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In this paper we study a stochastic network model introduced recently
in the analysis of neural networks. In this model the interaction between
the nodes of the network is local: with each node is associated some real
number (the inhibition in the language of neural networks) which is
decreasing linearly with time. When this number reaches 0, it sends out
some random input to its neighbors (a spike) and restarts with some
random value. The state of our network is described as a Markov process.
We are interested in the stability of this network, that is, under which
conditions the associated Markov process is ergodic. As we will see, when
the network is not stable, some of the nodes die, that is, almost surely
after a given time, their inhibition never returns to 0 and grows arbitrar-
ily. When these stability conditions are not satisfied, we analyze the set of
nodes which are likely to die. We consider networks with a finite number
of nodes and two kinds of topologies, the fully connected network and
related graphs, and the linear network where the nodes are located on a
line. A quantity p is associated with this network and the stability
properties of the network depend only on it. For the fully connected
network, we prove that if p < 1, then the network is stable, and in this
case we give the explicit expression for the invariant measure of the
Markov process associated with this model. When p > 1 this network is
shown to be not stable. For the stability of the linear network of size N,
there is a critical value for p which is 1/2 if N is odd and 1/(2 cos /(N
+ 1)) if N is even. We prove that if p is strictly less than this critical
value, then the network is stable, and if p is strictly greater, it is not. In
this last case, the set of possible asymptotic states is analyzed.

1. Introduction and description of the model. We consider a locally
interacting process on a finite network. This mathematical model was intro-
duced in [2] to analyze the behavior of some neural cells in the cortex. A
nonnegative real number is associated with every node: its inhibition. The
inhibition represents the duration of time after which the node will modify
the state of other nodes if no interaction takes place meanwhile. As long as
the inhibition of a node is strictly positive, it decreases linearly with time and
the node does not modify the behavior of its neighbors. When its inhibition is
0, the node fires, that is, the inhibition of its neighbors is increased by some
random quantity (the node is also said to send out a spike). Throughout this
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paper, we will use the picturesque terminology of neural networks in the
analysis of our model.

Our network is a finite graph & with N nodes. The stochastic process
(X, .,y €RY, t €R,, describing the state of our network evolves as
follows. From an initial configuration (X,(i), 1 <i < N), every coordinate
decreases linearly in time with slope 1 until the first time T, when the state
of some node i; reaches 0. At this moment, the component with index i,
restarts with a new value, an exponentially distributed random variable G;,
(with parameter A, ). At the same time, the node i, sends out a spike to all its
neighbors, that is, increases the value of their components by the same
amount, a random variable with distribution F;. Starting from this new
configuration (X (i), 1 <i < N), we iterate this procedure until the time T,
of the second spike and so on. A right-continuous Markov process (X,),. , is
thus defined in this way. Since its evolution between two successive spikes is
deterministic (linear decay with rate 1), there is a natural embedded Markov
chain at the instants of spikes: (X,),cn = (X7 (i), 1 <i < N), .. We shall
say that the network is stable if the Markov process (X,), r, 1s ergodic.

The first results on this model were obtained in [2]. It was assumed that
the F;’s were Dirac measures at some 6 > 0. It was proved that the Markov
chain (X,),.n is Lebesgue-irreducible, aperiodic and that if 6 <
min,(E(G,))/ (V}), it is positive recurrent [V, is the number of neighbors of
the node i and E(-) denotes the expected value]. As we will see in the
following, this condition is, in general, not necessary for the stability of the
network.

We begin with the case of a completely connected graph (i.e., every pair of
nodes is linked by an edge of the graph). For this topology, we prove that the
network is stable if p = max; p; = max; E(6,)/E(G,) < 1, where 6, is some
random variable with distribution F;. Under this stability condition, we give
the explicit expression for the Laplace transform of the invariant measure of
the Markov process associated with this model. When p > 1, the network is
not stable. In this case its asymptotic behavior is fairly simple to describe:
only one node does not die; that is, after some time all the other nodes do not
fire any more.

For the case of a linear network of size N, the behavior is quite interesting.
We slightly modify the interaction between nodes: at the moment of a spike,
instead of sending the same random variable to all its neighbors, a node
sends out independent identically distributed random variables. We assume
that the F,’s (resp. G;) are exponentially distributed with parameter u (resp.
A). We prove the following results:

1. If N is odd, the network is stable if p = A/u < 1/2 and not stable if
p>1/2.

2. If N is even, then the network is stable if p < 1/(2cos w/(N + 1)) and not
stable if p > 1/(2cos w/(N + 1)).

The boundary cases. Throughout this paper, our stability results are of
the following type: “There is some constant C such that if p < C, then the
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network is stable, and if p > C, it is not.” Our analysis does not cover the
boundary cases p = C, which are not known to us. It is nevertheless reason-
able to conjecture that, in these cases, a null recurrent phenomenon occurs.

