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INSTABILITY OF FIFO QUEUEING NETWORKS

BY MAURY BRAMSON!
University of Wisconsin

Consider a queueing network with customers arriving according to a
rate-1 Poisson process. Each customer proceeds along the same prescribed
route, waiting at the different queues until exiting from the system. The
service times are assumed to be independent and exponentially dis-
tributed. Individual queues may be visited more than once by a customer,
with the mean service time perhaps depending on the stage along the
route. The network is assumed to be first-in, first-out. An obvious neces-
sary condition for such a queueing network to have an equilibrium distri-
bution is that the sum of the mean service times at each queue be less
than 1. We show by means of a class of examples that this condition does
not suffice, these networks being unstable. Each such network possesses
two queues, the first with one slow and one quick stage, and the other
with one slow and numerous quick stages.

1. Introduction. A topic of considerable recent interest within queueing
theory is the existence/nonexistence of equilibria for queueing networks. It
seems intuitively clear that equilibria will exist for systems whose customers
are served substantially more quickly than the rate at which they enter. The
appropriate conditions on the service times are, however, not obvious, and it
is easy to succumb to the temptation of overly broad conjectures. We present
here a class of examples which illustrates this problem.

As motivation, we first review the situation for the standard M/M/1 or
simple queue. Customers are assumed to enter a queue according to a rate-1
Poisson process. Equivalently, successive customers arrive after rate-1 expo-
nential holding times. Customers are served one at a time, leaving the queue
according to independent rate-A exponential holding times. Let N, denote the
number of customers waiting to be served at time ¢. The process N, is a
birth—death process on {0,1,2,...}, and so any equilibrium distribution must
be reversible. Using this, one obtains the equilibria distributions

(1) m(k) =(1—A"HA*k,  k=0,1,2,...,

for A > 1. It is easy to check that for A < 1, there are no equilibria, and in fact
for each A < 1, the system is transient, with N, - « as ¢ — . Also, from
elementary Markov chain theory, the above equilibria are, for given A,
unique.
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A natural generalization of the above model is to networks consisting of a
series of m queues, m > 1. Customers enter the system, as before, according
to a rate-1 Poisson process. Each customer proceeds along the same pre-
scribed route, visiting all the queues, and then exiting from the system. The
service times are again assumed to be independent and exponentially dis-
tributed. Individual queues may be visited more than once, and the rate a
customer is served at a given queue may depend on his/her position, or
stage, along the route. Denote by A; ; the rate for the jth visit to the ith
queue. There is also the issue of a priority for the order of service among
customers at a given queue. A natural assumption is that the network is
first-in, first-out (FIFO), that is, customers at a given queue are served in the
order they arrive there, irrespective of the number of visits previously made.

A fundamental question is under what conditions on A; ; do equilibria
exist for the above FIFO queueing networks. If no equilibrium exists, the
network is said to be unstable. For this, we introduce the notation M= A },
J(i) = the number of times the ith queue is visited along the route, and
w; = LI9 p, ;. Here, p, ; is the mean service time for a customer during a
visit at a queue, and u; can be interpreted as the total mean service time at i.
It is not difficult to check that if u, > 1 for some i, then the network is
unstable.

A natural conjecture is that an equilibrium will exist under the condition

(2) u; <1 foralli.

It is well known that this is in fact the case if u; ; does not depend on j, that
is, the rate a customer is served depends only on the queue, not on the stage
along the route (see [2], [3]). Inspired by the M/M /1 queue, one can, under
this restriction, construct equilibria for which the probability of there being
k; customers at the ith queue, i = 1,..., m, is given by

(3) T(kyseos k) = m (k1) (Rr),

where 7, is as in (1) and A; = u;!. The different possible configurations of
customers at different stages along the route with given k,,...,k, are
equally likely here.

It has been generally believed that the condition (2) should suffice even
when u; ; is dependent on j (e.g., [4] and [9]). In the context of priority
queues (without the FIFO assumption), counterexamples are known ([5] and
[6]). Here, we present a class of FIFO networks satisfying (2) which are
unstable, the number of customers in the system tending to infinity as ¢ — .
These models possess two queues, 1 and 2, and customers whose route
through the system is of the form 1 »2 >2 —> -+ - 2 — 1. The mean
service times u, , and w,; are close to 1, and all other service times are
small. The number of visits to the second queue by a customer is large.

Such examples raise the question of the nature of the critical value of the
mean service times u;, below which an equilibrium must always exist. A
more complicated class of unstable FIFO networks with arbitrarily small
bound, that is, for given u > 0, u; < u for all i, is given in [1]. '
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The author has been informed of related work on FIFO networks by T.
Seidman and A. Yershov. They construct deterministic systems with four
types of customers whose service rates correspond to (2) [7], and determinis-
tic systems with a single customer type [8]. The systems possess instanta-
neous stages.

