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LIMIT THEOREMS AND RATES OF CONVERGENCE FOR
EUCLIDEAN FUNCTIONALS!

By C. REDMOND AND J. E. YUKICH

Lehigh University

A Beardwood-Halton—Hammersley type of limit theorem is estab-
lished for a broad class of Euclidean functionals which arise in stochastic
optimization problems on the d-dimensional unit cube. The result, which
applies to all functionals having a certain “quasiadditivity” property,
involves minimal structural assumptions and holds in the sense of com-
plete convergence. It extends Steele’s classic theorem and includes such
functionals as the length of the shortest path through a random sample,
the minimal length of a tree spanned by a sample, the length of a
rectilinear Steiner tree spanned by a sample and the length of a Euclidean
matching. A rate of convergence is proved for these functionals.

1. Introduction and statement of results. Let L denote a real-valued
function defined on the finite subsets of [0,1]¢,d > 2. In a classic paper,
Steele (1981) showed that under natural conditions on L,

(1.1) lim L(U,,...,U,)/n¢ V4 = B(L) as.,

where here and elsewhere (U)),,; denotes an ii.d. sequence of random
variables with the uniform distribution on [0, 1] and where B(L) denotes a
constant. The appeal of (1.1) lies in its applications to a variety of functionals
L arising in problems of geometric probability. It is known that (1.1) holds
whenever L is homogeneous, translation invariant, subadditive and mono-
tonic, as described by conditions A2, A3, A4’ and A7 below.

Under several additional but less natural conditions on L, Steele showed
that if (X),,, denotes an ii.d. sequence with an arbitrary distribution on
[0, 1]¢, then

(1.2) ’}%L(Xl,...,xn)/nw-lvd=B(L)jf(x)<d'”/ddx as.,

where f is the density of the absolutely continuous part of the law of Xj.
Steele’s result is motivated by the famous Beardwood, Halton and Hammers-
ley (1959) theorem for the traveling salesman problem (TSP), which proves
(1.2) when L(x,,...,x,) denotes the length of a minimum tour through
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There has been considerable recent work on refinements and extensions of
(1.1) and (1.2). Alexander (1994) has determined a rate of convergence in
expectation in (1.1), thus resolving a long-standing conjecture of Beardwood,
Halton and Hammersley (1959). Rhee (1993) has shown that (1.2) holds in the
sense of complete convergence whenever f is the uniform density. Jaillet
(1993) has shown that (1.2) holds for i.i.d. random variables on the d-dimen-
sional torus.

The aim of this paper is to provide a natural and simple approach to the
limit theory of Euclidean functionals. We will see that many Euclidean
functionals have a certain “quasiadditivity” property which only involves
natural conditions such as superadditivity, subadditivity and continuity and
which leads to proofs which are relatively short and simple. The study of
“quasiadditive” functionals provides a simple unifying framework which is
not only more general than that described by Steele (1981), but which also
allows us to easily recover and, in some cases, extend the work of Alexander
(1993), Rhee (1993) and Jaillet (1993).

The contributions of this paper are threefold. First, using the notion of
quasiadditivity, we provide a general approach to the limit theory of Eu-
clidean functionals, one which includes the TSP, minimal spanning tree
(MST), Steiner tree, and minimal matching functionals as special cases. Since
this approach includes the MST, it is thus more general than Steele’s
approach, which is limited to monotone increasing functionals. Our approach
is not confined to functionals defined on the unit cube, but also furnishes
asymptotics on the d-dimensional torus.

Second, we show that quasiadditivity insures that (1.2) holds in the sense
of complete convergence for any density f, thus extending the work of Rhee
(1993).

Third, we show that quasiadditive functionals admit a rate of convergence

(1.3) EL(U,,...,U,) — B(L)n-1/4 = O(nd-2/4),

The approach simplifies the rate results of Alexander (1994) and Jaillet
(1992).

We remark that the quasiadditivity condition insuring the general asymp-
totic result (1.2) and the rate (1.3) involve minimal structural conditions, and
in this sense, seem to capture the essence of the Beardwood, Halton and
Hammersley (1959) theorem for the TSP. The formulation of our conditions is
inspired in part by Rhee (1993).

As in Steele (1981), we list assumptions on L:

Al. L(¢)=0.

A2. Homogeneity. For every a > 0 and every finite subset F of Re, L(aF) =
aL(F).

A3. Translation invariance. For every x € R¢, L(x + F) = L(F).
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A4. Subadditivity. There exists a constant C,; with the following prop-
erty: If (@,), - ,,« denotes a partition of [0, 1]¢ into m? subcubes of edge length
m™!, and if (g;),.,. denotes the unique collection of vectors such that the
translated cube Q; — g; has the form m 1[0, 1], then for every finite subset
F of [0, 1]¢,

L(Fy<m™ Y L(m[(FNQ,) —q]) +Cm* .

i<m?

