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ON THE ASYMPTOTIC DISTRIBUTION OF THE AREA
OUTSIDE A RANDOM CONVEX HULL IN A DISK!

By TAILEN HSING

Texas A & M University

The asymptotic distribution of the area V, outside the convex hull of
n iid. points uniformly distributed on the two-dimensional unit disk is
studied. The asymptotic variance of V,, is found to be of the order n=5/3,
and the asymptotic distribution of V,, is shown to be normal. The results
are obtained by carefully analyzing the strength of dependence between
sample points at different locations close to the boundary of the unit disk.

1. Introduction. The stochastic properties of the convex hull formed by
randomly distributed points in a disk or polygon have been studied by many.
The problem goes back to Rényi and Sulanke (1963), where limiting expres-
sions for the expected area, the perimeter and the number of vertices of the
convex hull were derived. Papers that investigate variations of these prob-
lems are numerous since then [see Groeneboom (1988) and the references
therein]. In this context, Groeneboom (1988) contains the best results so far
on the distributional properties of the number of vertices of the convex hull.
He considers a process running through the vertices of the boundary of the
convex hull. After suitable normalization, the process converges in distribu-
tion to a strongly mixing Markov process. Using a strong approximation
argument and making use of the strong mixing property of the limit process,
the number of vertices of the convex hull is shown to be asymptotically
normally distributed.

In this paper, we investigate the asymptotic variance and asymptotic
distribution of the area outside a random convex hull in a disk in R2. Our
method can be modified to suit the situations where the two-dimensional disk
is replaced by a higher-dimensional disk or a polygon, but investigations of
those situations are not included in the present paper. Similar to
Groeneboom (1988), our results are based on the intuitively clear notion that
groups of sample points close to distinct fixed locations on the unit circle are
in some sense asymptotically independent. However, our approach is funda-
mentally different from that of Groeneboom (1988) and is, at least for the
present context, more straightforward. For example, we do not use arguments
involving strong approximation, and we analyze specifically for each sample
size n how the dependence between sample points at different locations close
to the unit circle weakens as separation in distance increases. As a result, we
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AREA OUTSIDE A CONVEX HULL 479

obtain the asymptotic variance of the area directly instead of the variance of
the asymptotic distribution.

To explain the basic ideas of the approach we first introduce some notation.
Let the sample (X;,Y;), 1 <i <n, be iid. random vectors uniformly dis-
tributed on the unit disk. Let E ‘be the convex hull of the sample, namely,
the smallest convex set contalmng the sample. The random quantity whose
asymptotic distribution we are interested in is

V, == area of (E: N {(x,y): x* +y* < 1}).
For each finite ¢ € [0, 27), define
D,(t) = lengthof (ES N {(rcost,rsint): 0 <r <1}).

By symmetry, D,(¢), 0 < ¢ < 2, is a stationary process. For the most part,
our investigation of V,, is done through studying D,(¢), 0 < ¢ < 2, using the
simple fact that

27 (1 27 1 on
1.1 V = rdrdt = D (t)dt — — |~ D2(t)dt.
(1.1) " [t=0[=1—D X0 j;=0 »(2) 2-[t=0 »(2)

It will be seen that the term (1,/2)[27% DZ2(¢) d¢ in this identity is asymptoti-
cally negligible, and hence the 1nvest1gat10n of V, can be made by focusing on
the properties of (27 D,(t) dt alone.