The paper is structured as follows. In Section 2, we present the models, the
main results and a summary of the proof. In Sections 3-6, the proof is broken
down primarily according to the evolution of the network over four successive
time intervals, after which the network returns to an amplified version of its
original state. Repetition of this procedure demonstrates the instability of the
network.

2. The models. The models are assumed to possess two queues, 1 and 2.
Upon entering the system, customers move along the prescribed route 1 —
252 - - —> 2 > 1, at which point they exit from the system. The stage of
a customer will be denoted by (i, j), with j=1,2fori=1and j=1,...,J
for i = 2: the first coordinate denotes the queue, and the second coordinate
denotes the number of times that the queue has been visited up to then. The
mean service time for a customer is given by

cat (1,2) and (2,1),

(4) . .
éat(1,1) and (2, /), j=2,...,d.

We will assume that

5 399 1 ;1 5 (1-¢)
— <c<1, < —, < ——"
) 400 = ¢ “ =50 502
(8 = 0 is allowed.) Under (5), the condition (2) is clearly satisfied. These
restrictions can be weakened by a more parsimonious choice of bounds, but
for our argument to work as organized, ¢ needs to be chosen fairly close to 1,
and 6 quite small. For the sake of concreteness, the reader can set c =
399,400, J = 1600 and & = 1011, Our main result is the following theorem.

THEOREM 1. Any FIFO queueing network satisfying (4) and (5) is
unstable, with the number of customers in the system approaching infinity as
t — o,

We note that variations in the model can be made without affecting the
main structure of the proof. For instance, the long string of 2’s given above,
252 - -+ - 2 can be replaced by the route segment 2 -3 -2 > 3 —

- — 2 — 3, where the mean service time at (3, j) is the same as at (2, j),
which is again chosen as in (4) and (5).
. Let E, denote the state at time ¢ of a queueing network with prescribed
route 1 > 2 >2 - -~ -2 > 1 as above, and satisfying (4). The symbol
£,i, j) will denote the number of customers at (i, j) at time ¢, and &, will
denote the total number of customers in the system. By (i, j)* [resp., (i, /)],
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we will mean the set of stages in the system strictly beyond (resp., before)
(i, j), and by &,(i, j)* [resp., &,(i, /)1, we will mean the number of customers
in (, j)* [resp., (i, /)"]. For instance,

J
(2,0 =6(1,2)+ ¥ &(2,1).
I=j+1

The proof of Theorem 1 rests on the following induction step.

THEOREM 2. Assume that (5) holds for the process E,, and that
(6) &(L,1) =M,  £(1,1)" < M/50.

Then for some &, > 0, large enough M and appropriate random T (depending
on M),

(7) P(&p(1,1) = 100M, é7(1,1) < M) > 1 — exp(—¢, M)
and
(8) P(¢(&>M/4,Yt€[0,T])>1—exp(—¢,M).

We will later choose T' = 2¢M /(1 — ¢). (a = b will mean that a/b and b/a
are bounded.) Note that the factor 50 in (6) is not special, although we require
the ratio &¢,(1,1)*/£,(1,1) to be small. The bound in (8) can be improved.

Suppose that 5, satisfies (6) for some large M. Repeated application of
Theorem 2 yields

9) P(¢, <M/4 for some t > 0) < 2 i exp[—e,M(lOO)k],
k=0

which approaches 0 as M — . Since all states in the system are accessible
from one another, (9) implies that & — © as ¢t - © w.p.1 for any &,. Theorem
1 thus follows from Theorem 2.

The condittons given in (4) are related to those for the priority queue
example in [5], where the route is of the form 1 - 2 - 2 — 1. The model is
deterministic, with the time between arrivals equal to 1 and service times
having duration 2/3 for the 2nd and 4th stages, and 0 (that is, instanta-
neous) for the 1st and 3rd stages. Priority is given to customers at the 2nd
and 4th stages. One can check that if there are initially M customers at the
1st stage and none elsewhere, then at ¢ = 4M, the state of the system will
have doubled, with 2M customers at the 1st stage [cf. (7)]. This behavior
repeats, with the number of customers approaching infinity as ¢ — c.

The remainder of the paper is devoted to demonstrating Theorem 2. [We
will actually examine ¢, in somewhat greater detail and under modest
, generalizations of (5) and (6).] We proceed by introducing some notation, and
then outline the basic argument.