A5.  Superadditivity. For the same conditions as above on @;, m and g;
we now have
L(Fy=2m™ Y L(m[(FNQ,) —q]) - C,m?1.
d

i<m

Clearly, if L satisfies homogeneity (A2), translation invariance (A3) and
the usual subadditivity,

A4, L(F)< Y L(FN@Q,) +Cm??
d

i<m

then subadditivity (A4) follows. Thus, A4 is weaker than A2, A3 and A4'. A
similar comment applies to the superadditivity condition. While this distinc-
tion may seem at first purely formal, we will see that it allows us the right
amount of flexibility in the sequel.

The final assumption on L is:

A6. Continuity. There exists a constant C; such that for all finite subsets
F and G of [0, 119,

IL(F U G) — L(F)| < Cy(card G)*“~ /.

As a simple consequnce of continuity and condition Al, notice that
L(G) < Cy(card G)“4 V74,

Rhee (1993) has shown that continuity is a consequence of A2, A3, A4,
monotonicity of the form

AT, L(F) <L(F U {x})
and simple subadditivity
L(F, U F,) <L(F,) + L(F,) + Cj.

In general, it is difficult to verify that L simultaneously satisfies subaddi-
tivity (A4) and superadditivity (A5). We distinguish between these possibili-
" ties and agree to say that if L satisfies assumptions Al, A4 and A6, then it is
a continuous subadditive Euclidean functional; if L satisfies assumptions Al,
A5, and A6, then it is a continuous superadditive Euclidean functional. As
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may be seen from the work of Rhee (1993), if L denotes either a continuous
subadditive or superadditive Euclidean functional, then

(1.4) ’}iir:o{EL(Ul,...,Un)/nW-D/d =B(L).

It turns out that many continuous subadditive Euclidean functionals L on
[0,1]¢ are naturallx related to a dual superadditive Euclidean functional L,
where 1 + L(F) > L(F) for all sets F' and where

(1.5) EL(U,,...,U,) — EL(U,,...,U,)l < C,n@-2/4,

with C, a constant. This fact is central to all that follows and forms the key to
simplifying both the asymptotic results of Steele (1981) and the rate results
of Alexander (1994). We point out that the dual L is not uniquely defined and
is any superadditive Euclidean functional satisfying (1.5). Also, it is far from
obvious that dual functionals exist. We will see that the boundary-rooted
version of L, namely, one where points may be connected to the boundary of
the unit cube, usually has the requisite property (1.5) of the dual. We will also
see that while the boundary-rooted version is neither homogeneous nor
translation invariant, it does enjoy the superadditivity property A5. )

When the continuous subadditive Euclidean functional L and its dual L
enjoy the approximation property (1.5), we say that L (and also L) is a
quasiadditive continuous Euclidean functional.

The main results are as follows.

THEOREM 1.1. If L is a quasiadditive continuous Euclidean functional,
then the asymptotic result (1.2) holds in the sense of complete convergence.

The next result shows that the quasiadditive structure yields some re-
markable rate of convergence properties.

THEOREM 1.2. (a) d = 8. If L is a quasiadditive continuous Euclidean
functional, then

(1.6) EL(U,,...,U,) — B(L)n@~V/4 = O(nd-2/2),

(b) d = 2. Let L be a quasiadditive continuous Euclidean functional which
also satisfies a “weak continuity” assumption: There is a constant Cy such
that for all n > 1,

(1.7) |[EL(U1, ceey Un) - [EL(UI, ceey Un+ l)l S C5n_1/2.
Then .
EL(U,,...,U,) — B(L)n'? = 0(1).

" It turns out that many Euclidean functionals of interest are quasiadditive
and also satisfy weak continuity (1.7). This fact forms the main contribution

of this paper:
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THEOREM 1.3. The following are quasiadditive: TSP, MST, Steiner tree
and Euclidean minimal matching functionals. Moreover, the TSP, MST and
Steiner tree functionals satisfy (1.7).

We conclude the Introduction with two simple remarks.

REMARK 1.4. It follows from Theorems 1.1 and 1.3 that the boundary-
rooted duals of the TSP, MST, Steiner tree and Euclidean minimal matching
functionals satisfy the asymptotic result (1.2) and the rate result (1.6). This
fact, which is a simple consequence of the above results, does not seem to
have been noticed before.