It is clear that, for fixed 0 < ¢ < 27, D,(0) and D,(t) are asymptotically
independent as n — «. The time scale in which the local correlation of D, can
be adequately reflected turns out to be n~'/3-. Thus the first step in the
variance calculation of V, is to find the asymptotic covariance of D,(0) and
D, (n"'/3a), for all a > 0. To do that we consider, for a > 0, the joint
asymptotic distribution of the sample points (X, Y;) near
(cos(n~1/3a), sin(n"1/3a)). This is done in a point process theoretic frame-
work. For each a € [0,27n!/3), we define a two-dimensional point process
¢,(a) whose points are the properly normalized (X;,Y;), which reflects the
congregation of points in the neighborhood of (cos(n~ 2y 3a) sin(n~1/%a)). Thus
¢,(a), a €10, 2mrn'/3), is a stochastic process whose realizations are measure
valued. Then a very simple representation of the joint asymptotic distribution
of ¢,(a;), 1 <i <k, can be obtained for all a;, 1 <i <k, and all k. Applying
the continuous mapping theorem, the asymptotic expression of the product
moments, including the mean and covariance of D, (n~'/ 3a), are obtained.
This, together with other preliminary results, is the content of Section 2. To
obtain the asymptotic variance and distribution of V,, the results in Section 2
are not sufficient. For the variance calculation, it requires, for each fixed
sample size n, a close analysis of the rate at which the correlation of D,(0)
and D,(n"1/3a) decays to 0 as a becomes large. Then, by a standard uniform
1ntegrab1hty argument, the results in Section 2 readily provide the form of
the asymptotlc variance. This is done in Section 3. Having obtained the
asymptotic variance of V,, a blocking method is used in Section 4 to show
that V, is asymptotically normally distributed.
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2. Preliminaries. The primary goal of this section is to derive the
limiting distribution of the random vector (n2/3D,(n"'3a,),...,
n?3D,(n"1/%a,)) for arbitrary nonnegative constants a,,...,a,. This is
achieved through a point process convergence argument. A by-product of this
is the convergence of the product moments of n*/3D,(n"'/3a), a > 0.

For each 0 < a < 27wn'/3, let £ (a) be the point process on [0, %) X (— o, )
consisting of the points

(n¥3(1 - X)), i ¥3), 1<is<n,
where
(Xi»Yi) = (X, cos(n"'/3a) + Y, sin(n"%a),

(2.1)
~X; sin(n"'%a) + Y, cos(n"'"3a));
namely, (X,,Y,) is (X,,Y;) rotated through an angle of —n"1/3a.

For the theory of point processes, we follow Kallenberg (1983). Note that,
since X? + Y2 <1, we have |n'/%Y;/ V2| < /n?3(1 — X;) . That is, each
point (P;, @,) of £,(0), and hence ¢,(a) for all a by symmetry, satisfies the
constraint

22) @l < /B,

Let .#([0,%) X (—»,®)) be the space of locally finite counting measures on
[0, %) X (—,») having the vague topology and the Borel o-field generated by
that topology. Let .# be the subspace of counting measures whose points
satisfy the restriction (2.2). Note that by including the left boundary x = 0 in
the state space, each counting measure in .# has finitely many points in the
set [0, x] X (—o, ), for all 0 < x < . It is not difficult to see that .Z is
vaguely closed in .#([0, o) X (—»,»)). We regard ¢,(a) as a random element
in /Z.

THEOREM 2.1. For arbitrary nonnegative constants a,...,a,, the point

processes (£,(a;), 1 <j < k) converge jointly in distribution to (¢(a;), 1 <j <
k). Here, simultaneously for all a > 0, ¢(a) has the points

V2 V2

where U,, i > 1, form a Poisson process on [0, ®) with intensity measure u
satisfying

a 2 a
a-20) + (oo - S oo &) ien

42
/-L[O’ x] = _3_—x3/2’ x 20,

and the Z; are i.i.d. uniform(—1, 1), also independent of the U,.
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Proor. We first consider ¢,(0). The X, are i.i.d. random variables with
P[Xi>1—x]=2f1 V1—u2du=2[xv2u—u2du.
1-x 0

Hence, for x, — 0,

4/2
P[X,>1—-x,] ~ —3——x,5;/2.