Customers at the ith queue, i = 1,2, at time ¢ may be ordered according to
the times at which they are next served, so one can talk about a “first” or
“last” customer in this sense. Note that customers entering the network
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earlier on may be behind more recent arrivals according to this ordering. Let
S; denote the time at which the last of the original customers (customers at
t = 0) at the 1st queue is next served. Let S,,S,,...,S;,... denote the
successive times at which the last customer at the 2nd queue is served, where
the ordering is made at ¢ = S;_;. Clearly Sy,...,S;,... are all stopping times
for B,. Set S, = lim,; ., S; and let S; = S;,; = -~ =S, when the 2nd queue
becomes empty. [S,, < % w.p.1 because of (2).] We can think of the intervals
(S,,S,,1], 1 =1,2,..., as “cycles”, for which each customer starting at (2, j),
j < dJ,ends up at (2, j + 1). Note that no customer can be served twice at the
2nd queue before every other customer there is served once. We also let T' (as
in Theorem 2) denote the time at which the last customer at (1, 2) at time S, ;
leaves the queue. We will write B, ,(i, j) [resp., ¥, ,(i, /)] for the number of
customers arriving at (resp., departing from) (i, j) over the time (s, ¢], and
B, ) = Bo, (i, ) (v(i, J) = v, (i, 7). Here B, ,(1,1) is the number of cus-
tomers entering the network, v, ,(1,2) is the number leaving the network and
Yo, {(x) = B, () if y is the stage immediately following x along the route.
Note that

(10) &(x) = &(x) + By, (%) = %,(%)

for all x and s < ¢.

We close this section by summarizing the argument for Theorem 2. The
following six steps illustrate the main ideas, although the reader should keep
in mind that they involve some oversimplifications. In particular, we are
ignoring the contributions of the exceptional events over which the individual
steps fail to hold. (They are all exponentially small in M.)

1. S, is small relative to M; at this time, most customers in the network are
at (2,1).

2. Assuming that £(2,1) = ¢'"'M, then S;,, — S, = ¢'M, and so &,
=~ ¢'M. By induction, the first two estimates hold for [ < J.

3. The M original customers at (1,1) arrive at (1,2) at time approximately
S;.1=XY, ¢!M=cM/(1 —c). Until these customers leave, new cus-
tomers entering the network cannot be served at (1, 1).

4. The customers remaining at the 2nd queue after time S, ; thus advance
quickly toward (1, 2), without other customers arriving at this queue. So
the 2nd queue is almost empty by time S,; = ¢cM /(1 — ¢), and few cus-
tomers remain at (1,2)".

5. At time S, , there are on the order of =;~ ¢!'M =~ M /(1 — ¢) customers at
(1,2). On account of step 4, most have arrived within time const.c’M of
one another. )

6. The additional time T' — S, ; required for these customers to leave (1,2) is
on the order of ¢cM /(1 — c¢); the total time T' = 2¢M /(1 — ¢). On the order
of cM /(1 — c) new customers arrive at (1, 1) during (S, ;, T']; they remain
at (1, 1) until the above customers leave (1, 2).

2,1

1

Step 1 follows from Lemma 1 and Proposition 1, step 2 follows from Proposi-
tion 3 and (37), although the actual reasoning is somewhat different, and step



INSTABILITY OF FIFO QUEUEING NETWORKS 419

3 follows from step 2. Step 4 is essentially a consequence of Lemma 5 and its
second corollary, step 5 is a consequence of Proposition 4, and step 6 is a
consequence of Lemma 6 and Proposition 5.

Step 6 states that at time T there are about cM /(1 — ¢) customers at (1, 1)
and comparatively few customers elsewhere in the network. This yields (7) of
Theorem 2, since c is close to 1. It is not difficult to see that (8) follows from
the above scenario as well: Using step 1 and the cycles (S;, S;, ], one can
check that not too many of the original customers at (1,1) will leave the
network before S, ;. By then, the number of customers in the system will be
about M /(1 — ¢). Reasoning analogous to that in step 6 (Proposition 6) shows
that before most of these customers have left (1,2), at least M customers
have entered the network. So throughout [0, T'], there are always not much
fewer than M customers in the network, and (8) holds.

3. Behavior at S,; elementary bounds for longer times. In this
section, we analyze the behavior of 5, at ¢t = S;. As we will see, S; will
typically be small, and nearly all of the customers will be at (2,1). Simple
upper bounds on &,(1,2) + v,(1,2), ¢t <S,;, and consequently on ¢,(1,1),
t €[S;,S;], will also follow. Here and later on, we will find it convenient to

analyze Z, under a modest generalization of the conditions (5) and (6) of
Theorem 2, which will be replaced by

; 399 . L a2 1
' —<c< Vv <n<—
(5) 400 ¢S VT =T=%
and

(6") &(1,1) =M,  £(1,1)" <M.

(The bounds for 5, in Proposition 5 are, for instance, more transparent in
the context of general 7.)