REMARK 1.5. Let L denote either the TSP, MST, Steiner tree or minimal
matching functional and let LT denote the corresponding functional on the
d-dimensional torus equipped with the flat metric on the d-cube. In the
sequel we will see that the boundary-rooted duals L satisfy the relation

L(F) <L'(F) +1<L(F) +1,

where F C [0,1]¢ is arbitrary. Thus, if X;,i > 1, are i.i.d. random variables
with values in the d-cube, then the asymptotic behavior of LT coincides with
that of L:

lim I7(X,,..., X,) /n( /¢ = B(L) [f(x) PV dx ce,

where f is the density of the absolutely continuous part of the distribution of
X.

2. Proofs of Theorems 1.1 and 1.2. This section is devoted entirely to
the proofs of the first two results. The proof of Theorem 1.1 follows along the
lines of Steele (1981); however, the quasiadditive structure of L produces
cleaner arguments. Essentially, the subadditive techniques needed to prove
the upper bound implicit in (1.2) are identical to the superadditive tech-
niques required to prove the lower bound, which is usually less tractable.
Quasiadditivity allows us to apply the same approach to both upper and
lower bounds.

PrROOF OF THEOREM 1.1.

StEP 1. For the sake of completeness, we show that if L denotes a
continuous subadditive Euclidean functional, then

lim EL(U,,...,U,) /n4-9/4 = g(L).

The proof, which is implicit in Rhee (1993), may be modified to show that
continuous superadditive Euclidean functionals L enjoy the same limit re-
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sult. Set ¢(n) := EL(U,,...,U,). Observe by the subadditivity of L, continu-
ity and Jensen’s inequality that

p(n) <m™t ) (cp(n/md) + C3(n/md)(d_1)/(2d)) +Cym?!
ism?
_ md—l‘P(n/md) + Csm(d—l)/2n(d—l)/(2d) n Clmd—l’
Dividing by n(?~1/¢ and replacing n by nm? yields the relation

cp(nmd)/(nmd)(d_l)/d < cp(n)/n(d_l)/d + C3/n(d—l)/(2d) + Cl/n(d'l)/d.
Set B := liminf, _,, ¢(n)/n@~1/¢ and note that 8 < C;. For all & > 0, choose

n, such that for all n > n, we have C;/n@-Cd 4 C, /n@-V/4d < & and
o(ngy)/n¢~14 < B+ g Thus, for all m = 1,2,... it follows that

cp(nomd)/(nomd)(d_l)/d < B+ 2e¢.
Using the continuity of L, it is a straightforward exercise to verify that

limsup @(k)/k¢"V49 < B+ 2¢.

— 0

Let ¢ | 0 to complete the proof. .
Finally, we note that B(L) = B(L). By the approximation (1.5) we have

EL(U,,...,U,) — C,n@=2/¢ < EL(U,,...,U,)
<EL(U,,...,U,) + Cynt4-2/4,
Dividing by n(¢~1/¢ letting n —  and applying (1.4) shows B(L) = B(L).

STEP 2. We now prove that (1.2) holds in the sense of complete conver-
gence. Throughout, let u be the law of X; and f the density of its absolutely
continuous part.

By the clever isoperimetric arguments of Rhee [(1993), Theorem 1 and its
proof], it is enough to show that (1.2) holds in expectation, that is, to show

21 ImEL(X,,...,X,)/n® ¢ = B(L) [f(x)" " dx.

The proof of (2.1) consists of two parts.
(a) Fix &> 0 and suppose that the density of the absolutely continuous
part of u has the form

(22) o(2) = L ail(x),

where ¢, > 0 and where (@), ..« is the partition of [0,1]¢ consisting of
subcubes with edges parallel to the axes and with edge length m™! < ¢. We
show that (2.1) holds in this setting.
. To see this, follow an approach which is similar to Steele (1981, 1988). Let
E denote the singular support of u and let A denote Lebesgue measure on the
cube. We may assume that (1) E Cc A U B, where A and B are disjoint,
MA) =0and u(A) < ¢,and (2) for some J c I =={1,2,...,m%}, B= U, ,Q,
and XB) < &.
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By continuity, property (1), Jensen’s inequality and subadditivity,

EL(X,,...,X,)
<EL({X,,..., X,)\ A) + Cy(£n)@ /4

-1 —_ X
an RIS XNAG a)
+m™ Y EL(m[{X,,..., X, \NANQ,—q])
ied

+ Cym?1 + Cy((en) @72

Letting {U,);_, be i.i.d. with the uniform distribution on [0, 1]¢, it follows by
continuity and Jensen’s inequality that the first sum is bounded by

mt X {EL{(UT ) + Cy(mtn) @ 0?)
ieI\J
<m™! Z {[EL({Uk E&.r{rdn]) +K(m)n(d—1)/(2d)}

ielI\J

since the expected number of points in the subcube @, is ¢;m~%n. Here K(m)
is a constant depending only on m. The second sum is bounded by

