox, Gandolfi, Griffin and Kesten
about “greedy” lattice animals. Of particular interest are i.i.d. colorings
and the d =2 Ising model. We also apply the greedy lattice animal
theorem to prove a result on the omnipresence of the infinite cluster in
high density independent bond percolation.

1. Introduction and some results. Let . be a finite (or countably
infinite) state space whose elements are regarded as colors. Then a family
{(X,:ve 7% of #valued random variables may be regarded as a random
coloring of Z¢. A special situation of interest to us is the case of i.i.d. colorings.

We wish to study certain features of the “color clusters;” these are the
connected components of the random graph with vertex set Z¢ and edge set
consisting of all nearest-neighbor pairs of vertices {v, v'}, with X, = X .. If the
coloring is regarded as representing a map (in the geographical sense), then
each individual color cluster represents a single country. Let us define for
n=0,1,2,..., the subset B(n) of Z¢ consisting of all vertices in Z¢ that can
be reached from the origin by some (nearest-neighbor) path along which the
color changes n or fewer times. B(n) represents the region attainable from
the origin (without resorting to air travel) while crossing no more than
n international borders. The main focus of this paper is the asymptotic
behavior of B(n) as n — .

Clearly B(n) can grow no slower than linearly in n. It can, however, grow
superlinearly and will clearly do so if color percolation occurs; that is, if some
color cluster is infinite. Our major interest is in deriving conditions that
distinguish between linear and superlinear growth of B(n). In particular, one
of our results (see Theorem 2) is that in the i.i.d. case, the boundary between
the two growth regimes occurs exactly at the color-percolation threshold. This
result is an analogue of a theorem of Kesten (1986) for independent first-
passage percolation, as we will explain. We remark that neither the connec-
tion between first-passage percolation and color-cluster borders nor Theorem
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2 as a conjecture are particularly new. Our own interest originated several
years ago in certain physical applications of the two-dimensional, two-color
case [see Abraham and Newman (1988, 1989, 1991)]. In a recent paper (which
we received in September 1992) the d = 2 case of Theorem 2 was proved by
Chayes and Winfield (1992) using arguments rather different from those used
here.

A first-passage percolation model [see Smythe and Wierman (1978) and
Kesten (1987) for reviews] begins with a family {¢(e): e € %%} of nonnegative
random variables indexed by ¢, the set of nearest-neighbor edges in Z¢.
Each t(e) represents the passage time through the individual edge e. One
then defines the passage time T'(r) of a path r, consisting of the edges
ey, ey,...,e,, as T'(r) = L, t(e;). The travel time T'(u, v) between two vertices
is then defined as

(1.1) T(u,v) =inf{T(r): r is a path from u to v}.
The region attainable from the origin in time ¢ or less is
(1.2) B(t) = {vez?:T(0,v) <t}.

The classic model of Hammersley and Welsh (1965) takes the t(e)s as ii.d.
variables, and the special case of an exponential distribution leads to Eden’s
(1961) growth model.

Random coloring gives rise to a first-passage model by defining

13 B 1, ifX, X,
(1.3) t({u’v}) ~ o, if X, = X,;

with this choice, our two definitions of B are clearly consistent. Note though
that even i.i.d. X,’s yield dependent t(e)s. There are, however, some results,
originally obtained for the classic case of independent first-passage percola-
tion, that immediately extend to the general context of translation-invariant,
ergodic t(e)’s, and hence to translation-invariant ergodic X’s. This is the
case for Richardson’s (1973) “shape theorem” [improved by Cox and Durrett
(1981)], which relates the asymptotic behavior of B(¢) as ¢ » « to strict
positivity of the time constant.

The time constant w is defined by
(1.4) lim Z(O;—nfl) =p as.andin L',

n— o

where f; is the vector (1,0,...,0). If E(¢(e)) < «, then the limit exists and is
nonrandom because the subadditivity property,

(1.5) T(u,v) < T(u,w) + T(w,v) forall u,v,w < Z¢,

~ permits the application of Kingman’s (1968) subadditive ergodic theorem. u
is always finite but it can be zero. When discussing the asymptotic behavior
of B(t), it is convenient to replace it by the subset of R¢,

(1.6) B(t) = {v+ U:ve B(t)}
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where U is the unit cube,
(1.7) U={(xy,...,%4): x;] < } for each i}.