We will repeatedly be making use of elementary large deviation estimates
for the times S;,; — S;, I = 1,2,..., and for the numbers of customers who
have entered and left different stages of the route over these times. These
estimates all reduce to applying the strong Markov property in conjunction
with the following basic bounds: Let X;, X,,... be ii.d. mean-1 exponential
random variables, with Y, = X; + --- +X,,. Then for each a > 0, there exists
an ¢ > 0, so that for all n > 1,

1
(11) P(—IYn - nl> a) <e "
n

(11) can be demonstrated in the usual way by applying Markov’s inequality to
the Laplace transform of Y,,. Note that (11) immediately extends to exponen-
tial distributions with other means. We will be applying (11) throughout the
" paper, with different choices of « and ¢. Rather than do precise bookkeeping
with the different values of ¢, we will typically label them as &, ¢,,...,
without worrying about their exact relationship.
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We start with Lemma 1, which provides upper bounds for S, le(l, 1), and
¥s(2, D.

LEMMA 1. Suppose that (5') and (6') hold. For appropriate &, > 0 and
large enough M,

(12) P(S, > 20M) < exp(—&, M),
(13) P(Bs(1,1) > 39M) < exp(—&,,M)
and

(14) P(ys(2,1) > 3nM) < exp(—&;M).

ProoF. Customers at (1,1) are served at rate 1/8, those at (1,2) at rate
1/c. Applying (6') together with (11) twice (to mean-8 and mean-c exponen-
tials), it follows that for any o > 0,

P(S;>(en+ 6+ a)M) < exp(—&,M)

for appropriate ¢; > 0 and large enough M. Since by (5'), § < 1/2, (12)
follows by choosing a = 1/2. If one substitutes 2nM for S, in (13), then the
conclusion follows from (11) and the assumption that customers enter the
system at rate 1. Adding in the exceptional probability in (12) gives (13) itself.
One obtains (14) in the same way, since customers leave (2, 1) at rate 1/c. O

Using Lemma 1, we can analyze &5(1, 1), £s5(2,1), and £5(2, D*+ ¥s(1,2).

ProPOSITION 1.  Suppose that (5') and (6') hold. For ¢, and &; as above,
and large enough M,

(15) P(&(1,1) > 39M) < exp(—¢&, M),
(16) - P(£5(2,1) <(1-3n)M) < exp(—5;M),
(17) P(£5(1,1) + £5(2,1) > (1 + 4n)M) < exp(—&, M)
and

(18) P(£(2,1)" + 75(1,2) > 4nM) < exp(— &, M).

PrOOF. From the definition of S;,
€s(1,1) = Bg(1,1).
So, (15) follows from (13). Note that
£s(2,1) = Bg(2,1) — v5(2, 1).

Since Bg(2,1) = M, (14) implies that the right-hand side is at least (1 — 3n)M
" except on a set of probability at most exp(— &3 M). So (16) holds. Also,

£s(1,1) + £5(2,1) < §(1,1) + £5(2,1) + Bg(1,1)
<(1+n)M+ Bs(1,1),
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so (17) follows from (13). Since
£6(2,1) 7+ vs(1,2) = £(2,1) 7 + v5(2,1),
(18) follows from (14). O

We next give a convenient upper bound on S, and on the number of
customers who have visited the system by that time.

LEMMA 2. Suppose that (5') and (6') hold. For appropriate &, > 0 and
large enough M,

(19) P(S,> (1 +8n)eM/(1—c)) < exp(—&,M)
and
(20)  P(&, +vs(1,2) > (1+9m)M/(1 —c)) < exp(—&,M).

PROOF. There are, by (6), initially at most (1 + n)M customers in the
system. For ¢ = (1 + 8n)cM /(1 — c¢), it follows from (11) that the number of
customers entering the system up to time ¢ satisfies|

P(B(1,1) >(1+ (1 —c)n)t) < expk—af,M)
for appropriate &5 > 0. (The coefficient 1 — ¢ of 7 is important for our
calculations.) Each customer in these two groups needs to be served at the
2nd queue at most J — 1 times at stages with rate 1/6 and once at the stage
(2,1) with rate 1/c. So by (11), the total amount of time spent serving all

these customers at the 2nd queue is at most
(21) (A+nM+A+1-c)n)t)(c+8(J—-1)+(1-c)n)
off of a set of exponentially small probability.
By the second condition in (5'),
c+8(J-1)+ (1A -c)p=<c(l+2(1-c)n).
After plugging this into (21), one can show after some estimation that (21) is
strictly less than ¢ — 2nM. So the amount of time spent serving all the

customers already in the system by time ¢ at the 2nd queue is typically
strictly less than ¢ — 2nM. Consequently,

J
(22) Pl Y £(2,5) >0forall s € (29M,t]| < exp(—e, M)
j=1
for appropriate g > 0; that is, the 2nd queue will typically be empty at some
time in (2nM, ¢]. By (12), S; < 2nM off of an exceptional set. Since S, is the
next time after S; at which the 2nd queue is empty, (19) follows from (22).
One obtains (20) by applying (11) once again. O

~ Recall that over each cycle (S;, S, ], a customer starting at 2,7, j<d,
ends up at (2, + 1). It therefore follows from (18) that for j = 1,..., J,

(23) P(£5(2,7)" + 75(1,2) > 4nM ) < exp(—&,M).
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Consequently,
(24) P(&,(1,2) + 75,(1,2) > 4nM) < exp(— 3 M).