The proof of ergodicity involves the second vector field associated with
Markov processes that was introduced by Malyshev and Menshikov [5] in the
analysis of the ergodicity of multidimensional random walks on N". To our
knowledge, this is one of the first applications of the second vector field to
study the ergodicity of Markov processes in state spaces of dimension greater
than or equal to 5.

When the network is not stable, it has different possible asymptotic
distributions, depending on its initial state. We call these distributions the
stable states of the network. We give a list of possible stable states, which
depend mainly on the position of p among the 1/(2cos 7w/(2p + 1)) for
peN.

2. The completely connected network. We assume in this section
that the graph £ is fully connected, that is, every pair of vertices is con-
nected. For 1 < i < N, we define p;, = A, E(6;), 6, being some generic random
variable with distribution F;.

THEOREM 1. If max,_;_n p; < 1, the Markov chain (X,), . admits the
invariant probability measure given by

N
TN = Zpi#‘i’
i=1
where, for 1 <i <N, ‘
-1
A; N A
=1 | X1
Pi\j=1 pj

and u; is the distribution of the random vector G + (W; + 6,)e,. The vector e;
has all components 1 except the ith one which is 0, and the independent
random variables G, W,, 0, satisfy:

1220 )

(@) G =(Gq,...,Gy) is a vector of independent exponentially distributed
random variables with parameters Ay,..., Ay.

(b) W, has the same distribution as the stationary waiting time of an
M/G/1 queue with arrival rate A; and service distribution F;, that is,
(1) W; ) max(Wi +0; — Gi’o)’

where =, stands for equality of distributions.

ReEMARK. The Laplace transform of 7, can be made explicit since for
i <N, it is well known (see, e.g., [1]) that the Laplace transform of W, is
given by
) Wi(£) -
‘ 1-M(1-F(8))/¢

denoting by D the Laplace transform of a distribution D.

£eR,,
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Proor. If P denotes the transition probabilities of the Markov chain, all
we have to prove is that my P = my. We will show the equality of the Laplace
transforms, 7rNP— 77N We fix 1 <i <N and we compute ,u,lP that is, the
Laplace transform of the distribution of X, if the initial distribution of X, is
#;- Thus the initial inhibition state is X(i) = G; for node i and X,(j) = G; +
W, + 6, for j + i, where W, 6,,G,, 1 < k < N are independent. The node Wlth
the smallest inhibition state will thus send a spike first. There are two
possibilities:

@) If G; < W; + 6;, node i sends out a spike first and X,(i) = G, X,(j) =
G;+ (W, + 6, — G;) + 6; for j +# i, where G; and 6, are other independent
random variables with respective distributions G; and F;.

G If G; = W, + 6,, then X (j) > W, + 6, for every 1 <j < N. Due to the
deterministic evolution of (X, )t R, between spikes, P(x,-) = P(y,-) if y, =
x;—a(l<j<N)with a < m1n1<J<N x;. Therefore X, has the same dlStI‘l-
bution as if the initial state was X{with XO( D =G; for J #iand X;(i) =
— (W, + 6,). Because of the usual properties of exponentlal distributions, the
d1str1but10n of X{, conditioned on {G; > W, + 6,} is simply v, the distribution
of G.

Thus, for & = (£,,..., &) € RY,

(3) l::ﬁ(g) =E\1lG,<w,+0, exp(_fiGE - X fj(Gj + (W, +6,-G) + 95)))

J*i
+P(G; = W, + 6,)vP(¢).
We are left with the computation of Jﬁ(g). In this case, we assume that
for £ # j. We obtain

N
vP(§) = Z (&),
o ZN lAk ’
where w; is the distribution of the random vector G’ + 6;e;. Because of (1)

and (2), we have P(W; + 6, < G;) = P(W, = 0) = 1 — p,. Thus, by (1) we can
rewrite (3) as

wP=j —(1- +(1-
wP = j; — (1= p)ja; + ( pl)ZZ Mk

At this point it is clear that a sufficient condition for the stationarity of
my = LN . p; u; is that p,,... ,pN satisfy

N Y
- .le,-(l pi) i + Zpl(l )( Y s ﬁ}) =0
i= J=

i=1 =1 z"k=1)tk

or that for every i, 1 <i < N,

pi(1—p;) =

Z p;(1-p).

Zi- Mk
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Hence, p; = C(;/(1 — p;)). The normalization relation ¥V ; p, = 1 (my is
a probability) gives the value of C. Our theorem is proved. O

We can now state our stability result for the fully connected network.

PROPOSITION 2. When max,_; .y p; < 1, the Markov chain (X,),cy is
Harris ergodic.