Consequently it is straightforward to show that the point process on [0, ®)
with points n?/3(1 — X)), 1 <i < n, converges in distribution to the Poisson
process with intensity measure u and points U, i > 1, defined by the
theorem. Also it is clear that (X,,Y;),1 <i <n, has the same distribution as
(X;,y/1—-X?Z), 1 <i<n, where the Z, are iid. uniform (—1,1) and
independent of the X;. Hence an apphcatlon of the continuous mapping
theorem [cf. Kallenberg (1983)] shows that £,(0) converges in distribution to
the point process with points (U, U/?Z,), i > 1. Now fix a > 0, and let
(X,,Y)) be given by (2.1). Then
n?3(1 —Xi) =n*3(1 - X; cos(n™'3a) — ¥, sin(n"3a))
a’X,
5 (14 0(1)) — an'/3Y,(1 + o(1))

=n?3(1-X,) +
and
n1/3Y~i nl/3

V2

(=X, sin(n""?a) + Y, cos(n"'/%a))

1/3

aX; n f
—‘/§(1+o(1))+ 7 (1 +0(1)).

Thus, by the continuous mapping theorem, in terms of the representation of
the distributional limit of &,(0), it is seen that £,(a) converges in distribution
to the point process consisting of points

(U, + a*/2 — a(2U)*Z,,U}?Z, — a/V2), iz=1,

which are precisely the points of £(a) stated in the theorem. Clearly this
representation holds simultaneously for any set of finitely many a’s. This
concludes the proof. O

COROLLARY 2.2. The process £(0) [and hence &(a), for all a = 0] is a
Poisson process on [0,%) X (—o, ®) with intensity measure A determined by

ME) = ﬁfEI(IyI <x'/?)dxdy, E c [0,) X (—0,).
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Proor. By a standard conditioning argument, for any nonnegative mea-
surable function g on [0,®) X (—», ) satisfying g(x, y) = 0, x > B for some
B >0,

Eexp[— Zi:g(Ui, mZi)]

o k
- % exp(~ul0, 57) L% 2D
k=0
© d dx
L eletemn i)

- d
- exp[_ - yf (1 —exp[—g(x,y)])dy Mz(‘,;)]

“ew|- [T [

(1~ exp[—g(x, y)])A(dxdy)].

The last expression is the Laplace transform of the Poisson process with
intensity measure A [cf. Kallenberg (1983)]. Since B is arbitrary, the proof is
complete. O

y

Define a mapping E: .# — [0, «] by
E:n - inf{v > 0: n(B,, ,) > 0forall m € (—»,x)},

where B,, , = {(x,y) €[0,%) X (—»,%): x + my < v}. To illustrate the defi-
nition, in Figure 1, if dots represent the points of 7, then E7 is given by the
distance between the origin and the intersection of the dashed line and the x
axis. Clearly D,(a) is a function of £,(a). In fact,

B¢, (a) =n*3D,(n"Y3%), a=0.
Observe that E is finite and continuous at each n €.% where
& = {n €4: 1 has at least two points whose y
coordinates have opposite signs}.

(0,0) 7

FiG. 1.
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By Corollary 2.2, P[£(0) € #°] = 0. Thus the following result is a conse-
quence of the continuous mapping theorem.

THEOREM 2.3. For arbitrary nonnegative constants a,,..., a;,
(n2D,(n"V%,), 1 <j <) S (Bé(ay), 1 <j < k).

The distribution of E£(0) can be routinely computed. Unfortunately we
have not found a simple representation of that distribution.

THEOREM 2.4. For arbitrary nonnegative constants a,,...,a, and
Syy--vs Spy

lim E j]f[l{nz/%n( ~1/3;) )" ) (lf[{Ef( }‘) <,

n— o

Proor. We will only show that, for any s > 0,
(2.3) lim E({n?°D,(0)}') = E({E£(0)}") <=,
n—o

and the same principle applies to the general case in an obvious way.
Statement (2.3) follows readily from Theorem 2.3, provided we show that

(2.4) lim lim sup E({n?/°D,(0)}' I(n*/*D,(0) > A)) = 0.

A simple observation shows that

n

(2.5) D,(0) <M, = /n\ (1-X,:Y, > 0)
i=1

By the Schwarz inequality,
(2.6) E({n**M,}I(n*°M, > A)) < EV2({n?°M,}"*) P1/?[n*/°M, > A].