That is, the total number of customers ever at (1,2) up to time S, is small.
We use (24) to obtain an upper bound on £,(1, 1).

PROPOSITION 2. Suppose that (5') and (6') hold. For appropriate &; > 0
and large enough M,

(25) P(£,(1,1) > 10nM for somet € [ S, S,]) < exp(—¢&,M).

PROOF. Partition [0, =) into the two sets I, and I,, where s € I, if either
the 1st customer at the 1st queue is at (1, 1) or the queue is empty, and s € I,
if the 1st customer is at (1,2). Each I, is the union of a countable number of
half-open intervals. We can bound the process ¢&,(1,1) by

£&(L,1) <G +V,

where V, denotes the number of customers entering the network during
I, N [0,t], and U, is a birth-death process on I, with birth rate 1 and death
rate 1/8, and is constant on I,. (The inequality is due to the departure of
customers arriving during I,.)

It follows from (24) and (11) that for appropriate 5 > 0 and large M,

(26) P(II,n[0,8,]l > 5nM) < exp(—syM)
(where |-| denotes Lebesgue measure). Applying (11) to (26) implies that
(27) P(Vg, > 6nM) < exp(—s,M),  &4> 0.

One can check that W, = exp(U,) — ¢ is a supermartingale, since § is small.
Set

G = {&(1,1) < 3nM; S, < ™)
and
S = min{¢ > S;: U, > 4nM}.

Application of the Optional Sampling Theorem to W, at ¢ = S A e™, together
with Markov’s inequality, shows that

(28) P(Ut24nM for some ¢t € [Sl,e”M];G) =P(S <e™, G)
< 2e "M,
Together with (15) and (27), (28) implies that
P(ft(l, 1) > 10nM for some ¢t € [SI,SJ A e”M]) < exp(—é&, M)
for appropriate £,, > 0 and large enough M. Since S, < S,,, (25) follows from
'(19) of Lemma 2. O

4. Behavior of the system up through S;,,. On account of Proposi-
tion 1, we know the behavior of Eg: Most of the customers are located at
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(2,1). From (23) and Proposition 2, we have upper bounds on &,(i, j) at other
stages of the route. We now examine the behavior of E, in detail at the times
S, 1=2,...,J + 1. As we will show, for [ <J, the greatest number of
customers will be at (2,1), with (2,1 — 1),...,(2, 1) possessing geometrically
decreasing numbers of customers; at S, ; a corresponding statement holds if
one starts the sequence with (1,2). To show such behavior, we will make use
of the following induction hypothesis.

INDUCTION HYPOTHESIS (IH). For given I,
(29) P(&s(1,1) + £5(2,1) < (e - 3m)M) < exp(—¢, M),
(80)  P(&(1,1) + £5(2,1) > (¢! + 13n) M) <-exp(—¢,, M)

and
(81) P(I&5(2,)) — ¢ MI|> 130M) < exp(—&,5M), j=2,...,lAJ,

all hold for appropriate €, 1, €, 5, €, 3 > 0 and large enough M.

Our main result in this section is the following proposition. We will be
primarily interested in the conclusions for [ =J and [ =J + 1.

PROPOSITION 3. Suppose that (5') and (6') hold. Then (29)-(31) are valid
foralll=1,...,J + 1.

We first observe that for I = 1, (29) and (30) follow from (16) and (17); (31) is,
in this case, vacuous. It also follows immediately from Proposition 2 that
given (29),

(82)  P(&(2,1) <(c'"'~13n)M) <exp(—¢&,4M), &,4>0

holds for I = 1,..., J. [(32) is not true for [ = J + 1.] It is easy to check that
(31),for 1 =2,...,J + 1, follows from (30) and (32) if j = 2, and from itself at
the previous time (at j — 1) for j > 2. To demonstrate Proposition 3, it
therefore suffices to show that (29) and (80) hold for I + 1, given that they

hold for I. We note that by checking the evolution of E, over the cycles
(S,,8;,11, 1 =1,...,J, one obtains from (16)—(18) the extension of (31),

(33)  P(l&,, (1,2) +vs,,(1,2) — M| > 8nM) < exp(—&,, M).

[One can also apply (31) itself at j = J and ¢ = S, with 13 replacing 8.]
To examine IH, we first obtain bounds on the number of customers
entering the system over (S;, S;,,].