ProoF. We obtain this proposition by proving the coupling property for
the Markov process (X,), . ,- Recall [1] that a Markov process (Y}), . g (Where
S is either N or R,) has the coupling property if, for any probability
distributions u§ and w2, one can construct a probability space and two
stochastic processes (Y,!), . ¢ and (Y;?),. g on it such that:

(a) The process (Y,),. g is Markov with the same transition probabilities
as (Y,),cg for i = 1,2.

(b) The distribution of Y{ is u} for i = 1,2.

(¢) There exists some random time after which the two processes are
identical.

Coupling for the Markov process (X,),., clearly implies coupling for the
embedded Markov chain (X,),, . - The coupling property and the existence of
an invariant measure are sufficient to prove Harris ergodicity (see [1],
Proposition 3.13, page 157). We shall prove that starting from any initial
condition, there exists some random time when the distribution of the process
is a product of independent exponential distributions. Hence, for any starting
distribution, the Markov process couples with the process which starts with
independent exponentially distributed components. Consequently, the cou-
pling property will be true. Notice, nevertheless, that for the stationary
distribution 7y, the components are not independent.

If (xy,..., xy) is the initial state of the network, let us assume that x, is
the smallest of the x;’s so that node g will be the first to send out a spike to
allh the other nodes. Until time x, all the coordinates decrease at rate 1. Let
(6,); be the sequence of spikes sent out by node g and let (G;); be the
sequence of new values of node g after sending spikes (independent exponen-
tially distributed random variables with parameter A ). If we define

k
vi=inflk>1: Y (6] — GJ) <0},
Jj=1

v? is finite a.s. because p, < 1. Aslongas t < S; =x, + Z}’iloqj,
k .
X(t)=x;+ 260/ -t fori+gq,
j=1
where k is such that ¢ € [x, + £} 'GJ, x, + L} GJ[. Up to time S}, node q is
the only one to fire. At that time, because of the memoryless property of
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Fic. 1. State of nodei # q.

exponentially distributed random variables, X (S;) is exponentially dis-
tributed and for j # q, X (Sl) —-x, (see Flgure 1)

We repeat this procedure and construct a nondecreasing sequence (S,), c n-
For k > 1, the state of the network at time S,, , is defined by

(4) X,(Sp+1) = Xi(S,) — min{X;(S,),1<j <N}, i#i,

where i, is the index which achieves the minimum of the coordinates of
X(S,) and X, (S, ) is an 1ndependent exponential variable (with parameter
A;) 1ndependent of the X (S, +1) J # i,. We shall say that i, is at the origin
of the kth period. Us1ng again the memoryless property of exponential
distributions and (4), it is then easy to see that if node i has fired at least
once before S,, then its state at the beginning of the kth period is an
exponential random variable, independent of the other components. If a node
J never fired up to time S, )y, then its state at that time is stochastically
smaller than x; minus a sum of & independent exponential variables with
parameter A = max; A; (there exists a node which is at the origin of at least
k + 1 periods before time S, 5). Hence, after a while, all the nodes will
have fired at least once; thus there exists some random time S, when the
coordinates of the Markov process are independent exponentially distributed
random variables. The coupling property is proved. O

THEOREM 3. If we order the p’s so that
PL=py =< = PN

and if for some p <N — 1, p, <1< p,,,, then almost surely, there exists
some i > p such that the inhibitions of all nodes different from i converge to



1118 FRICKER, ROBERT, SAADA AND TIBI

+o with probability 1. Hence, with probability 1, N — 1 nodes are “dead”
after a while.

ProOOF. We keep the same notation as in the proof of Proposition 2. When
node g begins to fire, the variable v? is the number of consecutive spikes
sent out by node g before being possibly interrupted by the other nodes.

On the event A, ={r? = +%} = {min,, Zk 1(01 GJ) > 0}, node ¢ will
forever continue to send out spikes to the other nodes In this case, the
inhibition of node i # g just before the kth spike of node q will be

k-1
X; — %, + ‘21 (Oqj - Gl{)
j=

and thus will converge to +« with probability 1.

In the case p, > 1, then P(A,) > 0 (a random walk with positive drift
stays above 0 forever with positive probability); thus, with some positive
probability »? can be infinite. Hence if a node with index greater than p
begins to fire, with positive probability it will kill all the other nodes.

To prove that, let us assume that at least two nodes fire infinitely often.
Using the same argument as in Proposition 2, it is easy to see that at least
one of these nodes, g say, has an index greater than p; hence, py > 1.
According to our assumption, node ¢ does not fire continuously but 1t fires
infinitely often. It implies that it restarts firing after every period of the other
node. At these moments, with probability P(A,), the length of the period is
infinite. Because of the independent of the length of periods initiated by node
q, it is easy to see that with probability 1 the node ¢ will never stop firing
after a given time. This contradicts our assumption. We conclude that with
probability 1, one node with index greater than p fires forever without being
interrupted by other nodes. Our theorem is proved. O

REMARKS. (a) The sufficient stability condition of [2] is, in this case,
max, _; .y p; < 1/(N — 1), which is quite strong for this topology.

