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GENERALISATIONS OF THE BIENAYME-GALTON-
WATSON BRANCHING PROCESS VIA ITS
REPRESENTATION AS AN EMBEDDED
RANDOM WALK

By M. P. QUINE AND W. SZCZOTKA
University of Sydney

We define a stochastic process £={X,, n =0,1,2,...} in terms of
cumulative sums of the sequence K, K,,... of integer-valued random
variables in such a way that if the K; are independent, identically
distributed and nonnegative, then £ is a Bienaymé-Galton-Watson
branching process. By exploiting the fact that 2’ is in a sense embedded in
a random walk, we show that some standard branching process results
hold in more general settings. We also prove a new type of limit result.

1. Introduction. Let K;,K,,... be integer-valued random variables
(rv’s) defined on the same probability space (,.%#, P) and define sequences
#={X,, n=0,1,2,...} and I=1{T,, n=0,1,2,...} by X, = 1, X, = K,
T,=%" o X;,n=0,1,2,... and

T, 1+X,
(1.1) X,,+1=( h Kj)I(ann, n=12,...,

Jj=T,.1+1

where I(A) denotes the indicator of A.

If K,,K,,... are independent and identically distributed (iid) and nonneg-
ative, then 2’ is a Bienaymé—Galton—Watson (BGW) branching process [see,
e.g., Heyde and Seneta (1977)] and 9 is the corresponding total progeny
process (see Proposition 1). So the representation (1.1) allows us to extend the
definition of the BGW process to the case where the offspring distribution is
concentrated on all integers. In that case, that is, when K,, K,,... are iid
with P(K; < 0) > 0, then &2 can be given a branching process interpretation
in terms of a two type process with X, denoting the excess of type I over type
IT particles at the nth generation. In the case where K;, K,,... are indepen-
dent and nonnegative but not iid, then 2 can be regarded as a branching
process with varying offspring distributions.

In this paper we investigate to what extent familiar BGW branching
process results remain true when the conditions on the distribution of
{K,,K,,...} are relaxed. We focus here on three subjects, namely:

1. The probability of extinction (Theorems 2 and 3).
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2. The almost sure asymptotic behaviour of {X,} when the probability of
extinction is less than 1 (Theorems 4-6).
3. The rate of asymptotic convergence (Theorem 7).

For BGW processes it is well known that P(X, - 0 or X, » ©) =1,
P(X,-0=1ifa=4EK,<lorifa=1P(K; =1 <1 and P(X, > »)
> 0if a € (1,»]. Furthermore W, =4 X, /a™ converges almost surely (a.s.) to
some random variable W, say, and if the variance o2 =4 var(K,) < «, then
E(W, — W)? - 0 [see, e.g., Harris (1963)]. For our process 2 we show that
similar results hold when the K; assume any integer values. In particular,
assuming here for clarity that K, K,,... are iid, we have the same results as
for the BGW process with these differences: (1) In the critical case (a = 1),
P(X, - 0) = 1 is implied by the finiteness of E(e *%1) for all ¢ > 0, which
trivially holds if P(K; > 0) = 1 (Theorem 3); (2) when a > 1, for the as.
convergence W, > W when P(K; < 0) > 0 we need the finiteness of o2,
which seems to be a technical assumption [see Theorem 4; as a matter of fact,
to prove Theorem 4 we need the boundedness of E(—X}_; K;)* with respect
to n, which is a consequence of the boundedness of {27=1 EKJT}, which
trivially holds if P(K, > 0) = 1]. Furthermore, we have obtained (Section 6,
Theorem 7) some asymptotic results that seem to go beyond existing results
for the BGW case, namely,

Tn+1 - aTn Xn+1 - (a - l)Tn

_ WU, WU’
ova® ~o ova® “o
and
Tn+1 - aTn Xn+1 - (a - l)Tn
—|U >0 A, U>0 N
( oy T, | ) ~o ( oyT, | 7o

as n —» o, where U=aW/(a — 1), U’ =, U, # has the standard normal
distribution and U’ and .#” are mutually independent. These last results seem
to be interesting from a practical point of view because they give predictions
for T, , or X, ,, if we know T,. For instance,