LEMMA 3. Assume (5') and that IH holds for given I,1 <1 < J. Then
1
(34) P Hl Bs, s, (1,1) — c&s(2,1)1 > (1 — c)n| < exp( —& sM)

for appropriate &, 5 > 0 and large M.
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PrROOF.  On account of (30) and (32), |£4(2,1) — ¢!~ 'M| > 13nM holds only
with exponentially small probability. One can employ (11) to show that off
this and another exceptional set, the time it takes to serve these customers is
within (1 — ¢)nM /4 of ¢és(2,1). By (31) and (18), the number of customers at
other stages of the 2nd queue is

l
<[ X +13n(d - 1)|M<2JM,
Jj=1

again, off an exceptional set. By (5') and (11), the time required to serve all of
these customers is usually

<28JM+ (1 —c)nM/4 < (1 —c)nM/2.
So, off of the exceptional sets,
(35) |Sl+1 _Sl _Cgsl(z, l)l < 3(1 _C)nM/4.
Now (34) follows from a final application of (11). O
We note that direct estimation of S;,; — S, in terms of ¢!M instead of as

in (35) would not allow us to retain the factor 1 — ¢ in (34). This factor is used
in the following proof.

PrOOF OF PROPOSITION 3. We need to verify (29) and (30) for [ + 1, given
that they hold for I. Abbreviating ¢,(,1) for £(1,1) + £,(2,1), we first note
that

(36) €5, (v 1) = &5(1, 1) + B, 5, (1, 1),

since those customers at (2, 1) at S; have already been served by time S, ;.
Off of the exceptional set given in Lemma 3, this is

2 &(1,1) +cés(2,1) — (1 —c)nM
=cés (1) + (1 —c)(&(1,1) - nM)
2 cés (1) — (1 —c)nM.
Off of the exceptional set in (29), this is at least (¢! — 39)M. So
P(gsm(-, 1) < (cl - 31;)M) <exp(—¢ M) + exp(—¢&; s M).

This implies (29) for [ + 1.
To obtain (30) for ! + 1, we again apply Lemma 3 to (36) to get, off of the
exceptional set, .

€5, (1) < &g(1,1) +¢dg(2,1) + (1 —c)nM
= C§s,("—1) +(1- C)(fs,(l’l) + UM)~
Off of the exceptional sets in (30) and Proposition 2, this is
<cés(,1) +11(1 — c)nM < (¢ + 139) M.
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So,
P(§SM(~, 1) > (c' + 1317)M) <exp(—&;M) +exp(—¢, ,M) +exp(—¢, ;M).
This implies (30) for [ + 1. O

We also wish to keep track of S;. Along the lines of Lemma 3, one can
demonstrate for I = 1,..., J, that

1
(37) P MISI+1 — S, —c'M| > 14| < exp(—¢, ¢M)

for appropriate ¢, ¢ > 0 and large M. In particular, setting / = J, by (5,
5. Behavior of the system over (S;,S,;l. The nature of 5, changes
over (S, S;,]. By (24), few customers have visited (1, 2) by time S; by (33),

this has changed completely by time S, ;. Lemma 4 gives us a lower bound
on the number of customers still at (1,2) at this time.

LEMMA 4. Assume that (5') and (6') hold. For appropriate ¢, > 0 and
large M,

(39) P(&s,, (1,2) <229M) < exp(—&:2M).

PrOOF. On account of (24),
P(ySJ(1,2) > 4nM) < exp(—&;M).
By (38) and (11),
P(vs,s,,(1,2) > 169M) < exp(—&;3M), &3> 0.
These two bounds show that
P(vs,,(1,2) > 20nM) < exp(—&3M) + exp(—&15M).
Since by (6'), n < 1/50, (39) follows from (33). O

Let o denote the further time after S, ; until the last customer at (1,2)
at time S, ; is served. The following bound is a direct consequence of (39)
and (11).

COROLLARY 1. Assume that (5') and (6') hold. For appropriate &1, > 0
and large M,

(40) P(o < 21nM) < exp(—&,,M).

No customer entering the system after time S;,; will be served at the 1st
. queue until the customers already at (1,2) have been served. On the other
hand, customers already waiting at the 2nd queue continue to be served.
Lemma 5 gives an upper bound on the further time S,; — S, it takes for
the customers at (2, /), j = 2,..., J, to enter (1,2).
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LEMMA 5. Assume that (5') and (6') hold. For appropriate &5 > 0 and
large M,

(41) P(Sy; — 8,1 > 160M) < exp(—&15M).

Proor. By (31) with I = J + 1, the number of customers at all of the sites
2,7),j=2,...,d,at time S, ; is, except for exponentially small probability,

J
(42) <| e/t 4 18n(J — 1) | M.
j=2
By (30) and (5'), the number of customers at (1,1) and (2,1) is, off an
exceptional set,
(43) < (¢ + 139)M < 149M.

Note that (42) and (43) sum to at most JM /(1 — c).