(b) The assumption of exponentially distributed variables is not essential
for stability properties (see [3]).

(c) The above results for stability can be generalized to a larger class of
graphs, the N-partite complete graphs (see [3]). A graph is N-partite and
complete if its vertex set can be decomposed into a partition U H, such
that:

(i) Two nodes of H, are not connected for £ € {1,..., N}.
(i) Two nodes from different H’s are connected.

3. The linear network. In this section we study the one-dimensional
topology for the network where every node has two neighbors except at both
ends. We assume that the 6,’s (resp. G,’s) are identically distributed (resp.
exponentially distributed with parameter A). We know that if p = AE(0,) <
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1/2, then it is stable ([2]). The following proposition shows that the condition
p < 1/2 is indeed necessary for the stability when N is odd.

PROPOSITION 4. If p > 1/2 and if the number of nodes is odd, then the
linear network is unstable.

PROOF. Let N=2k+1, and for i=1,...,k+ 1, let Q(t)=L%,_,0/,
where P, = (t/); , is a Poisson process with parameter \. We assume that all
the P’s and 6/’s are independent. For i =1,...,k + 1, (6/);,, is the se-
quence of spikes sent by node 2i — 1 and (¢/,, — t/); are the exponential
variables associated with this node. Using the fact that 2p > 1 and the law of
large numbers, we get that R, = inflQ,(¢) + Q,, ,(¢) — ¢, ¢ > 0} is finite al-
most surely for i =1,...,%; hence, there exists an x, > 0 such that
P(R,> —x5,1<i<k+1)>0.

Now take the initial state x,;,,(0) = 0 and x,;(0) =x,.Fori=1,...,k, as
long as x,,(s) > 0 for all s <¢ and i < &, then x,,(¢) = x, + Q;(¢) + @, ,(¢)
— ¢t. This last equality will be true for all ¢ if x,;(0) > —R,; for all i. In this
case, x,;(¢) converges to +. Hence, on a set of positive probability, the
components of (Q(¢)),., with an even index converge to infinity. In other
words, for all i odd, nodes i and i + 2 “kill” node i + 1 with positive
probability. Our proposition is proved. O

As we will see in Theorem 5, the condition p < 1/2 is not necessary when
the number of nodes is even. From now on, we consider the linear network
with an even number of nodes and assume that 1 > p > 1/2, so that for some
0 <10, 7/3[, p=1/(2cos 9).

For technical convenience, we will change the dynamics of our process: The
single spike sent out to neighbors is replaced by i.i.d. spikes. Thus a node
sends out independent exponentially distributed () spikes to its neighbors.
There is no change in the way a node “resets” its own value when its
inhibition reaches 0. A firing node restarts with an exponentially distributed
random variable with parameter A (in particular p = A/u). We can then
describe the state of the network as a Markov process (X(¢)),,, on the
countable state space NV. The dynamics of the process (X(¢)),., are de-
scribed by the following transitions:

X > X— 9, with rate w if x; # 0,

13

Xx—>x+8,,;+08,_; withrate Aif x; =0,

for i =1,...,N, assuming x, = xy,; = +% for convenience, if N is the
number of nodes of the network. The vector §; is the ith unit vector:
Sl(j) = 1{j=i)'

The inhibition at a given node is the residual sum of the spikes received
from other nodes and the residual initial inhibition, that is, the spike it sent
to itself the last time it fired. The total inhibition being decreased at speed 1,
we can assume that the part due to the other nodes is decreased first when it
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is not 0. Using again the memoryless property of exponential variables, the
value of the inhibition of the ith node can then be represented as the sum of
two independent variables: an exponential r.v. with parameter A, the residual
value of the initial inhibition, and a sum of x; i.i.d. exponential r.v.’s (u), the
residual sum of the spikes received since the last firing.

Hence we kept the base features of our model: The inhibition of every
coordinate is still decreased at rate 1 and when there is a spike, r.v.’s with
independent exponential distributions (with parameters w) are sent out to
the neighbors. The main result of this section is the following theorem:

THEOREM 5. For a linear network with 2N nodes, the Markov process
(X(t),., is ergodic if p<p(N)=1/(2cos7/(2N + 1)) and transient if
p > pAN).

REMARK. The sequence of critical constants ( p,(N))y is nonincreasing
and converging to 1/2, which is the critical constant for the “odd” case.

We begin by the following simple lemma (proved in [2]).

LEMMA 6. If the network with N nodes is ergodic and the quantity y!
denotes the sum of the spikes sent out by node i to node i — 1 up to time t for
1<i <N, then y(N) = lim, , , (y!/t) satisfies

(5) pYi-1(N) +y:(N) + py; s 1(N) = p,

i= 1,...,N,withy0(N) =yN+1(N) =0.