It is easy to see that P[n?/3M, > x] decreases exponentially as x — ,
uniformly in n. Thus

limsup lim E'2({n?°M,}"") PV[n?/*M, > A] = 0

Aoowo R2®

and (2.3) follows from (2.4)-(2.6). O

In view of the simple identity
E(number of vertices of E,,)

(2.7)
= nEV,_, = 2anED,_,(0) — wnED?_,(0)



484 T. HSING

Theorem 2.4 provides yet another way of getting a classical result of Rényi
and Sulanke (1963). From Theorem 2.4 we also obtain the useful fact

lim cov(nzk/3D,f(n'1/3a1), n2k/3D,'f(n'1/3a2))

n— o

(2.8) ) )
= cov((Ef(al)) ,(Eé(ay)) ), a;,ay,k = 0.

The following lemma is included for future use.
LEMMA 2.5. Let 0 < &£ < 1 be a fixed constant, and let 0 < p,,, p,, < 1 be

constants satisfying np,, p,s — 0. Then there exists a positive constant C such
that

i n—i[ I i -J
(3)pat =)™ | piat1 = )™
— 1| < Cnp,1p,s,

n—i—j

n . .
(i,j)l’:nprjﬂ(l ~ Pn1 ~ Paz)
for all n and all integers i, j satisfying |i/(np,,) — 1| V |j/(np,s) — 1| < &.

ProoF. Straightforward computations give

; n—i| R i -J
(’Z)Pil(l = Pn1) (j )P;Jm(l _Pnz)n !

n—i—j

n . .
(i’j)l’:zlpr{z(l ~ Pn1 = Pn2)

_ {ﬁ(1+ i n )} (1 = Ppy — Pna)

s=1 nn—-i—-s+1 (l_pnl)i(l_an)j

i+j

n

> ( (1 _pnl)(l _pn2)
1—=pp1 — D

It is simply seen that, for i, j in the specified range, each of the three factors
in the last product differs from 1 by no more than Cnp,, p,, for some
constant C > 0. This concludes the proof. O

3. Asymptotic variance of V,. The main result of this section is the
following.

THEOREM 3.1. Let E and §(a) be defined as in Section 2. Then

lim n%/3 var(V,) = 47-rjoiocov(E§(0),E§(a)) da < o,

n— o
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ProoF. For any %k >0, by stationarity and the fact that D,(s) =
D, (27 — s), we obtain

Var(fzﬁpr’f(t)dt) = fiq;ftiq;cov(D,'f(s),D,’f(t)) dsdt

t=0

= 2[2_770(277 — s)cov(D}(0), D} (s)) ds
= 2[’10(277 — s)cov(D}(0), D¥(s)) ds

2/703 cov(DF(0), D} (27 — s)) ds

= 4arfszocov(D,'f(0), Df(s))ds.

Taking the normalizing constants into account, the result follows readily
from Lemma 3.5, (1.1) and (2.8). O

It is interesting to note that since E(n%/3V,) — a constant (cf. Section 2),
Theorem 3.1 implies that n?/3V, converges in L, to that constant. Suppose
one considers the one-dimensional case, namely, where the unit disk is
replaced by the unit interval. Then the role of V, is taken by

W, = sample minimum + (1 — sample maximum).

There, it is easy to see that the distribution of nW, converges to a nondegen-
erate distribution. The difference in degeneracy of the limits for the two cases
can be explained by the fact that in the two-dimensional case, V, is an
infinite average of weakly correlated random quantities.