The following theorem, due to Y. Derrienic [as reported on page 259 of Kesten
(1986)], is an extension of Richardson’s (1973) shape theorem. The hypothesis
that t(e) is bounded is automatically satisfied in our random coloring context,
where t(e) only takes the values 0 and 1. In the independent first-passage
context, optimal assumptions on the distribution of #(e) were determined by
Cox and Durrett (1981). In the general translation-invariant context, an
improved version of Theorem 1 not. requiring boundedness of the ¢(e)s was
obtained by Boivin (1990).

THEOREM 1 (Derrienic). Let {t(e): e € #?} be a translation-invariant,
ergodic family of nonnegative, bounded random variables. Define the time
constant w and the subset B(t) of R? fort > 0 as above. If u > 0, then there
exists a nonrandom, compact, convex subset B, in R¢ (with nonempty inte-
rior) such that, almost surely,

1
(18) Ve>0, (1-¢)B,c ?B(t) c(1+e&)B, foralllarget.
If u =0, then, almost surely,

1
(1.9) V bounded K in R?, Kc ?B(t) for all large t.

The proof of Theorem 1 is essentially the same as for independent first-
passage percolation [e.g., as in Cox and Durrett (1981)] except for the final
“filling in process,” which is easier. We just mention a few features. B, may
be defined as the closure of the set of x = Av, with v in Z¢ and A > 0, such
that

lim

n-—w

(1.10) A< M]—

To show, for example, the first inclusion of (1.8), one may begin by choosing
an ¢’ in (0, &) such that, for any &> 0, almost surely, every point in
(1 — ¢)B, is within distance § of some point in (1,/¢)B((1 — &')¢) for all large
t. To “fill in” the rest of (1 — £)B,, we rely on the boundedness of ¢(e). If C
denotes the bound on #(e), then every point in B((1 — &')t) generates an
l,-sphere of radius approximately &'t /C about it in B(t) Thus (1/¢)B(¢) fills
in (1 — ¢)B,, providing § < ¢’ /C.

In general, one cannot determine either the value of u or the shape of the
. region B,. However, in the case of i.i.d. t(e)s, one can at least determine

precisely when u > 0. This result, due to Kesten (1986), states that u > 0 if
and only if

(1.11) P(t(e) =0) < p.(Z%, bond),
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where p/(Z¢, bond) denotes the critical value for independent nearest-
neighbor bond percolation on Z¢. [See Kesten (1987) and Grimmett (1989) for
reviews of percolation.] The following theorem gives a natural analogue of
(1.11) for random colorings. As previously mentioned, the d = 2 case has also
been obtained by Chayes and Winfield (1992).

THEOREM 2. Let{X:ve 7% be i.i.d. random variables taking values in
the finite (or countably infinite) state space . Define (dependent) passage
times {t(e): e € B} by (1.3). Then the time constant u is strictly positive if
and only if

(1.12) foreach s € &, P(X,=s) <p,Z¢, site),

where p (Z°, site) denotes the critical value for independent nearest-neighbor
site percolation on 7°.

Proor. To demonstrate the necessity of condition (1.12), we will suppose
that for some s, p, = P(X, = s) > p, = p(Z¢, site) and then show that u = 0.
Let us define a modified time constant w, by replacing T(0, nf;) in the
left-hand side of (1.4) by T,(0, nf,), the minimal number of sites v, for which
X, # s, in any path from 0 to nf;. Because t({u,v}) = 0 if both X, = s and
X, =s, we see that T(0,nf,)/2 < T,(0,nf;) and so u < 2u,. The desired
vanishing of u then follows from the fact that u, = 0 if p, > p,. This fact is
an analogue of the necessity of condition (1.11) (for strict positivity of the time
constant in independent first-passage percolation), but with bond percolation
replaced by site percolation. The proof for site percolation is essentially the
same as that used for bond percolation by Kesten (1986) and is based on the
exponentially small probability of large deviations of T,(0, nf;)/n from wu,
[see Grimmett and Kesten (1984) and Kesten (1986)].

Before proceeding with the sufficiency of (1.12), we remark that without
loss of generality, . may be assumed finite; if not, then lump together all but
finitely many colors (with the sum of the lumped probabilities below p.) and
regard the lump as one new color.