The useful properties of y,(N) are given in Proposition 10 in the Appendix.

ProOF. The existence of the limit is simply a consequence of an ergodic
theorem for ergodic Markov processes. Clearly, y/ has the same distribution
as ¥/, the sum of the inhibitions sent out by node i to node i + 1; hence, we
have also y,(N) = lim, , , (y!/¢t). If a node spends time s in state 0, it will
send in the limit, for s large, the inhibition ps to its neighbors. Now if we
note that, up to an asymptotically negligible term, the time spent by i in
state 0 up to time ¢ is ¢t — y!,, — y/_,, then our lemma is proved. O

PrROOF OF THEOREM 5. We proceed by induction on N to prove the
following property: If p(N) < p < p,(N — 1), all the networks with an even
number of nodes larger than 2N are transient and for p < p,(NN), the network
with 2N nodes is ergodic. For N = 1, the property is trivially true since:

(i) If p < 1, the network with two nodes is stable according to the previ-
ous section. This network is indeed completely connected and the change we
made on the dynamics of the process does not affect the model since there is
only one neighbor for every node.
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(i) When p > 1, the network with 2% nodes, & > 1, is unstable by the
same argument as in Proposition 4. If the inhibition of nodes 1,3,...,2%2 — 1
is sufficiently large, then each of them will be killed by its right neighbor
because of p > 1 (in this case, one node is sufficient to kill another one).

Now let us assume that our property is satisfied for networks with 2N or
fewer nodes.

(@ p(N +1)<p<p(N). Let k>N + 1. We want to prove that a net-
work with 2% nodes is unstable. According to the induction hypothesis, the
network with 2N nodes is ergodic. Using Lemma 6, the vector (y;(2N)); _; - on
is a solution of (8) and according to the hypothesis on p, (§ €]m/(2N + 3),
m/(2N + 1)[) and Proposition 10, we have y,(2N) + p > 1. If in the picture
of the network of 2% nodes (Figure 2), the inhibition of black nodes is
sufficiently large, then with some positive probability none of them will fire
any more. For the black nodes 2 and 2N + 3, it is a consequence of the
relation y,(2N) + p > 1, and for the others, it is simply because p > 1/2.
The proof is similar to that of Proposition 4 and therefore will be omitted.
Hence in the network with 2% nodes, £ > N + 1 is transient when p (N + 1)
< p < p(N).

() p < p(N + 1). We want to prove that (X(¢)),, , is an ergodic Markov
process in N2¥*2_ Our main tools, in the proof of ergodicity are the ergodicity
criteria of [5]. The results of [5] are stated in the context of Markov chains.
Although our study fits that context [by looking at the embedded Markov
chain (X,), .y at the instants of jumps, for example], we found it more
convenient to work with processes and adjust the notation. We translate
some of the notation of [5] to our case.

DEFINITION. A face A is a subset of {1,...,2N + 2}. For each face A we
consider the same stochastic process on N2¥*2 but with the restriction that
the nodes whose indices are in A do not send spikes to their neighbors. The
nodes in A only receive inputs from their neighbors outside of A. The induced
Markov process on N2V *2 associated with A is denoted by (X,(¢)),. ,.

If we remove the components of X,(¢) which are in A, then we will have a
Markov process. We shall say that the face is ergodic (resp. transient) if this
Markov process is.

The second vector field. For some face A, we can write {1,...,2N + 2} — A
as U;caL; = U,;c,R;, where the L;s and R;’s are (possibly empty) intervals
such that if L, # J (resp. R, # &), then i — 1 €L, (vesp. i + 1 € R,). For
convenience, we assume that the fictitious nodes at both ends of the network,
0 and 2N + 3, are always in A. The Markov process associated with A is

O e O 0---0 O eO0O e O e O---@ O

Fic. 2.
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basically the concatenation of the independent processes (X; ), ,, where X ;
is the Markov process associated with a network of size |J|.

We define y,(J) = y,(|J] if the interval J has the cardinality |J| even,
y(J)=0if J = and p if |J|is odd. When |J| is even, y(J) is simply the
output at equilibrium of the first node of a network of size |J| (cf. Lemma 6).
This leads us to the following definition for the drift vector v2:

(a) Fori € A, v? =y,(L) +y,(R) - 1L

(b) If |L;| is even or 1, then v} = 0 for all j € L,.

(© If L,={ay,a; +1,...,a; + 2k}, then v; ,5;=0, j=0,...,k, and
Varoje1=2p—1,j=0,...,k—1.