P(aT, - 2,/,0YT, <T,,, <aT, + z,,,0/T,IU >0) =1 - a,

where P(#/"> z,,,) = a/2. All the above results are formulated in Theorems
2-7 in greater generality, dropping the assumption that the K,’s be iid or
even independent. Their formulations cover the BGW case with its standard
assumptions. Of course dropping these assumptions means that the tradi-
tional methods for BGW processes based on the existence of a functional
equation for probability generating functions are not easily applied (see
Section 3.2). Our methods of getting the main results are based on our new
representations (1.1), (2.3) and (2.4), which allow us to treat the process & on
the event {T}, —» «} as an embedded random walk and under some further
conditions, treat the process {max(W,,0), n = 0,1,2,...} as a (sub)martingale.
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In Section 2, we discuss the ramifications of the representation of 2 on
{T,, » =} as an embedded random walk and indicate the restrictions on the
K’s that make 2 a BGW process. Furthermore, we present there our main
results. Sections 3-6 contain proofs and further discussion.

2. Main results. Here, in Theorems 2-7 we present the main results of
the paper dealing with the process #. Before that it would be helpful to have
some preliminary facts. One of them is the following proposition, which is a
consequence of the representation (1.1) and indicates the successive degrees
of specialisation of our process leading to the BGW process. We discuss the
proof of this proposition briefly in Section 3. We denote by &, the o-field
generated by {X,,..., X,}, write y*= max(y,0), y~= max(—y,0) and write
=, simply as = . We define the conditional variance var( X |%) as E(X?2|%)
- (E(X|9))2.

ProOPOSITION 1. (a) If the rv’s K, K,,... are such that
E(K,,.,|K,,K,,...,K,) =a, n=12,...,
then
(2.1) E(X,, %) = aX, n=20,1,....
If in addition
var(K, ,|K,,K,,...,K,)=0d%, n=12,...,

then
(2.2) var(X,, %) =o2X;, n=0,1,....

(b) If the rv’s K|, K,,... are independent, then {(X,,T,_,), n>1} is a
Markov chain.

(¢) IfK,K,,... are iid, then & is a homogeneous Markov chain.

(d) IfK,,K,,... are iid and nonnegative, then 2 is a BGW process.

Other valuable observations are the following representations of 27 and 7.
For the process 7, on the event {X,, > 0} the indicator function in (1.1) equals
unity for n = 1,2,...,m, so

T,

(2.3) T,,,=1+ Y K;, 1l<ns<m,
j=1
and
TIL
(24) Xn+1=Tn+1—Tn=1+. K;, l1<n<m,

1

I

J

where K =K, -1 [note, however, that (2.3) fails if X, < 0 for some n]. It
follows that on the event {T), > «} = N, {X,, > 0}, 2 is embedded in the
random walk ~¥={S,, n=0,1,2,...}, where S;=0 and S, =%, K

j=1 B
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n=12,..., in the sense that
X,,1=1+8,, n=>L

A similar fact was observed by Harris (1952) and used by Lindvall (1976) to
obtain an estimate of the right tail of the distribution of the maximum
generation size in a critical BGW process.

The representations (2.3) and (2.4) of 7 and £ are crucial in our investiga-
tions and allow us to use methods of random walk in our treatment of these
processes. Suppose for instance (1/n)X!_,K; - a > 1 a.s. On the event {T,, —
oo}, from (2.3) we have T, , , /T, — a and from (2.4) we have X, ., /T, > a — 1.
Furthermore, using the fact that log T),, ; = X}_,log(T;, ,/T;) + log T}, it fol-
lows that on {7, — =},

1
(2.5) —logT,,, — loga.
n

This leads to the convergence n‘/ T, » a on{T, — «}.
Representations (2.3) and (2.4) also give the relation

Xn+1 -1 _ (l/Tn)gT"

Cn+1 - (cn/Tn)cn+1/cn
which leads to the following result: If ¢, 'c,,; = ¢ > 1, then X, /c, » W and
T,/c, > cW/(a — 1) are equivalent on {T, — <} N {(1/n)X}_K; - a > 1}
This equivalence is also trivially true on {7, » <} N {(1/n)Z!_K; — a > 1},
so we have

X, - T, cW 12 X 1
N
One half of (2.7) (that convergence of X, /c, implies that of T, /c,) has been
proved and used in the BGW process context by Heyde [(1970), Theorem 3].
We use this equivalence in Corollary 5.