To begin the proof of sufficiency, we first note that for any (site self-avoiding)
path r from 0 to nf,

1+ T(r) = 1 + number of color changes along r

> number of distinct color clusters touched by r

= Z,%unr,_l,

vETr

(1.13)

where &, denotes the color cluster of vertex v. Here, we regard r and &, as
collections of vertices and |#| denotes the number of vertices in %. By
Jensen’s inequality,

1 -1

B

vETr

' 1
(1.14) i Yignrl™> [

vET
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and thus
1+T(r) 1+T(r 1 i
()Z ()z—Zl%,,an
n 7] 7] oo
(1.15) )
1 _
>|—= yIgll .
g
Consequently,
. 1 -1
(1.16) w>|limsup sup — ) I%l] ,
m-©  |rl=m ver

where the sup is over all (site self-avoiding) paths r starting from the origin
and containing exactly m sites.
For each color s €.%, let us define the color-s cluster at vertex v by
1.17 g = | B KX =5,
(1.17) vo\g, ifX, #s.

Because || is the sum over s of |&°], we see from (1.16) that to prove u > 0,
it suffices to have for each s,

1
(1.18) limsup sup — ) I8l <» as.

m—o |rl=m veTr

For a fixed s, the color-s clusters are just the clusters of a standard sub-
critical site percolation model. (1.18) will be an immediate consequence of
Theorem 4. O

To prove (1.18), we find it necessary to prove a stronger result, Theorem 4,
in which the paths r from the origin are replaced by more general lattice
animals T. By a lattice animal, we will mean a finite connected (by nearest-
neighbor edges) subset of Z¢ containing the origin. (We will also regard the
empty set as a lattice animal.) Even though the underlying coloring is i.i.d.,
the clusters &, for different v’s are of course dependent. Nevertheless, our
proof of Theorem 4 (and hence of Theorem 2) is based on a recent theorem of
Cox, Gandolfi, Griffin and Kesten (1992), in which the |%,’['s are replaced by
ii.d. variables, W,. Because the theorem concerns lattice animals I' of a given
size that maximize ¥ . W,, it is said to be about “greedy” lattice animals.

THEOREM 3 (Cox-Gandolfi-Griffin-Kesten). Let {W,: ve 7% be i.i.d.
nonnegative random variables. If

(1.19) E(Wi*¢) <o  for some & > 0,
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then (almost surely)

1
(1.20) limsup sup — ) W, < o,

n-o |Il=n ™ yer

where the sup is over all lattice animals with n vertices.

REMARK. In Cox, Gandolfi, Griffin and Kesten (1992), the hypothesis
(1.19) is weakened to the assumption that the expectation of W2(log* W,)?*¢
is finite. The left-hand side of (1.20) [and of (1.21) and (1.22)] is a constant
(a.s.) by the Kolmogorov zero—one law. Gandolfi and Kesten (1992) have
shown that the lim sup in (1.20) may be replaced by an ordinary limit.

The proof of the next theorem is based on Theorem 3; it will be given in
Section 2.

THEOREM 4. Consider independent nearest-neighbor site percolation on Z°
with probability p for any site to be occupied. Let C, denote the occupied
cluster of vertex v € Z°. If p < p(Z?¢, site), then (almost surely)

A\

. 1
(1.21) K, = limsup sup — ) IC,| <.

n—>© |Tl=n N yer

The final theorem of this section is analogous to Theorem 4; its proof, given
in Section 3, is also based on Theorem 3. In this theorem, the usual percola-
tion clusters of Theorem 4 are replaced by somewhat more complicated
objects. For bond percolation in the supercritical regime, we consider the
random graph whose vertex set is the set of all vertices not belonging to the
infinite open cluster and whose edge set consists of all the edges (open or
closed) in #? between those vertices. The _connected component, in this
random graph, of a vertex v will be denoted C,. The number of vertices in C,
is denoted |C,[; it is zero if v belongs to the infinite open cluster.

The motivation for the next theorem concerns certain extensions of the
results of Newman and Stein (1990) about domain structure in Ising-like
models. This application will be pursued in a future paper. The theorem
should be regarded as providing a quantitative measure of the omnipresence
of the infinite open cluster in terms of the smallness and sparseness of the
Cs.