If A is some ergodic face, then for every i € A, X; is ergodic; hence,
according to Proposition 4 and the induction hypothesis, |L,/ = 0,1 or 2k,
with 2 < N. In this case, the only coordinates of v® which are not zero are
those with indices in A. According to our assumption on p (8 € [0, m/2N +
3)[) and Proposition 10 in the Appendix, it is easily verified that for i € A
such that |L,| or |R,| # 1, then v < 0 and that v = 2p — 1 > 0 otherwise.
In this case, the vector v has the following intuitive meaning: If we freeze
the nodes of A and let the other nodes reach a stationary state, then for
i €A, v? is simply the stationary drift of the ith component, that is,

1
lim 7 ((sum of the inputs received by i up to time ¢) — t).
t— + >

For the embedded Markov chain of (X,(n)), .y at the instants of jumps of
(X\(t)), 5 o, the ith component of the stationary drift can be expressed as

lim — (number of upward jumps of i — number of downward jumps of i,
n-+xn

up to the nth jump of (X,(%)),s )

and it is easy to see that the stationary drift for the discrete case is simply
(m/A*)v®, where A® is the intensity of jumps of X (¢).

If A is not ergodic, then at least one of the intervals among the L;’s or R;’s,
J say, has an odd cardinality [using again the induction hypothesis and the
monotonicity of the p(N), N € N]. In this case, v} =2p — 1> 0 when i is
the 2nd, 4th, ... node of oJ.

Let

B*={xeR2N*2: x, = 0if i ¢ A and x; > 0 otherwise}.

DEFINITION. The second vector field (v(x)), c gzv+2 of the Markov process
(X(2)), o (see [5] and [4]) is defined by v(x) = v* for x € B® and v(0) = 0.
When A ={1,...,2N + 2}, v* is simply the usual drift vector v* = —1 for all
i <2N + 2 and (v(x)), c g is the first vector field.
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The associated dynamical system. We can now define the deterministic
dynamical system (I'*(¢)),., associated with the second vector field, for
x € R2N+2. =

r+0) =«,
(6) dr*

(1) = u(TX (1))
and 7(x) the hitting time of 0 by T'*,
(7 7(x) = inf{¢:T*(¢) = 0} (withinf = +).

From the definition of the second vector field, it is easy to recognize that
I'*(¢) is nonnegative for all ¢ > 0 and that its rate of growth is bounded by 1
in absolute value. Denote by A, the face such that I'*(¢) € Bt with A, = A.
The travel of I'* on the faces can then be decomposed as follows:

Step 1. Let us call an island a subset of A{i,i + 1,...,i + p} with p > 0.
The number of nodes in islands of A, is decreasing to 0 (simply because
p < 1). Consequently, if there are no more islands at time ¢, this will be true
for all s > ¢. Moreover, after a while the nodes at both ends do not belong to
A, any more.

Step 2. We assume that Step 1 is achieved. An additional interval L; with
an even cardinality cannot be created by one of the only possible operations:
(a) splitting, when a transient face is reached or (b) merging, when a node
disappears between two L;’s whose cardinalities have distinct parities (1, 2%
or vice versa). Hence the number of i such that |L,| is even is nonincreasing.

Step 3. There exists at least one L; whose cardinality is 2k with & > 0.
Let S be the set of L,s with an even cardinality. It is easy to see that the
cardinality of S is odd. Between two consecutive elements L and L of S (i.e.,
there is no element of S between them), the L,’s have cardinality 1. Accord-
ing to our hypothesis on p, if L and L do not vanish, these L,s are
swallowed by L or L' and when the last node of A in the middle finally
collapses, the whole space created then has an odd cardinality and thus is
split into L,’s of size 1. Hence at the end, there will remain only one element
of S which will swallow all the remaining L,’s with cardinality 1. Point 0 is
finally reached; hence, 7(x) is finite for all x € RZN*+2,

We defined the second vector field and its associated dynamical system
when the dimension of the state space is even (2N + 2, here). When the
dimension is odd (2N + 1, say), we can define in the same way the second
vector field and the dynamical system I" without any change. The corre-
sponding hitting time 7' will be, in this case,

m(x) = inf{t: I'*(t) e B(2,4,6,”.,2N)}.

To describe the travel of I on the faces, Steps 1 and 2 do not change but Step
3 has to be modified in the following way:

Step 3'. With the notation of Step 3, we remark that the cardinality of S is
necessarily even (possibly 0). As before, two consecutive elements of S finally
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collapse and split into L;’s of size 1 if they are not destroyed before. Hence all
the elements of S will disappear, all the remaining L,’s will have cardinality
1 and the nodes at both ends are not in A (we assume that Step 1 is
achieved). We conclude that 7'(x) is finite for all x € R2¥+1,

LEMMA 7. The dynamical systems (L'*(t)), o, (I'*(¢)),. o, do not visit the
same face twice and there exists some constant K > 2 such that |7(x)| < K||x||
for x € R2V*2 and |7'(x)| < K||x|| for x € R2N*L,