These results are trivial consequences of the representations (2.3) and (2.4)
and are based on the sole assumption that the average of the K,’s converges
almost surely. By assuming more and using more sophisticated methods, we
are able to prove stronger results. For instance, Corollary 5 gives a rate of
convergence corresponding to (2.5) in the sense that it implies that log T,, —
n log a converges almost surely to a finite rv. This means the a.s. convergence
of T, /a™ to a finite rv and of course the a.s. convergence to 0 of the sizes of
the increments of that process. Theorem 7 gives the speed of this last
convergence in the sense of weak convergence.

Now we state the main results dealing with the subjects 1-3 described in
Section 1. Concerning subject 1, extinction means the event{X, - 0} = U .,
{X,, < 0}. The next two theorems, which contain the BGW criticality theorem,
concern conditions under which the following results hold:

(2.8) P(X, »xorX, »0asn —>x») =1,
(2.9) P(X,—»0)<1

(2.6) on {T, — o},
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and
(2.10) P(X,—-0)=1.

THEOREM 2. Suppose K, K,,... are such that, as n - «,

(2.11)

Sn
— — A a.s.
n

for some A € [ —x,»]. Then:

(@) If A # 0, then (2.8) holds.
) IfA2>0and P(S, >0, n=1,2,...) > 0, then (2.9) holds.
(¢) If A <0, then (2.10) holds.

THEOREM 3. If K|, K,,... are iid with E(K,) =1 [so that (2.11) holds
with A = 0] and P(K; = 1) < 1, then a sufficient condition for (2.10) to hold
is that there exists a number C < » such that

(2.12) —E(K, + +KJ|K, + - +K;<0) < C forallj.
Furthermore, (2.12) is implied by
(2.13) ¢(t) =Ee®i' <o forallt > 0.

It is worth adding that without the assumption of Theorem 3 that the K’s
are iid, it can happen that (2.11) holds with A =0, yet X, - X a.s. for a
proper rv X or that X, — « a.s. (see Examples 1 and 2, Section 3.2). What
happens when (2.12) fails is an open question.

Concerning subject 2, we need to make the basic assumption that for some
a > 0 the K’s are such that (2.1) holds. A sufficient condition for this is given
in Proposition 1(a). Condition (2.1) allows us to exploit the (sub)martingale
structure of the process {(W,",#,)} and prove (when a > 1) its almost sure
convergence (Theorem 4) as well as its convergence in mean square (Theorem
6). We have the following results concerning subject 2.

THEOREM 4. Assume (2.1) holds with a > 1. If K, K,,... are such that

r+s +
(2.14) E (— Y Kj) K,Ky,....,K.| <D<
J=r+1
forallr,s > 1, then
Xn
(2.15) W, = P W a.s.asn — o,

where W > 0 is an a.s. finite rv. Furthermore (2.15) is equivalent to W,/ =
Xy /a" > Wa.s.

From Theorem 4 and (2.7) we get the following corollary.
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COROLLARY 5. Under the conditions of Theorem 4,

2.16 T, aW
. _
(2.16) p—

an

a.s.
whenever (1/n) L', K; - a a.s.

THEOREM 6. Let the conditions of Theorem 4 hold and assume that
var(X,,,%,) = 02X},

where o2 € (0,). Then
(2.17) E(WS —W)* >0 asn - o.
Furthermore, EW > 1 and var(W) > 0.

In the last part of the paper, dealing with subject 3, we give the speed of
the convergence 7,,,/a"*! — T,/a™ - 0 a.s. Roughly speaking, we show
that a®/2*X(T,, ,/a"** — T, /a™) converges in distribution to a mixture of

the standard normal distribution and the limiting distribution of {T, /a"}. The
conditions and formulation of this result involve the random functions

[nt]

1
2.18 Z(t) = ——= K. —a), 0<t<owo,n=1,2,...,
( ) n() U\/—Tt—jgl( J a) ©, n

where o > 0 and a > 1 are some constants and {7(¢), ¢ > 0} is a standard
Wiener process.