THEOREM 5. consider independent nearest-neighbor bond percolation on
7% with probability p for any edge to be open. If d > 2 and p is sufficiently
close to 1, then (almost surely)

i ' A : ]- A
(1.22) K, = limsup sup — ) IC,| < ;

n—>© |I'l=n vel

A
moreover, K, > 0 asp — 1.
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The remainder of this paper is organized as follows. Section 2 begins with
Theorem 6, which provides a sufficient condition for strict positivity of the
time constant for dependent random colorings. This condition is a natural
extension of the sufficiency condition (1.12) for independent colorings, and
like (1.12), is a consequence of Theorem 4. Then the proof of Theorem 4 is
given, modulo certain graph-theoretical lemmas, which are presented in the
Appendix. The rest of Section 2 concentrates on a specific two-parameter
family of random two-colorings of Z2, the two-dimensional Ising model. Two
results giving sufficient conditions for strict positivity of the time constant are
given: one (Theorem 7) based on the very general Theorem 6 and a second
(Theorem 8) that utilizes extra properties of the Ising model. As explained in
the remark at the end of Section 2, recent results of Higuchi (1992a, b) show
that the conditions of Theorem 8 are essentially optimal. Applications of
these Ising model results to the random surface model of Abraham and
Newman (1988, 1989, 1991) will be pursued elsewhere. In Section 3, the proof
of Theorem 5 is given. Finally, in the Appendix, several nonprobabilistic
graphical lemmas are stated and proved; these are needed for the proofs of
Theorems 4 and 5.

2. Strict positivity of the time constant. In this section we consider
translation-invariant, ergodic colorings of Z? and the corresponding first-
passage models. Theorem 1 is applicable in this case and so we are interested
in conditions sufficient to guarantee u > 0. The first theorem gives a simple
extension of condition (1.12) to dependent colorings. We define %, to be the
o-field generated by {X,: u € Z¢, u +# v).

THEOREM 6. Let {X,: v € Z%} be a translation-invariant, ergodic family of
SFvalued random variables with & finite, and let {t(e): e € %%} be the related
passage times given by (1.3). To guarantee that the time constant u is strictly
positive, it suffices that for some &> 0, the following condition be valid
(almost surely):

(2.1) foreachs €, P(X,=sl%) <p.(Z% site) — ¢.

Proor. First we note that exactly the same arguments as used in the
proof of Theorem 2 [see the inequalities (1.13)—(1.16)] also show here that it
suffices to prove (1.18) valid for each s. But now the color-s clusters &’ are
not the clusters of an independent percolation model.

However, if we define color-s occupation variables by

99 N 1, ifX, =s,
(2.2) volo, ifX, #s,

* then we claim (as will be explained) that hypothesis (2.1) implies the stochas-
tic domination

(2.3) {Njvezd) < (NP:vez?,
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where {N7F} are i.i.d. 0- or 1-valued variables with
(2.4) P(NF =1) = p = p,(Z4,site) — s.

(2.3) means that increasing events (in {0, 1}#“) are assigned probability by
the joint distribution of {N,}, which is less than or equal to the probability
assigned by the standard independent percolation distribution of {NP}. It
follows that for a given s, (1.18) will be valid for the color-s clusters (of our
dependent coloring model) if it is valid with & replaced by C,, the oecupied
clusters of a density-p independent site percolation model. The validity of
(1.18) for the C,’s follows from Theorem 4, whose proof is given immediately
following this proof.

It only remains to justify the claim of stochastic domination. This, in fact,
is a simple (more or less standard) application of Harris’ (1960) original
version of the FKG inequalities, because (2.1) implies that the Radon-
Nikodym derivative of the distribution of {N,} with respect to that of {N?} is a
decreasing function. O

ProOF OF THEOREM 4. In order to prove (1.21) by means of the correspond-
ing result (1.20) for independent variables, we need to relate the dependent
|C,I's to some independent variables. Toward this end we consider an i.i.d.
family {F v € Z9} of random lattice animals, which are equidistributed with
Cy, the occupied cluster of the origin. In order to compare the percolation
clusters, C,, to the independent random subsets, C =v+ F we define
random variables

(2.5) U = sup{ICulz ueZtve Cu},

where the sup of an empty set is taken to be zero. We then claim the
stochastic domination inequality

(2.6) {Ic):vezd} < {U,:ve 7%,

which we proceed to prove by an algorithmic construction of the percolation
clusters, C,. _

Let v, vy,... be some (deterministic) ordering of Z?. First take C, =C,
and proceed 1nduct1ve1y Given C,,...,C, , take C, = C,ify,, € C for
some j < n. Let B, denote the umon of C for j < " and let B, denote its
boundary; that is, the vertices not in B, wh1ch are nearest nelghbors of some
vertex in B,. If v,,.;, € B, but v,,, € &B then take C,  to be the empty
set. If v, ; € B,, the union of B, and &Bn, then the conditional distribution
of C, (given C ., C, ) is that of the percolation cluster of v, in a site
percolatlon model where Z¢ is replaced by Z¢\ B,; thus C, ,, may be
regarded as (in fact, taken as) a subset of C It follows that each C, may
" be regarded as the subset of some C, (whlch contains v); this 1mmed1ate1y
implies the desired domination 1nequa11ty (2.6).