The rest of the section is dedicated to proving Lemma 3.5. Throughout let
B € (0, 2) be a fixed constant. First, for ¢, < ¢, < ¢, + 7, define the set

R(t,,ty) = {(rcos 0,rsin6):¢, < 0 <t,,

t2 - tl 0 t2 + tz 1
— <rc< .
Ccos 2 Ccos 2 <rcx<

The set R(¢,,t,) is nothing but the intersection of the unit disk and the
half-plane which does not include the origin and whose boundary is the line
going through (cos ¢,,sin ;) and (cos ¢,,sin ¢,). It is easily seen that, for
0<t,—t,>0asn >,

_ )3
e 12tn) O((t — £)").-

For n=1,2,3,..., 1 <a < wn'? and ¢t = 0,a, define the following. Let
N,(t; a) be the number of points in the set R(n~'/3(¢ — af/%),n"1/3(t +

31y area of R(t;,t,;) =
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a®/?)), and let I,(a) be the set {i: |i /(np,(a)) — 1| < 1/2} of positive integers
where p,(a) = area of R(—n~'/%aP/2 n~1/3q#/%) Define the events
A, (t;0) = ({(X,Y)}io, N R(n™Y3(2 - al’?),n=13t))
m({(Xi,Yi)}:;l NR(n™'3%,n"Y3(t + aB/Z)))

and
B,(t;a) = (N,(t;a) € I,(a)).

LEMMA 3.2. For some positive constant C,
adB/2

12

sup  sup exp( )P[A;(O;a)] <C.

nzl1<a<wn/?
Proor. By (3.1),
a3ﬁ/2

12n °

where the rate of convergence (of the ratio of the two sides to 1) is clearly
uniform in a € [1, wn'/3]. Thus the probability that none of the (X, Y;) are in
R(—n~1/%a?/2,0), which is equal to the probability that none of the (X,,Y;)
are in R(0, n"'/3a?/?), is

area of R(—n~'3a#/2,0) = area of R(0,n~/3a?/?) ~

. . s gy - (4 adB/2\" a38/2
— — ~ — < —_ .
(1 — area of R(—n"13a?/%,0)) 2| <exP 5

The result follows readily from this. O

LEMMA 3.3. For some positive constant C,
sup sup exp(Ca®/?)P[Bf(0;a)] < 2.

nzll1<a<wnl/?
ProoF. By a well-known inequality [cf. Bennett (1962) and Pollard (1984),
page 192], for a binomial random variable Z with parameters n and p,
P[IZ - np| = A]
3.2 _
(3.2) s2exp(—np(1—p)'/‘)‘/np(1 p)log(1+x) dx), A> 0.
0

However, N,(0;a) has a binomial distribution with parameters n and p =
p.(a) ~(2/3)n"1a®#/? uniformly in @ by (3.1). Thus the conclusion of the
result follows in an obvious manner, using (3.2). O

LEMMA 3.4. For some positive constant C, with A = 2%/@~P),
P[N,(0;a) = i] P[N,(a;a) =Jj]
P[N,(0;a) =i, N,(a;a) =j]

n
sup  sup sup 5
nzlA<q<an'/3i,jel(a) @

llsC.
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ProoF. Note that, for A < a < mnl/3,
R(—n"V/3aB/2 n~1/35/%)
NR(n"Y3(a —ab’?),n"'3(a +a??)) = Q.

Thus the result easily follows from Lemma 2.5 with p,, = p,, = p,(a), where,
as in the proof of Lemma 3.3, p,(a) ~ (2/3)n"'a®#/? uniformly for a €
[1,7n'3]. O

(3.3)

LEMMA 3.5. The following holds for any k > 0,:

lim lim sup 1Tnwlcov(n2’“/5”D,’j"(O), n2*/3D¥(n~1%a))|da = 0.

Ao 5,0 a=A

ProOF. Define
D,(t) = n®*/3DF(n=13¢),
and write

cov(n?*/*D}(0), n?*/*D*(n"1/%a)) = ED,(0) D,(a) — (ED,(0))’
3
= Z Sni(a)’
i=1
where
Snl(a) = Eﬁn(o)ﬁn(a) - Eﬁn(o)ﬁn(a)IAn(O;a)n B,(0;a)N A,(a;a)N B,(a;a)
Sn2(a) = Eﬁn(o)ﬁn(a)IAn(O;a)m B,(0;a)N A,(a;a)N B,(a;a)
~ 2
- (EDn(O)IAn(O;a)ﬂ B, O;a)) ’