THEOREM 7. Assume that the following conditions hold:
(2.19) P(Z,(t)) €Ay,...,Z,(t,) €A,;B)
- P(7(t,) €A,,...,7(t,) € A,)P(B),
for any B € ¥ and any sets A; € Z(R) which are continuity sets of 7(t);

(2.20) {Zn} is tight;
T
(2.21) U, = a—: - U a.s.
Then
Tn+1 - aTn
(222) T -4 2NWU' asn — o,
ova

where ' is a standard normal rv, U' =, U and U’ and 4 are mutually
independent.

Hence as an immediate consequence of X, , , =1T,,, — T, we get the
following corollary.



1212 M. P. QUINE AND W. SZCZOTKA
COROLLARY 8. Under the same conditions,
Xn+1 - (a - l)Tn
aova®

(2.23) -, WU asn — o,

Roughly speaking, assumption (2.19) says that Z, and U are asymptoti-
cally independent, which holds, for example, when the K;’s are iid with mean
a and variance o ? > 0. An extension of Theorem 7 is given at the end of the
paper where we drop (2.19).

All these theorems are proved and discussed in the following sections:
Section 3 deals with Proposition 1 and Theorems 2 and 3; Section 4 derives
moment results based on assumption (2.1); Section 5 contains proofs of
Theorems 4 and 6 together with Corollary 5; Section 6 contains a proof of
Theorem 7.

3. Probability of extinction.

3.1. Proofs. First we consider briefly Proposition 1. We use the notation
E(X; B) = EXI(B) (expectation on the event B). Obviously

(3.1) E(X, ,|X,=r,X,=ry,...., X, =r,) =ar]
for r, < 0, so we prove it for r, > 0. Let ij=14+r ++r;,j=1,...,n,s0
that

Bn =Bn(ll’127“"ln—1’rn) =df{T1 =I’1’T2 =lZ""’Tn—1 =ln—1’Xn =rn}
={X1 =7‘1,X2=r2,...,Xn_1=rn_1,Xn=rn}.

Then
i,_1+r,
82) E(X,,;X,=r,X,=ry,....,X,=r,)=E Y K,;B,|.
s=i, 1+1
Using (1.1) and (2.3) we get
iy
B,=(K, =i, -1, ZKj=i2—1,
j=1
la in-2 in-1
ZKj=i3_1””’ ZKj=in—1_1’ Z KJ=rn .
j=1 j=1 J=ip_g+1

It therefore follows from the assumption that for i, ; <s<i, ,+r,
E(K,; B,) = a X P(B,) and (3.1) now follows from (3.2). The second part of
Proposition 1(a) can be proved similarly using conditional expectation proper-
ties such as, for i, _; <s; <sy, <i,_,+r,,

E(K, K, |B,) - E(K,E(K,|B,, K, )) = E(aK, |B,) = a®.
Proofs of the other parts of the proposition are straightforward.



BRANCHING PROCESS AS EMBEDDED RANDOM WALK 1213
PrOOF OF THEOREM 2. (a) It is clear that the only three possibilities are
{Xn—)OO,Tn—)OO}, {Xn_/-)oo’Tn_)oo} or {Xn_)O’Tn_)T<°°}

Taking any positive integers b < ¢, we have

{T, > ; X, € [b,c]lio} = {T, > ;b - 1< 8, <c—1lio.)
b-1 S c-1
<

T 1.0. .

n

=Ti_)°°;T ST

n n

Using (2.11), it follows that if A # 0, then P(T; — »; X, €[b,¢c] i.0) = 0. So
(2.8) holds in this case.
(b) We have

P(Tn —)oo) =P(Tn — %3 Kl >0, S~T ZO,gT ZO,...)