Now, the nonprobabilistic, graph theoretical Lemma 2 of the Appendix
(with G, taken as the cluster C,) states that (for each w and) for any
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(nonempty) lattice animal T,
1 -

— U < 3
Ir 2 7= 255

vel

(2.7)

where the sup is over lattice animals I’ containing I'. Combining this with
the stochastic domination and the definition of C, yields

1 -
(2.8) K, < 2limsup sup — Y. IT,I*.
nowo |=n T yer
Because the |T|? are i.i.d. and have moments of all orders because p < p, [by
the result of Menshikov (1986) and of Aizenman and Barsky (1987)], we can
now apply Theorem 3 to conclude the proof. O

REMARKS. If the random variables W, of Theorem 3 have a finite
moment-generating function, then the conclusion (1.20) follows easily by a
simple large deviation argument. We note that |I}| has an exponential tail,
but |1"ul2 does not and hence the special case of Theorem 3 just mentioned is
not sufficient to prove Theorem 4. We also recall that the proofs of Theorems
2 and 6 only require a weakened version of (1.21) in which the lattice animals
are restricted to paths starting from the origin. Nevertheless, the proof of
Lemma 2 of the Appendix shows that even if the T" in (2.7) is a path, the sup
on the right-hand side cannot be restricted to paths; thus a weakened version
of (1.20), in which the sup is only over paths, would not suffice to prove
Theorem 2 or 6.

For the remainder of this section we focus on the standard two-dimensional
Ising ferromagnet. This is a two-parameter family of random colorings of 72
with %= {—1, +1}. The two parameters are a coupling constant J € [0, «),
and an external field A € (—,). (The temperature parameter has been
absorbed into J and A.) The (formal) Hamiltonian for a configuration {s,:
ve 7% e # is

J
(2.9) H=—-— Y s,s,—h)s,

2 {u,v} v
where the first sum is over edges in %2 (i.e., nearest-neighbor pairs) and the
second is over vertices in Z2. For given J and h, we take {X,:ve 72} to have
as its joint distribution the Gibbs distribution for this Hamiltonian, obtained
as an infinite volume limit with free boundary conditions. [For more informa-
tion on Ising models and Gibbs distributions, see Georgii (1988), especially
Section 6.2 and pages 450—-454.] We remark that the theorems that follow
will automatically be inapplicable to values of J and A where multiple Gibbs
distributions occur; thus boundary conditions will not matter and {X} will be
ergodic. .
_ Our first result about Ising models is a corollary of Theorem 6. Combined
with the result of Higuchi (1982) that p,(Z2,site) > 3, it shows that if both J
and |h| are sufficiently small, then u > 0.
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THEOREM 7. Let {X,: vE 7%} be a (free boundary condition) standard
two-dimensional Ising ferromagnet with Hamiltonian (2.9) and let {t(e):
e € B?} be the related passage times given by (1.3). A sufficient condition to
guarantee a strictly positive time constant is

(2.10) [1 + exp(—4J — 2|hl)] ! < p(Z2, site).

Proor. We need to show that (2.1) is valid. From (2.9), it follows that for
s=+1lor —1,

P(X, = slZ,
(211) 5(—;?:-@)3 = exp[s(2h + Jue/zl/(v)Xu)],

where #(v) denotes the set of the four nearest neighbors of v. Equivalently,

—s(2h+J Y Xu)])_l

(2.12) P(X,=sl%) = (1 + exp
ueMNv)

This last expression is maximized, for a given s, by taking X, = s for each
nearest neighbor u of v. With that choice of the X, ’s, it is then maximized (if
h # 0) for the case s = sgn(h). Thus (2.10) implies the validity of (2.1), as
desired. O

REMARK. Theorem 6 can easily be applied to the Gibbs distributions of
other statistical mechanics models besides the Ising model. In cases such as
the Potts models, where g, the number of colors, exceeds 2, there is no need
to restrict the spatial dimension to d = 2. In particular, we note that the
analogue of (2.10) is nonvacuous for a given d, providing only that ¢ be big
enough for p (749, site) to exceed 1/q.