Each customer starting at some (2, j), j > 2, needs to be served at most
J — 1 times before reaching (1,2), each of which occurs at rate 1/8. Those
customers starting at (1, 1) and (2, 1) in addition need to be served at (2, 1), at
rate 1/c. Let 7 denote the amount of time spent serving all of these cus-
tomers at the 2nd queue. We may apply (11) to the total service times at (2, 1)
and at (2, j), j = 2. Since by (5'),

147 + 8J2%/(1 — ¢) < 157,
it follows from (42) and (43) that
(44) P(7> 16nM) < exp(—&M), £ > 0.
One obtains from Corollary 1 and (44) that
P(o<7) <exp(—&, M) + exp(—&4M).

Since no customers entering the system after S, ; arrive at (2, 1) until time
o, this means that off an exceptional set, all customers at (1,1)* at S,
arrive at (1,2) by time S;,; + 7. [This need not be true for customers at
(1,1), since their service at (1,1) might be delayed by customers at (1,2),
during which the 2nd queue may be empty.] The inequality (41) therefore
follows from (44). O

The following bound on the number of customers exiting from the system
by time S, ; is a consequence of Lemma 5.

COROLLARY 2. Assume that (5') and (6') hold. For appropriate £,; > 0
and large M,

. (45) P('ysu(l,2) > 3617M) < exp(—&,;M).

Proor. Together with (38), (41) implies that
P(SZJ - SJ > 317]M) S eXp( _GJ,GM) + eXp(—815M).
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So by (11),
P(')/SJ’SN(I,Z) > 32nM) <exp(—&, M), £13 > 0.
Then (45) follows from (24). O

Lemma 5 also provides the following bound for the number of customers at
(1,2) at time S,,.

COROLLARY 3. Assume that (5') and (6') hold. For appropriate &, > 0
and large M,

(46) P(&,,(1,2)" > 819M) < exp(— &1, M).

PrOOF. Contributions to &g (1,2)” consist of customers either (a) at
2,7), j=2,...,dJ, at time S;_,, (b) at (1,1) or (2,1) at that time, or (c)
arriving at (1, 1) later. Those customers originally at (2, j) will automatically
have arrived at (1, 2) by time S, ;. On account of (41) and (11),

P(Byi1,20(1,1) > 1TqM) < exp(— &0 M), £99 > 0,

so not many customers enter the system over (S, ;, S, ;1. Together with (30),
for [ = J + 1, which bounds the number of customers at (1, 1) and (2, 1), this
implies that

P(&5,(1,2)" > 310M) < exp(—¢;,1,, M) + exp(— 59 M)
(recall that ¢’ < 7). Inequality (46) follows. O

We see from (46) that at time S, ;, not many customers are left at (1,2)".
On the other hand, by (45), most of the customers ever in the system are still
at (1,2) at time S,;, not having had enough time to be served there. More
detailed information on S,; and §SN(1, 2) is given in Proposition 4.

PROPOSITION 4. Assume that (5') and (6') hold. For appropriate &4 > 0
and large M,

cp M c M
(47) P - <8,; < 1_c)zl—exp(—aZlM)
and
M oM ‘
(48) p T <&,/(1,2) < 1o >1-exp(—ey M),

where p; = p(n) > 1/3, 6, = 6,(n) and p;,0; > 1 as n— 0.

PrROOF. Since S,; < S,, it follows from (19) that
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This gives the upper bound in (47). For the lower bound, we use (87), with
l=1,...,dJ,to get

J
(49)  P(S,, < ¥ (¢! —14n) M| < exp(—e5, M), &5, > 0.
=1

We can bound the preceding sum as follows:

J Jo
(50) Y () —14n) = ¥ o — 14jom,
j=1 j=1
where c¢/o~1 > b, ¢/o < b, and b satisfies
(51) 1 = be/[1410g(1/b)].

One can check that, since ¢/ < 7 [by (5)], j, <J holds. Since n < 1/50,
b < 1/3 is always satisfied. With a little estimation, (51) implies that 14,7
< be/(1 — ¢). On the other hand,

. Jo
(52) Y= (1-b)e/(l-c),
j=1
so the right side of (50) is at least (1 — 2b)c/(1 — ¢). For b = 1/3, this is
¢/[3(1 — ¢)]; as 5 = 0, b — 0. Plugging this bound into (49), we see that the
lower bound in (47) holds.
Since &g, (1,2) < & + v5(1,2), it follows from (20) that

P(fszJ(l,Z) >A+9)M/(1 - c)) <exp(—gM).

This gives the upper bound in (48). For the lower bound, note that by time
S, all the customers at the 2nd queue at time S; have entered (1, 2). So by
(29) and (31), with [ = JJ,

(53)

J
P( Bs,,(1,2) < Y (77 - 13n)+M) < exp(—&y5M), £95 > 0.
j=1

Together with (45), this shows that
p

J
&, (1,2) < ; ((cJ_j - 1311)+ - 3617)M) <exp(—e&yu M),

Jj=1

(54)
£94 > 0.