>P(S, >0,
>0

S

=1,2,...)

by assumption.
(c) We have

P(T, > ») =P(T, > », X, > 0i.0.)
1+ Sy
<P|T, - , T =~ > 0i.o.

n

=0.
Thus (2.10) is true, which completes the proof of Theorem 2. O

Because (2.12) is trivially satisfied with C = 0 when P(K; > 0) = 1 and
P(K;, = 1) <1, our main concern in proving Theorem 3 is with the case
P(K, < 0) > 0. We need two preliminary lemmas.

LEMMA 3.1. Assume K, K,,... are iid and let

i
p; =P( ZlKj> 0), i=1,2,....
i

Then
(3.3) p,<1-(1-p), i=12,....

ProorF. We have

P(Zi:KjSO)ZP(ri]{Kj$0})=(l—p1)i. O

Jj=1
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LEMMA 3.2. Under the conditions of Theorem 3, & is tight; that is, any
increasing sequence {n'} contains an increasing subsequence {n"} such that

(34) P(X, =i) > m fori=0,1,2,...
and Zo;=0 '7Ti = 1.
ProoF. Condition (2.1) is satisfied with a = 1, so
EX, =EX, + EX,
=EX; ,+EX,

=1+E)Y X;

i=1

on iterating. Because ¥.}_; X; is nondecreasing in n and nonnegative, we get

(3.5) EX < IimEX, =1+E) X;.

— ®© .
m i=1

However, from the definition of 2, this sum is just the absolute value of X,
when 1t first visits (— o, 0], if it ever does, and is 0 otherwise. So if we define
the Markov time N by

{(N=n}={X;>0,1<i<n-1;X, <0}
for n <oand N=won{X; > 0,:i=1,2,...}, then writing X, = 0,

E ) X; = E(—Xy)
i=1

R EAR) Lo
- n§1i=21 P( §.=1sto)P(Xn—1_l,N—n)

(3.6) | ’

sup E(‘j=1Kf)

izl P( ;=1KjSO)

= supE(— (K, + - +K;)|K, + -+ +K; < 0)
Jj=1
<C

by assumption. Thus for any A < o, for all sufficiently large n we have, using
(3.5) and (3.6),

IA

AP(X;, > ©) <EX, I(X; > «)
<EX;
<1+C.
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Because A can be taken arbitrarily large, it follows that P(X; —» «) = 0,
which concludes the proof of Lemma 3.2. O

Proor oF THEOREM 3. Because EK, = 1 and P(K; = 1) < 1, we can use
Lemma 3.1 to get

P(X,.,>0) = 2 pP(X, =1)

(3.7)

IA

o0
)y
i=1
o0
)»
i=1

(1-@-p)")P(X, =i)

P(X,>0) - ¥ (1-py)'P(X, =i).

i=1
Since P(X, > 0) is nonincreasing in n, by letting n — « through n” in (3.4)
we get, using dominated convergence (noting that our assumptions imply
0<1-
p1 <1,

i=1

It follows that 7, = 0 for all { > 1, which together with Lemma 3.2 implies
that the only possible limit distribution of 2 has mass 1 on zero, that is,
(2.10) is true.

Finally we prove that (2.12) is implied by (2.13). Our assumptions guaran-
tee the existence of a positive number 7 at which ¢ attains a minimum value
p € (0,1); see Bahadur [(1971), Lemma 2.3]. Let F be the distribution
function of —K, and put dG(z) = p~'e"*dF(z). Then G is a distribution
function with zero mean and finite variance, which we denote o2. Let T,
denote the n-fold convolution of G with itself. Writing S, = —(K; + --- +K,),

E(S,1(S,20)) = [

Xyt x>

0(x1 + - +x,)dF(x,) - dF(x,)

Sl ey

x93+ o +x,>0

X exp(—7(x, + -+ +x,)) dG(x,) --- dG(x,)

3.8 ®
(28 fo p"te” "t dTl,(¢)

2 o
< — n —-rt/2dr t
~p foe n (%)

= p" [T A(T, (1) ~ T,(0))
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on integration by parts. Now, using the Berry—Esseen theorem,

I, () — T,(0)] <|T(t) - @( aatm
t
(3.9) +T,(0) — ®(0)| + c1>( UG‘/;) -~ CI)(O)l
2y t