Theorem 7 is a less than optimal result for the d = 2 Ising model. For
example, when A = 0, (2.10) becomes

(2.13) J < 3n[p./(1 - p,)] = 0.09,

where we have used the numerical value p, = 0.59 reported by Essam (1972).
On the other hand, it was proved by Coniglio, Nappi, Peruggi and Russo
(1976) that (when h = 0) there are no infinite color clusters until J exceeds
the critical value J, whose exact value [Kramers and Wannier (1941);
Onsager (1944)] is

(2.14) J, = arcsinh(1) = 0.88.

It is a natural conjecture, in the spirit of Theorem 2, that in the interior of the
region of the J — & plane where color percolation does not occur, the time
,constant should be strictly positive; in particular this should be the case for
h =0 and J <dJ,. Our second and last result about Ising models, when
combined with recent results of Higuchi (1992a, b), proves this conjecture, as
we explain in a remark at the end of this section.
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THEOREM 8. A sufficient condition to guarantee a strictly positive time
constant for the d = 2 Ising ferromagnet (as in Theorem 7) is

(2.15) E(I1g)*"°) <o for some 8 > 0,

where %, is the color cluster (usually called the parallel spin cluster in Ising
model terminology) of vertex v.

ProorF. We follow the proof of Theorem 2 through (1.18). To verify (1.18)
for a fixed s € {—1, +1}, we follow the proof of Theorem 4. In particular, we
claim that the following analogue of (2.6) is valid:

(2.16) (g ve 29} < (U ve 24},
where
(2.17) Us = sup{|u +Tluezd,veu+T;)

and {[: v € 7% are i.i.d. random lattice animals, equidistributed with Z5. As
in the proof of Theorem 2, Lemma 2 of the Appendix then leads to a bound on
the left-hand side of (1.18) by the left-hand side of (1.20) with W, = [[}*|?. This
bound is finite, according to Theorem 3, if E(I%sl4+2a) < 0, The finiteness of
this moment for both s = +1 and s = —1 is equivalent to (2.15).

It remains to justify the claimed stochastic domination, (2.16). We proceed
by a similar algorithmic construction as used in the proof of Theorem 4. It is
crucial now to keep in mind that we are constructing color-s clusters for fixed
s (say s = +1) so that &, is empty if X, = —1. The key point here is that
when v, ; & B,, the conditional distribution of %! (given &,',...,%, ") is
stochastically dominated by (and thus may be regarded as a subset of)
Yop1 + L, , . This is because %, is (conditionally) the plus cluster of an
Ising model in Z¢\ B, with minus boundary conditions on the vertices of
3(Z% \ B,) (which is just dB,). By a standard application of the FKG inequal-
ities [Fortuin, Kasteleyn and Ginibre (1971)], this plus cluster is stochasti-
cally dominated by the plus cluster of an Ising model with no conditions on
dB,,. This completes the proof. O

REMARK. The nature of color percolation in the d = 2 Ising model has
been extensively investigated in two recent papers of Higuchi (1992a, b). His
results (combined with previous ones) imply the following. Color percolation
only occurs when J > J,, or when J < J, and |h| > h(J), where A (J) > 0
for J <J, and h(J,) = 0. There is no color percolation for J <J, and
|h] < h(J). In the interior of the nonpercolating regime (i.e., when J < J,
and |k| < h,) the color connectivity function decays exponentially:

(2.18) P(u€@,) <exp[—k(lu; — vyl + -+ +lug — yl)]

.with k = k(J, h) > 0. It is an easy consequence of (2.18) that all moments of
|%,| are finite and thus Theorem 8 implies u > 0 in all the interior of the
nonpercolating regime.
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3. Proof of Theorem 5. As in the proof of Theorem 4, we need to relate
the dependent |C,ls to independent random variables in order to apply
Theorem 3. This will require a series of arguments. A key idea is that the
boundary of C is a surface of closed edges (or, equivalently, of dual pla-
quettes) that separates C from the infinite open cluster and that lC | =
0((D,)?), where D, is the maximum distance of that surface from v. (Dis-
tance between vertices v and « in Z¢ will be the /, distance, denoted ||z — vl|;
distance between edges in #¢, or between an edge and a vertex, will be a
maximum of the /; distance between endpoints.) The edges (or plaquettes)
forming this surface are connected, if we choose some appropriate notion of
connectedness. To avoid detailed considerations of discrete geometry, we will
choose a conservative notion by declaring two edges as neighboring if they are
within distance M of each other (M will be chosen sufficiently large, but fixed
for a given dimension d). In other words, we consider the independent site
percolation model with site occupation density 1 — p, on the d-dimensional
lattice L with vertex set &? and edges between any two elements of %¢
within distance M of each other. We will call the occupied clusters of this
percolation model L-clusters.