~ 2 ~
S,3(a) = (ED(0) Iy 0,00 5,010) — (EDa(0))"
First,

ISnl( a) ' = |Eﬁn(0) ﬁn(a) I(An(O; a)N B,(0;a)N A (a; a)N B,(a;a)’
= Elﬁn(o)ﬁn(a) I(IAZ(O;a) + IB,‘L(O;a) + IAﬁ(a;a) + IB,”L(a;a))’
which, by the Schwarz inequality, is bounded by
2(ED#(0)) /(P2 A5(0; a)] + PY?[ B5(0; a)]}.
It follows from Theorem 2.4 and Lemmas 3.2 and 3.3 that there exist finite
positive constants C; and C, such that
(3.4) sup sup - exp(C,a*#/?)|S,,(a)| < C,.

. n>1A<a<mwnl/?

Next consider S,,(a). Take A > 22/@~#), Since the (X, Y,) are i.i.d., in view of
(3.3) the distributions of the points in R(—n"'/3a#/2, n=1/3aP/?) and those
in R(n"13(a — aP’?),n"'/3(a + aP/?)) are conditionally independent given
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that N,(0;a) =i, N,(a;a) =, for any i, j > 1. Also observe the crucial fact
that on the event A ,(0; @) N A,(a; @), D,(0) and D,(a) are determined by the
points in R(—n"'3a#/%2 n=1/3a#/?) and R(n"'3a — a?/?),n "% +
a?/?)), respectively. Thus, by stationarity,

E(ﬁn(o)ﬁn(a)IA"(O;a)ﬂ A,,(a;a)'Nn(O; a) = i9 Nn(a; a) =J)

= E(D,(0) 1 0,0V, (0; @) = i) B(D,(0) I (0, 0N (03 @) =),
forall i, j.

We then clearly have
P[N,(0;a) =i, N,(a;a) =j]

P[N,(0;a) =] P[Ny(as @) =] |

~ 2
|S,5(a)| < (E|D,(0)]) sup
i,jeIn(a)

This together with Lemma 3.4 and Theorem 2.4 give
(3.5) sup sup na 3f|S,,(a)| <Cs,
nzl A<a<wnl/?
for some positive constant C;. Finally, S,;(a) is handled the same way as
Snl(a), giving
(3.6) sup sup exp(C,a*?’?)|S,;(a)| < C;,

nzl A<as<mnl/?

for some finite positive constants C, and C;. Thus, by (3.4)-(3.6) and the fact
that 0 < B < 2,

lim lim supfml/3|cov(n2/3Dn(0), n?3D,(n"%a))|da
a=A

Ao 5 0
< lim limsup [™"(S,1(a)| +]S,2(a)| +]8,5(a)]) da = 0.
2% p5w a=A
This concludes the proof. O

4. A central limit theorem. The main result of this section is the
following theorem.

THEOREM 4.1. As n — o, the distribution of n%8(V, — EV,) converges to
Normal(0, 02), where o? = 4mw[’_, cov(E£(0), Eé(a)) da < », where E and
&(a) are as defined in Section 2.

To prove this result we use a blocking method. Different blocking methods
now provide standard tools for proving limit theorems for dependent random
quantities. See the collection edited by Eberlein and Taqqu (1986).

Throughout let < 8 <  and 0 < & < 1 be fixed constants. Define

tn,j = 27Tj/[nﬁ]7
b, =2m(j—&)/[nPl,  j=0,...,[n%]
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where [n”] is the integer part of n”. Let N, ; be the number of (X;,Y)),
1<i<n,in R(#, ;-1 + ¢, ;-1)/2,(¢t, ; + t, ))/2). Also let '

I, = {i:|i/(np,) — 1| < 1/2},

where p, = area of R((¢, ;_, +t, ;_1)/2,(t, ; +t, ;)/2). Define the follow-
ing events:

n bh o1t t, i
A, ;= ({(Xi,Yi)}i=1 QR(‘%’%_J‘I‘,tn,j_l))

t o+t .
(v R[5, ),

B, ,=(N,,;€1l,),

[nP] [nP]

n n An,j’ Bn = n Bn,j'
Jj=1 Jj=1

S
I

LEmMMA 4.2. lim,  {P[A%] + P[B:]} = 0.
Proor. By the triangle inequality,
P[A}] + P[B] < [nP](P[A; ] + P[B; 1]).