< +
odvn ogV2mn’

where 7y is the (finite) third absolute moment of G. It follows from (3.8) and
(3.9) that

Vn

Theorem 1 of Bahadur and Ranga Rao [(1960); see also their (46)] implies
that

(3.10) E(S,I(S, > 0)) = o( i )

p"b,
P(S,>0) ~ ,
(520~ o
where liminf, ., b, = § > 0, which together with (3.10) gives E(S,|S, > 0)
= 0(1), which is equivalent to (2.12). O

3.2. Discussion of results. The iid case of Theorem 2 includes results
(2.8)-(2.10) for BGW processes with EK; # 1. In particular, Theorem 2(b)
relates to any supercritical (1 < EK,; < ©) BGW process; it is a standard
random walk result that P(S, > 0, n = 1,2,...) = P(V = ») > 0, where V =
inf{n: §, < 0}, whenever EK; < EK{ < = [see Feller (1971), pages 396-397].
Jagers [(1992), Theorem 2] considered a process {X,, n > 1} that has the
properties that X, > 0 and that X, = 0 implies X, ,, = 0. He gives a suffi-
cient condition for (2.8) in terms of the “generation sizes” X, ; however, it is
not clear how to compare this to our condition (a) in Theorem 2, which is
given in terms of the “litter sizes” K.

When (2.9) holds for a BGW process, it is also known that ¢ = P(X, — 0)
is the unique root in [0,1) of the equation E(g¢%:) = q. It does not seem
possible to give a precise result like this even in the general iid case, part of
the reason being that the result P(extinction|X; = j) = (P(extinction| X, =
1))/ is not generally true outside the BGW process context.

Theorem 3 involves much stronger assumptions than Theorem 2. We give
two examples to show that (2.11) with A = 0 does not imply (2.10) or even
(2.8). That is, the “critical” (EK; = 1) BGW process results cannot be ex-
tended so widely.

ExaMPLE 1. Suppose K, K,,... are independent with P(K; =1) =1 —
1/7% and P(K; = j) = 1/j*. Then the Borel-Cantelli lemma implies P(K; = j
i.0) = 0. Thus S, /n — 0 a.s. and X, - X a.s., where P(1 < X < ©) = 1, that
is, there exists a proper limiting stationary distribution.
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ExAMPLE 2. Suppose K;, K,,... are independent with P(K; =1) =1 —
1/j and P(K; =[yjD = 1/j. Then var(K)) ~ 1, ES, ~ 2Vn, Sn/n -0 as.

and
P(K; = [Vi]) = L1/ ==
J
Thus P(Kj = [\/f] i.0) = 1 and hence P(X, - ») = 1.

4. Moments. In this section, we give some results about W,/ = a "X
under condition (2.1).

LEMMA 4.1. Assume that condition (2.1) holds. Then {(W,,Z), n =
1,2,...} is a submartingale. Furthermore, if K; >0 for all j>1, then
{(Wy,9.), n=1,2,...} is a martingale and EW,] =1 for each n > 1.

ProoF. Using Jensen’s inequality for conditional expectations and condi-
tion (2.1) we get

E(X[.11%) = (B(X,,11%,))" = aX;,

which gives the first assertion of Lemma 4.1. The second part follows immedi-
ately from assumption (2.1), the fact that X, = X, in that case and the
definition of W,/ . O

LEMMA 4.2. Assume that condition (2.1) holds with a > 1 and that (2.14)
holds. Then EW, is bounded above uniformly in n.

PrROOF. From assumption (2.1) it follows by iterating as in the proof of
Lemma 3.2 that

n+1 )
(4.1) EX;'LF‘F]. = an+1 + Z an+1_LMi,
i=1
where M; = EX; . If (2.14) holds, then

+
l,_1tr,

_.E Kj

J=ip_g+1

XL L LB

1 g tho1 Tn

<Y Y Y YDP(B,(iy,ig,.-rin_1,7,)) <D,

1 g lh1 Tn

B,(i1,00, 0 58y_157y)

where B,(iy,iq,...,%,_1,7,) wWas defined in the proof of Proposition 1(a).
Hence
Xr n+1 )
EW. =By =1+ La™',
(4.2)
<1+ O

a-1"
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For the next lemma we use the decomposition
var(X) = E(var(X|¥)) + var(E(X|¥)),

which is easily verified.