For e € %9, we denote by R, the maximum distance from e to any e’ in its
L-cluster and we define for u € Z¢,

(3.1) R, = sup{Re: e={u,u +f;} forj=1lor2or - d},

where f,..., f; are the standard unit basis vectors. [We remark that R, = 0
if the L-cluster of e is empty (i.e., if e is an open bond) and otherwise R, > 1.]
Then

(3.2) D,<Y,=sup{R,:ucZ%l|v-ull <R}

The key idea mentioned previously has been absorbed into the fact that
IC,| = OY,)?).

We now consider i.i.d. variables {R,: e egd} such that each R, is equidis-
tributed with R, and we define {R } and {Y} in terms of {R }, asin (3.1) and
(3.2). Note that the R s are also i.i.d. Then by an algorithmic construction of
the L-clusters, analogous to the algorithmic construction used in the proof of
(2.6), one has the stochastic domination

(3.3) {Y,ivezl) < {¥,:vez?.
Thus the quantity K » of (1.22) is bounded by
n 1 -\ d
(3.4) K, <c4limsup sup — > (Yv) ,
n-ow |F=n T yeT

"where c,; is a constant depending only on d (and on M, which depends only
on' d).

Now, it follows from Lemma 3 of the Appendix [because the volume

|B(v, p)| considered there, in the case of the graph (Z¢, #¢) and integer p, has
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|B(v, p)I/p? bounded away from 0 and « by d-dependent constants] that (for
each o and) for any (nonempty) lattice animal T,

d
(3.5) T ErY < €4 8UP 1oy I"I g (R,)",

where the sup is over lattice animals I'’ containing I', and ¢/, is another
constant depending only on d. Thus we have

A 1
(3.6) K, <cjlimsup sup — ) W,
noe  [Ml=n ™ yer

where the W,’s are i.i.d. variables, equidistributed with (R,)?¢, and ¢, = ¢, - ¢;.
Because the percolation model on L is a finite-range, independent model on a
regular d-dimensional lattice, it follows by standard arguments that for
1 — p sufficiently small, the distribution of R, has an exponentially decreas-
ing tail, and hence the same is true for R and for R Furthermore, as 1 —
decreases to zero, R stochastically decreases to zero. Thus for any 2 > 0,

(3.7) E((Rv)k) -0 asp—1.

Choosing k > 2d?, we see that the W’s in (3.6) satisfy E(W¢'?) > 0 as
p — 1. The following corollary of Theorem 3 then implies that K -0
as p — 1, as desired.

COROLLARY TO THEOREM 3 (Cox-Gandolfi-Griffin-Kesten).  For each j =
1,2,..., let {(WW: v e Z% be i.i.d. nonnegative random variables and let

. 1 .
(3.8) KY = limsup sup — Y W,

n—o ITl=n n vel

If for some & > 0,
(3.9) E(WP)""*) >0 asj— e,
then KV — 0 asj — .

PrOOF OF COROLLARY. By Chebyshev’s inequality,

1/(d+e)

(3.10) P(WD > w) < wf’"ﬂ for w > (&)
where 8, = E(W,)4*¢) —» 0 as j — «. Let {W,} be ii.d. with

(3.11) P(W,zw) = w_‘}*—; for w‘ >1

and let K denote the left-hand side of (1.20) for this choice of {W,}. Then
(3.12) (Wo:ve zd) < {(8) " "W, v e 27},
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and so
(3.13) KV < (8)V"7K forall j.