The rest of the proof parallels the proofs of Lemmas 3.2 and 3.3 and is
omitted. O

LEMMA 4.3.

[nP]

. Jj=1
lim sup

- - -1 =0.
n-e ijel,,,lsjs[nﬁ] P[Nn,j =1j 1 <J=< [nB]]

Proor. Clearly, R(t, ;, ; + ¢, ; 1)/2,(t, ; +t, )/2), 1 <j<[nfl, are
mutually disjoint. By the choice of B it follows from the proof of Lemma 2.5
that there exists a positive constant C such that, for all n > 1and 2 < <
[n?],

P[Nnj=ij,lsjsl—1]P[Nn,=i,]
‘ sup : ; : : -1
(4'1) ijeIn’ lstl P[Nn»J = lj’ 1 S‘] S l]
< C(l - 1)np?.
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Since n?f*1p2 — 0, so long as n is greater than or equal to some n, we have
Cn?f*!p? < 1. We will show that, for n > n,,

— 1| < Ck(k — 1)npZ,

k

[1P[N, ;=i)]
4.2 sup J= - i
( ) ijelmlstl P[Nn,J=lJ’1SJSk]

for all 2 <%k <[n*], from which the lemma follows readily. We will use an
induction argument, as follows: (4.2) holds for £ = 2 by Lemma 2.5. Suppose
now that (4.2) holds for £k <m — 1, where 2 <m — 1 < [n?]. Observe that,
by the triangle inequality,

m
jl:IlP[N,,,J-=ij]
P[N, =i i<j<m] |
-1
(4.3) m [TP[N, ;=]
<Y /o1
T P[N,=i1<i<1-1]
o P[N, ;=i;,1<j<l-1]P[N,,=1i] .
P[N, ;=i,1<j<l]

By the induction assumption for n > n, we have

-1
[TP[N, ;=i
Jj=1

P[N, ;=i 1<j=<i-1]

<1+C(U-1)(1-2)np2<2, 2<l<m.

This, together with (4.1) and (4.3), implies

P[N, ;=1i;,1<j<m]

n,j J? -1l < Z 2C(l - 1)np,, = Cm(m — l)npf,
HP[Nn,j = iJ'] =2
j=1

for n > n,, proving (4.2) for 2 = m. The proof is complete. O
ProOF OoF THEOREM 4.1. By (1.1),

n%8(V, — EV,) = n%® jo (D, (t) — ED,(t)) dt

_f;j:ﬂ(Df(t) — ED?(¢t))dt
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But, as the proof of Theorem 3.1 showed, the variance of the second term on
the right tends to 0, so that the asymptotic distribution of n%¢ (V, — EV,) is
the same as that of n%%/2" (D,(¢) — ED,(¢)) dt. Now write

[nf] [nB]

(4.4) n¥® [*(Dy(t) = ED,(t))dt = ¥ Z,;+ ¥ Z ),
0 j=1 j=1
where

n,Jj

Z,,=n% [* (D,(t) - ED,(t)) dt,

n,J

Z, ;= n%® ["(D,(t) - ED,(2)) dt.
t;,,j

The proof below shows that Z&’LBI]Z,L, ; has a limiting distribution Normal(0,
(1 — £)o?), and the same argument proves that E[J-’LﬁI]Z;, ; has a limiting
distribution Normal(0, €0 2). In view of (4.4) the result then follows by letting
e — 0.