LEMMA 4.3. If the conditions of Lemma 4.2 hold and in addition (2.2)
holds, then var(W,") is uniformly bounded in n. Furthermore, we have

var( K7
4.3 var(W:) > 0?4, — 24, — A +——(——ll asn - =,
( n 1 2 3 az
where
) 1 . oo 1 . ~
Al = Zl —a2(1+i)EXi A2 = 2:1 FEXi+1E i+1
i= i=
and
) 1 _
Ay = Y —gvar(Xi)-
i=1

Proor. We have
var(X,,,) = E(var(X, ,|7,)) + var(E(X,,,|%,))
(4.4) =E(X;o?) + var(X,a)
= o?E(X}) + a® var( X}}).
It follows from (4.4) and the identity
var(X,.,) = var(X;.,) + var(X,,,) + 2EX;,EX,.,
that
var( X}, ,) = o*EX; — 2EX; EX,, , — var(X,,,) + a® var(X;).
Iterating this result gives
var(X;,,) =D,., +a®D, + -+ +a*" VD, + a®" var(K7),
where
D,., - o?EX; - 2EX;, EX;,, - var(X;.,).

It therefore follows using the definition of W," that (4.3) holds. From Lemma
4.2, EX} /a' is bounded, so in (4.3), A, < © and hence var(W,") is uniformly
bounded. O

REMARK. To get the boundedness of var(W,}), it is enough to assume the
conditions of Lemma 4.2 and the inequality

var(X, %) <o?X}, n=0,1,2,....
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5. Strong limit theory. Various versions of Theorems 4 and 6 were
proved for BGW processes in the 1940s; see Harris [(1963), Section 1.8.1]. A
version of Corollary 5 for BGW processes appears in Heyde (1970).

PROOF OF THEOREM 4. If K; > 0 for all j > 1, then (2.15) is a consequence
of Lemma 4.1 and the fact that a nonnegative martingale with finite expecta-

tion is a.s. convergent. In other cases, we have X, — X, = —X, . Now EX

<D so X, /a" — 0 a.s. and hence the convergence (2.15) is equivalent to
X+

(5.1) W, = a’:‘ - W as.

Now we have seen that {(W,,%,)} is a submartingale. According to the
submartingale convergence theorem [see, e.g., Shiryayev (1984), page 476],
W, converges a.s. if sup, E|W,/| < «, which follows from (4.2). Hence (5.1)
holds, which implies (2.15). O

REMARKS ABOUT THEOREM 4.

1. Condition (2.14) is trivially satisfied if P(K; > 0)=1,i=1,2,..., and is
also satisfied if

r+s so?
(5.2) P( Z (a—Kj)ZC|K1,K2,...,K,)S—2—
Jj=r+1 ¢

for all s, r,c, because then

r+s +
(— Y Kj) |K,,...,K,

Jj=r+1

E

I
s

r+s
P( Y (e —K;)=sa +i|K1,K2,...,K,)

i=1 Jj=r+1

o 802 02
< 2: — s = .

i-1 (sa +1) a

2. IfE(K,|K,,...,K,_,) =a and var(K,|K,, ..., K,_;) = 0,2, then

r+s rts
Val‘( Z Klel’KZ""’Kr—l) = Z 0}2

j=r+1 j=r+1

and condition (5.2) is satisfied if 0> < 0? for n = 1,2,... .

PrROOF OF THEOREM 6. It follows from (4.2) and (4.3) that {EW;?} is
uniformly bounded. Because in addition, W," is a nonnegative submartingale,
(2.17) follows from, for example, Doob [(1953), Theorem 4.1s, page 325]. The
fact that EW > 1 follows from EW, > 1 for n = 1,2,... (notice that it is
possible that EW > 1). If P(X, — 0) > 0, then P(W = 0) > P(X, - 0) > 0,
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which jointly with EW > 1 implies that var(W) > 0. If P(X,, - 0) = 0, then
Xy =X, for n >0 and so it follows from (4.3) that var(W) = c?A, +
var(K; /a) > 0. O

REMARKS ABOUT THEOREM 6.