Proor. For the first part of the lemma, we can proceed by induction. The
case N = 0 is trivial. We assume that all the dynamical systems (I'y;(¢)),. o
and (I3}, (¢)),5 4, £ < N, do not visit the same face twice (the subscript 2% or
2k + 1 refers to the number of nodes of dynamical system). We prove that
this is also the case for (I'yy 5(£)),. o and (%, 5(¢)), o-

Assume that some face A is visited twice by (I'yy,(¢)),.,. This face
cannot have an island. Otherwise this island must remain between the two
visits to A, since no island can be created. However, the complement of this
island consists of one or two intervals of size < 2N. According to the
induction hypothesis, the dynamical system cannot visit the same face twice
on this (or these) interval(s). Applying the same reasoning, A cannot contain
either node 1 or 2N + 2 or some |L,| with an even cardinality (since following
Steps 2 and 3, the elements of S can only grow or disappear as time goes on).
Thus the result is proved for the case 2N + 2. The method is strictly the
same for (I'yy, 3(¢)), o- The first part of our lemma is proved.

To complete the proof of the lemma, we just have to remark that the
duration of any of the face transitions described in one of the Steps 1, 2, 3 and
3" above is proportional to the values of the components of the starting point
and that there is only a bounded number of them. O

We can now state the continuity property of 7.
PROPOSITION 8. The function 7 defined by (7) is finite and Lipschitz.

ProoF. If x,y € R2VN*2 are on the same face, as long as the two dynami-
cal systems I'*(¢) and I'?(¢) remain on this face, the difference |[T'*(¢) — ['?(¢)||
does not change.

Hence we can assume that x and y are not on the same face and denote
this by @ =||x — y|l. There exists some p < 4N + 4 such that the interval
laK?, aK?*1] does not contain any of the 4N + 4 coordinates of x and y. If
T is the subset of all i < 2N + 2 such that x;, > aK?*! or equivalently
(since K > 2), y; > aKP*! we can write T = {1,...,2N + 2} — T as a union
of intervals U ;. , J. For all ¢t < K”*'a, the coordinates of I'*(¢) and I'*(¢)
with index in T never reach zero since the drift of the coordinates is always
larger than —1. Using this property, it is easy to see that, on the time
interval [0, «K?* [, the T°-components of the dynamical system I'*(¢) [resp.
I'’(¢)] behave as a concatenation of the dynamical subsystems ['¥(¢) [resp.
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I'y(®)], J €7 According to Lemma 7, for any J €_7, we know that I'7(¢) and
I'7(¢) will have reached the same face at time aK?*!, either the empty face
or the face with the even components of J, depending on the parity of |J|.
Hence at some time ¢, < |lx — y|K*¥*5, I'*(¢) and I'*(¢) will have reached
the same face and [[T*(¢,) — T7(¢,)Il < 3llx — y||[K*N*5 (remember that the
rate of growth of I' is bounded by 1 in absolute value). Now we use the fact
that there is only a bounded number of changes of faces to get the desired
Lipschitz property. O

The function 7 thus satisfies Condition B of [5], page 17:

(@ 7= 0.
®) 7(x) — 7(y) < K,llx — yll, x, y € N2V+2,
(¢) For any ergodic face A and all x € B* n{x, > C, i € A}):

7(x +v(x)) — 7(x) < —8.

If we choose C such that C > ||v2| for all ergodic faces A, then (c) is
satisfied with § = 1 because I'*(1) = x + v(x) for x e B n {x, > C, i € A}.

As we said before, we worked with the process rather than the embedded
Markov chain for which the results of [5] may apply. However, as we have
already remarked, the second vector field for the Markov chain is propor-
tional to the vector field for the Markov process (with the proportionality
constant depending only on the face considered). Hence the variable 7 can be
modified so that Condition B is satisfied for the embedded Markov chain. It
implies that (X,), is ergodic; hence, our Markov process is also ergodic. Our
proof by induction is finished as well as the proof of Theorem 5. O

REMARKS. (a) The second vector field of the Markov process is essential in
our proof of ergodicity. It is not necessary for the stability proof of [2]. In this
case, the sum of the components of the vector is a natural Lyapounov
function.

(b) Our second vector field is not multivalued on the transient faces. In
general, the second vector field is generally multivalued in order to get the
appropriate continuity properties of the associated dynamical system. On the
transient faces, its values are all the possible drift vectors pointing to an
ergodic face (see [4]).

(¢) The behavior of the network depends on the parity of its size. A similar
phenomenon has been analyzed for a queueing network with local interaction
in [7], but in this case the critical p’s are not explicitly known.