We first examine the characteristic function of £[*7Z, ;. Write

[nP] [nP]
(45) Eexp|if 21 Z, ;| = jl_IlEexp(iOZn,j) + 8,1+ S5+ S,3,
P =
where
[nP] [nP]
S, =Eexp|i0 Y. Z, ;| —Eexp|i0 }. Z, ;|14 3,
j=1 j=1
[nF] [nA]
Sn2 =Eexp i0 Z Zn,] IA"an - 1—.[1EexP(i0Zn,j)IA,,,jnB,,,j’
j=1 J=
[nB] [nf]

Sn3 = l_.llEexp(iOZn,.i)IAn,jﬂ B, ; l_-l::lEexp(iOZn,j)‘
J= J=

First it follows from Lemma 4.2 that

(4.6) lim (1S, + 1S,5l) = 0.

Next we consider S,,. On the event A,, it is clear that Z, ; depends only on
the (X;,Y) in R((¢,, ;_, + ¢, ;-1)/2,(t, ; + ¢, ;)/2), foreach 1 <j < [nR]. To
see graphically why this is the case, observe in Figure 2 that if both of the
darkened sets contain sample points, then Z, ; depends strictly on sample
points that lie on the right of the dashed line.

Notice that R(t, ;_, +t, ; 1)/2,(t, ; +t, )/2), 1 <j < [n*], are mutu-
ally disjoint. Thus, using Lemma 4.3, the argument for handling the quantity
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t:,”j+tn,j

!
tng
tnj—l
t;4—1+¢nd—1
Fic. 2.

S,2(a) in the proof of Lemma 3.5 is readily applicable for showing that
lim, ,,|S,s| = 0. This, (4.5) and (4.6) imply that

[n”] [nf]
Eexp|i0 ), Z, ;| = T] Eexp(i0Z, ;) + o(1),
j=1 Jj=1

where the product on the right-hand side is simply the characteristic function

of [nP] ii.d. random variables. Specifically, let Zn pl<j< [nﬁ] Dbe iid.

copies of Z, ,. It suffices to study the asymptotic d1str1but10n of X" %, ;. For

that we plck an arbltrary constant a from (0, 8 — 3) and define addltlonal

1 .i.d. random variables Z , 1 <j <[n*], such that the joint distribution of
; and Z ; is the same as that of

n_l/e j;)Zw(l—E)nl/s/[nB](ﬁn(u) _Eﬁn(u)) du

and

n-1/6 /02”(1‘8)”1/3/[”ﬁ](ﬁn(u)1(|ﬁn(u)I <n®)

—E(ﬁn(u)l(lﬁn(u)| < n“))) du

where the process (D, (1), 0 < u < 27(1 — £)n'/3/[n?)]) is distributed the
same as (n?/3D,(n~ 1/5,): 0 <u < 27(1 — &) n'/3/[nF]). Since there exist
positive constants C; and Cj such that P[|D,(0)| > x] < C,exp(—C,x), for all
x> 0 and n > 1 (cf. the proof of Theorem 2.4), it follows from the Schwarz
‘inequality and Theorem 2.4 that

[n?]

lim ZEIZ,”—Z | =

n—)ooj 1
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Thus Eg’;BI]ZAn, ; and EB-’;BIJZ:L’ ; have the same limiting distribution. Since
~ - 1/8 B
var(Zn,l) =9p-1/3 f27r(1 emnt’3/n ]((1 _ 8)27Tn1/3—ﬁ _ a)
a=0

X cov(D~n(0)I(|D~n(O)| < n"), D~n(a)I(I§n(a)I < n"‘)) da,
the proof of Lemma 3.5 is readily adapted to show that

@) var(Z, ;) ~ (1 — &)4mn”F j;=0cov(E§(0),E (a)) da

=(1-¢)o?n"h.

By (4.7) and the choice of «,

[n#]

Y EZ, < [nPlEIZ, ’n~ 82w (1 - &)n/?/[nP])n* > 0 asn > .
j=1
Again making use of (4.7), the Liapounov central limit theorem [cf. Chung
(1974), Theorem 7.1.2] implies that X“7Z, ;, and hence Yn9Z, ; and
E[j';ﬁl]Zn, ;» all have limiting distribution Normal(0, (1 — £)a2). This concludes
the proof. O
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