1. It is not difficult to show that (2.17) of Theorem 6 remains true if W, is
replaced by W,.

2. The stated properties of the rv W imply the result (2.9). That is, Theorem
6 provides conditions, possibly different from those of Theorem 2, for (2.9)
to hold.

3. In the BGW case, it is well known that P(W = 0) = P(X,, » «). We have
been unable to ascertain if this result is more generally true.

6. Convergence in distribution.

6.1. Discussion of Theorem 7. Theorem 7 is only of interest when P(U >
0) > 0. Assumption (2.19) is satisfied, for example, when the K; are iid with
mean a and variance o2 > 0 [see Rényi and Révész (1958)]. Corollary 8
provides a rate of convergence result complementing Theorem 4 and Corol-
lary 5.

Under the conditions of Theorem 7, we have Z (1) -, .#, so if {Z,}
satisfies Anscombe’s condition, then as a consequence of Theorem E of Csorgd
and Fischler (1973), with », = (T,|U > 0) and f(n) = a”, it follows that as

n—)OO,

(6.1) (T"“_aT”|U>o »
. _— -
oy T, 2

together with a corresponding result with X, ; — (¢ — )T, in the numera-
tor. Anscombe’s condition is satisfied, for example, if K, are iid (or a martin-
gale difference sequence) with mean a and variance o ? [see also Theorem G
of Csorgd and Fischler (1973)].

PRrROOF OF THEOREM 7. The conditions of the theorem imply the conver-
gence results

(6.2) (2,,U) =5 (7, U"), (Z,,U) =5 @,U)
and
(6.3) (2,,U,) =5 (@, U"),
where
: 1 [ta”]
Z(t) = v ,E:l(Kj_a)’ 0<t<oo,

whereas U’ =, U and U’ is independent of 7"
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To see this, notice that if B = U !B’ for some B’ € %(R), then we have
P(Z,(t) €A,,...,Z,(t,) €A,;UEB)
=P(Z,(t)) €A,,...,Z,(t,) €A,;B),
which jointly with (2.19) gives
P(Z,(t) €A,,....,Z,(t,) €A,;U€EB)
- P(7(t,) €A,,...,.7(t,) €A,)P(U €B),

where the Borel sets A; are continuity sets of 7. (6.2)’follows using this and
the tightness of (Z,, U) [which follows from (2.20)]. Now using (2.21) and the
second part of (6.2) we get the convergence result

ZbZ’(t)+Ub— EbZ(t)+Ub+b(U U)
i=1 i=1

k
—y X b (t;) +U'b,
i=1
for any real numbers b, b,,..., b,. Hence
(Z,(t1),-- s Z)(8),U,) =g (7(ty),...,7(8,),U"),

which jointly with the tightness of (Z),, U,) [which follows from (2.20)] gives
(6.3).
We are now in a position to prove (2 22). Notice that

T,.,—al, ( T, )
K; - Z
Vo 0'\/_ Z (K= a) =
Writing U,(¢) = ¢ - U, for ¢ > 0 and using (6.3), we get the convergence
(2,,0,) =5 (#,0) asn -,

where U(t) =¢- U’ > 0, U’ = - U and U’ and 7" are mutually independent.
Hence by the continuous mapplng theorem and by random change of time
[see Whitt (1980)], we get

‘/_Z(K a) =5 #7(U') asn — o,
Because 7 and U are independent, it follows that #(U’) =, /YU’ . O

Notice that Theorem 7 can be extended to the following form: Let Z,(¢) =
(1/a,) LY (K; — a), t > 0, where {a,} are some constants. If (Zn,Tn/a”)
-4 (Z, V) as n — o, where Z has stochastlcally continuous paths, that is,
P(Z(t) =Z(t —)) = 1 for all ¢ > 0, then

Tn+ 1 aTn

-5 Z(V) asn— o

a,
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