Stable states of the linear network. Our purpose here is the asymptotic
behavior of the linear network with N nodes. We enlarge our state space to
allow the value +« for the components of (X(¢)),., so that we deal with
measures defined on (N U {+«})". We do not consider the special cases where
p is one of the 1 /(2 cos w/(2N + 1)), N € N. As in the proof of Theorem 5, for
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every subset A of {1,..., N}, we define the interval L, for i € A such that

{1,...,N} -A= UL,

ieA

We set L, ={1,..., N} when A = . For every A such that |L,| = 0,1,2F,
k > 1 for all i, we define the distribution 7* on (N U {+o})V by

= H | Ly

ieA Li+®

where 7, is the invariant measure of the linear network with % nodes and
8, is the Dirac measure at infinity. Notice that this definition is meaningful
only on some range of p. The distribution 7* is a concatenation of linear
subnetworks in equilibrium and A is simply the set of dead nodes for 72.

PROPOSITION 9. Any distribution of & = {mw*: A € %} is a possible limiting
distribution for (X(¢)),, o. The set 7 of admissible A’s is defined by:

@ p<l/2. 7=0@.

(b) p > 1. % is the set of all N’s such that ifi € A, theni — 1ori + 1 EA
and for all i < N, then either i € A ori + 1 € A.

(© 1/2 < p < 1. We have p(K + 1) < p < p(K) for some K > 1.

(i) Nisevenand <2K:.={0)}.

(ii) Nisodd and <2K + 1: = {A,} with A, ={1,3,5,..., N}.

(i) N = 2K + 2: 7 is the set of all N’s such that (1) 1, N & A, (2) for all
i€A, i-1€L;,i+1€L;,, and |[L| =1 or 2K, and (3) if |L; = 2K,
then |L,_,|=|L;, 4| = 1.

PROOF. As in the proof of Proposition 4, the method consists in using
ergodic theorems for ergodic Markov processes. O

REMARKS. (a) We conjecture that every limiting distribution of (X(2)),.
is a convex combination of the 7* with A €., that is, & is the set of
extremal measures of the set of limiting distributions of (X(2)),. ,.

(b) When p < 1, the dead nodes (if any) are isolated.

(¢) In the definition of . in (iii), notice that if there is a linear subnetwork
of size 2k, then the neighboring subnetworks must be isolated nodes. The
reason is that two subnetworks of respective sizes 2k and &’ can be neighbors
only if their output can “kill” the node between them. If p (K + 1) < p <
p.(K), this is possible only if y,(2&) + y,(k') > 1. The case k < K is impossi-
ble because y,(k') < p and y,(2k) + p < 1(p < p(k)); hence, & = K. If &' > 1,
then &' = 2K for the same reason, but according to Proposition 10 of the
Appendix, 2y,(2K) < 1; hence, k' = 1.

(d) Following (c), Figure 3 is an example of a stable configuration of our
network (when p < 1), but that cannot be reached from any initial state with

FiG. 3.
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finite components (the components represented by black nodes have the value
+ ).

APPENDIX
Let (y,(N)), ., .y be a solution of the following linear system:
2y,c080 +y, =1,
y1+2y,c0s0+y;=1,
Yo t 2y3cos 0 +y, =1,

(8)

Yi—1t2y,cos0+y,,,=1,
Yn_1 T 2yycos6=1.

PrOPOSITION 10. Suppose N is an even integer.

(@) Iff(6) = y(N) + 1/(2cos 0) — 1, then f(0) = —1/(2(N + 1)), fis neg-
ative on the interval [0, w/(N + 3)] and positive on lw/(N + 3), w/(N + D).
(b) For 6 € [0, 7/(N + DI, y,(N) < 1/2.

Proor. Standard calculations with the above recurrence give easily that
for 0 < 0 < w/(N + 1), we have

1 sin N6 — sin 6
+ .
2(1 + cos 6) sin(N + 1)6

yl(N) +

Thus, f can be written as

((1 — 2cos® 6)sin(N + 1) + cos (sin N9 — sin 6))
2(1 + cos 6)cos O sin(N + 1)6

() =

If p(0) is the numerator of f, then
p(0) =sin(N + 1)0 — sin(N + 3)6 — sin26.

We remark that p(6,) = 0 for 6, = kwr/N + 3, £ odd and # < N + 3, or for
0y =kw/N+ 1,k odd, 2k <N+ 1and

p(0)
sin 0

= Uy(x) — Uyia(x) — Uy(x),

where x = cos § and Uy is the Nth Chebyshev polynomial of the second kind.
The right-hand side of the above expression is a polynomial of degree less
than or equal to N + 2; hence, we have all the zeroes of p in [0, 7]. It is now
easy to complete the proof of (a).
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To prove (b), notice that y,(IN) can be written as
1 sin(N + 1)6 cos 6 — cos(N + 1) sin 6 — sin 0
21+ cos o) | sin(N + 1)
1 sin cos(N + 1)6/2
2 2(1+cosf) sin(N + 1)§/2"

Hence our proof of (b) is complete. O

yi(N) =
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