Because E(W,*¢") < for 0 < &' < &, it follows from Theorem 3 that K < =
and thus (3.13) implies K¢ — 0 as desired. O

REMARK. The arguments of Cox, Gandolfi, Griffin and Kesten (1992)
show that the moment in (3.9) can be replaced by the expectation of (W,/?)¢
(log+ VVv(j))d+ &

APPENDIX

Some graph-theoretical lemmas. In this Appendix we give several
(nonprobabilistic) lemmas concerning any single (finite or infinite) simple
graph G with vertex set 7" and edge set & and with a distinguished vertex
v,. The particular graph to which these lemmas are applied in the body of the
paper has 7= 7%, & = %% = {nearest neighbor pairs in Z?} and v, = origin
of Z%. For a subgraph G’ of G, we write [G'] to denote the set of vertices of
G’ and |G'| to denote the number of vertices in G'. We define a G-animal to
be a finite subset I' of 7 containing v, such that the subgraph induced by I'
is connected. (The induced subgraph has vertex set I' and edge set consisting
of all # = {v, u} in & such that both v and u are in I'.)

LEMMA 1. For each v in 7, let év be either a connected subgraph of G,
which contains v in its vertex set, or else the empty subgraph of G. Suppose
that for each v in 7, there is a vertex z(v) that is either v itself or else is such
that v € [G,,)]. Then for any G-animal T, there exists some G-animal T’
containing T such that

1 - 2 -
=) G, < ﬁ h ,Gurlz-

(A.1)
IFI vel v'el’

ProOF. We assume that G, is finite for each v in 7. [Even if not, the
proof we give will work unless G, ,, is infinite for some v € I'; in that case,
simply choose I'’ to include that z(v).] The left-hand side of (A.1) is the mean
of the numbers léz(u)l, for v in the G-animal I'; we denote this mean by A. We
will construct our new G-animal I'" by enlarging I' to include those z(v)s for
which |G, | is relatively large:

(A.2) I'=rTu ( U [éz(v)]), .
verl;

where )

(A.3) I, = {veI:1G,,| = A/2}.

Because each (nonempty) Gz(v) is connected and contains v, it follows that I"'
is a G-animal. For each u € (I''\T) we can choose z' =2z'(u) € I'" with
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léz,l >A/2 and such that u éz, [z’ equals z(v) for some v e I]; for

u €T, we choose z'(x) = z(u). We then have the following inequalities,
which yield (A.1):

~ A
L6l T Gz L6+ T (5]

v' el uel;U('\IN vel, uel'\T
~ A
(A4) ~AINl= T G|+ SI0\TI
uel\I

A A A
> All'| - EIFI + —2—(IF’I —ITN) = —2—IF’I.

To obtain the first inequality, group together those summands in the right-
hand side with a fixed z'(x) = v’; because each such u belongs to G, there
can be at most |G| such summands (each of value |G,.)). The second 1nequal-
ity is valid because lG | > A/2 and the third is valid because for u € I'\ I'},
G, <A/2. O

The next two lemmas are corollaries of Lemma 1.

LEMMA 2. Let G, be as in Lemma 1 and let

(A5) U = sup{léul: ueZandve éu>
(The sum over the empty set is taken to be zero.) Then for any G-animal T,
1 ~
A6 — Y U< su G, %,
( ) ,F, vel p IF,I vgl"’

where the sup is over G-animals I'' that contain T.

Proor. By Lemma 1, we have for any allowed mapping v — z(v),

(A7) Y |G (U)I <2 sup |F'| Y IG 2.

vel v'erl’

lFl
Then take the supremum of this inequality over all allowed mappings. O

For the next lemma, we need a few definitions. The graph distance,
dist(u, v), between two vertices is the minimum length (number of edges) of
any path on G connecting u and v. The (open) ball about v of radius
p € [0,x), denoted B(v, p), is the subgraph whose vertex set consists of all u
with dist(z,v) < p and whose edge set consists of all edges in & between
pairs of such vertices. Clearly B(v, p) is a connected subgraph containing v
(or else it is empty, when p = 0). The volume of this ball is just |B(v, p)l, the
number of vertices within distance p of v.
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LEMMA 3. Suppose I{’v > 0 for each v in 7 and define
(A.8) U = sup{IB(u, I?u)lz u € 7¢ and dist(u,v) < I?u}.
Then for any G-animal T,

Y I, <zsup,r, Y IB(v', R,

vel vel’

IFI

where the sup is over G-animals I’ that contain T.

ProoF. This is an immediate consequence of Lemma 2, by taking GU =
B(v,R ). O

NOTE ADDED IN PROOF: An alternative demonstration of the positivity of w
in the d = 2 Ising ferromagnet appears in a recent preprint of L. Chayes.
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