The estimates for the sum in (54) are the same as in (49) after absorbing the
term 367, and they give the same bounds except for the factor of c¢. So the
lower bound of (48) also holds. [One is, of course, free to use the same
coefficients p,, 6; and &, in (47) and (48). O

6. Behavior over (S,,,T]; conclusion. Let T denote the time at
which ‘the last of the customers at (1,2) at time S,; leaves the system. On
account of Proposition 4 and Corollary 3, we know that nearly all of the
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customers at time S,; are at (1,2). This enables us to analyze 5, and T
without much trouble. We first estimate T — S, ;.

LEMMA 6. Assume that (5') and (6') hold. For appropriate e55 > 0 and
large M,

cp, M cO, M
2 T8y, s

(55) p >1—exp(—ey5M),

where py = py(n) > 1/3, 0, = 0,(n) and py, 0, > 1 asn — 0.

ProoF. The lower bound follows from (48) and (11). For the upper bound,
note that T will occur by the time all of the customers in the lst queue at
time S,; have been served. By Corollary 3, &, (1,1) < 31nM off of an
exceptional set, and by (48), the same is true for &g, (1 2) < ;M /(1 — ¢). The
bound therefore follows by applying (11) separately to the total service times
for the customers at (1,1) and (1,2). O

Proposition 5 gives us the desired behavior of E,

PROPOSITION 5. Assume that (5') and (6') hold. For appropriate g5 > 0
and large M,

56 P 2cp3M T 2003M 1 M
(56) (l—_cS < 1—0)2 — exp(— &y M)
and
P3M sM
(57) p 1o = &r(1,1) < |z 1 — exp(—&y6M),
where ps = ps(n) > 1/3, 65 = 03(71) and pg, 05 = 1 as 1 = 0. Moreover,
(58) P(§T(1,1) <M)z1-exp(—sM).

Proor. Inequality (56) follows immediately from (47) and (55). Applica-
tion of (11) and (55) implies that

> 1 - eXp(—827M), Egr > O,

co M
(59) Plic<% ﬂ1D<

where p, and 6, have the same properties as p, and 6,. None of the
customers entering the system after time S,; can be served by time T, since
(1, 2) is still occupied by earlier customers. Therefore,

; fT(l’l) > Bs,, r(1,1),
from which the lower bound in (57) follows. On the other hand,
ér(1,1) <&, (1,1) + Bs,, 7(1,1),
together with (46) and (59), implies the upper bound in (57).
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No customers entering the system after time S,; can be served at (1,1)
before T'. Also, all customers at (1,2) at time S,; will be gone from the
system by time 7. So

£r(1,1)" < &,(1,2) ",

and (58) follows from (46), since n < 1/50. O

We need an elementary lower bound on ¢, ¢ € [0, T], for (8) of Theorem 2.

LEMMA 7. Assume that (5') and (6') hold. For appropriate £, > 0 and
large M,
(60) P(¢(,=2(1-36n)M Vte[0,T])>1—exp(—eyM).

ProOF. Corollary 2 states that the number of customers leaving the
system by time S, ; is comparatively small:

P(vs,/(1,2) > 36qM) < exp(—&,; M),  £,>0.

So, on account of (6'),
(61)  P(¢ <(1—36n)M forsome ¢ € [0,S,,]) < exp(—&,,M).

[This bound can be improved to (1 — 4n)M by considering £, separately over
[0,S,;] and (S, S, ], rather than over [0, S, ;].] To examine the behavior of
¢ over (S,,;,T], we introduce the time 7" = S, ; + 2M. It follows from (11)
that

(62) P(Bs,, r(1,1) <M) <exp(—e55M), £59>0
and
(63) P(vs,, 7(1,2) > 4M) < exp(—e30M), &35 > 0.

Together with (48) of Proposition 4, (63) shows that
(64) P(¢ <M forsome t € (Sy;,T']) < exp(—e9; M) + exp(—e50M).

Since customers entering the system after S,; remain at (1, 1) until time T,
(62) implies that

(65) P(¢ <M forsomet € (T' AT,T]) < exp(—ey9M).
Hence (60) follows from (61), (64) and (65). O

Proposition 5 provides us with a detailed description of the behavior of E;.
Since ¢ > 399/400, the lower bound in (57) states that &,(1,1) > 100M.
Together with (58), this implies (7) of Theorem 2. Display (8) of Theorem 2 is
an immediate consequence of Lemma 7, with n = 1/50. So Theorem 2, and,
consequently, Theorem 1 hold. The process =, is therefore unstable, with
£ — ©' as t > », More detail on the asymptotics of E, under (6') is supplied

by Propositions 1-5.
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