(d-1)/d
Y Cam  (nu(Q)) ¢ = csn“-“/d{ )y (m‘d)l/dM(Qi)}
i1ed ied
1/d
ied

= C3n@-V/4(\(B))V?
< C381/dn(d_l)/d

by Hélder’s inequality and the estimate A(B) < &.
Combining the above estimates and dividing (2.3) by n¢~1/¢ yields

EL(X,,...,X,)
n(d—l)/d

+ K( m)n(l —d)/@2d)

o Lo el PRI )
. |

< X n 4. 1d-Dyd
ieI\J [‘Pim n]
(@-1
m
i/d o 177 (d-1y/d
+ Cie™/% + @ T7d + Cse .
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Therefore, letting n — « and applying (1.4), we obtain
limsupEL(X,,...,X,)/n4-1/d

n—o
< Z ¢§d_1)/dm_dB(L) + C3sl/d + C3s(d_l)/d
ielI\J

d-1)/d _
=B(L)f U Ql(p(x)( Ve + Cyel/d + Cye@-/d,
ieI\J

Let ¢ tend to zero and apply the bounded convergence theorem to conclude

(24)  limsupEL(X,,..., X,)/n Y < B(L) [o(x) ™" dx.

n— o

Similarly, by the continuity and superadditivity of the dual L, we obtain

EL(X,,....X,) 2m ' Y EL(m[{X,....,X,\ANQ; —q])
ieI\J

— Cym?™1 — Cy(en) V1,

As above, we deduce the analogous lower bound
(25)  lLminfEL(X,,..., X,)/n "% = B(L) [o(x)" ™" dx.
n—- o

Combining (2.4) with (2.5), using the inequality 1 + L > L and applying
the identity B(L) = B(L), we see that (2.1) holds when the density of the
absolutely continuous part of u has the form (2.2).

(b) Next, we show that (2.1) holds for an arbitrary density f. We follow a
thinning argument similar to that of Steele (1981). Let E denote the singular
support of u. Let ¢(x) be a function of the form Z}"_d 1 alej(x) subject to the

condition that [, ;e ¢(x) dx = 1 — u(E). Define A by
A= {x:f(2) < p(x)\E.
Define a new sequence of random variables: If X; € A U E, set X; = X; if X
is not an element of A U E, set X] equal to X; or a fixed @, € A according to
an independent randomization with probabilities ¢(X;)/f(X;) and 1 —
o(X,)/f(X,), respectively. On A° the sequence (X)), thus represents a
thinned version of (X)), ;. Finally, denote by (X7), . ; a third sequence of i.i.d.
random variables distributed on [0, 1]¢ with absolutely continuous part ¢(x)
and the same singular distribution as (X)), ;.
We make the following observations:

X and X{ have the same density ¢ on A°; thatis, for B C A°,
(2.6) Pr(X; € B) = w(E N B) + [ ¢(x)dx = Pr(X] €B),
: B
Pr(X;€A) =1-Pr(X; €A°)

(2.7) —1- w(E) - fAcgo(x) dx =fA<P(x) dx
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and
(2.8) Pr(X) €A) = fA<p(x) dx.

Two applications of the continuity property (A6), together with (2.7) and
Jensen’s inequality imply the upper bound

EL(X,,...,X,)

<EL({X)};c, NA°) + Cy(nu(A))“™ "

i<n
(d-1)/d
< EL({X}};., N A°) + Cy(nu(A) 4~V + 03(nj o(x) dx)
A

By (2.6) and (2.8) and another application of continuity, the above equals
(d-1)/d
cx(0x) |

IJi<n

NA°) + Cy(nu(A)) ¢ V% + C3(an<p(x) dx

(d-1/d
< EL((X),2,) + Ca(nu(A) % +20,(n ] o(x)

Dividing by n(¢~Y/¢ letting n — « and applying part (a) of the proof to the
sequence (X!), . ;, we obtain

EL(X,,...,X,) (d V/d
L@-b7d = B(L)f /dx

lim sup

(d-1/d @b
+ o w(A) T 420, [ o(x) s

The arbitrariness of ¢ then implies that

EL(X,,...,X,)

lim su "~ < B(L %)@Y gy,
msup — =i < B [ f(x)

In exactly the same way, use the continuity of the dual L to show the
analogous lower estimate

P [EIA‘(XlaaX) -
lim inf @D/ > B(L)f f(x)“ v/d g

n—o [o, I]d

Combining these estimates, we obtain the desired result (2.1). O

PROOF OF THEOREM 1.2. The proof breaks down into two cases: d > 3 and
d=2.

CasE 1 (d > 3). We begin with a fundamental observation which is a
simple consequence of the super- and subadditivity assumptions.

LEMMA 2.1. Let (U)P., be i.i.d. random variables with the uniform
distribution on [0,1]%, d > 3. There exists a constant K such that for all
integers n and m, with n/m? integral,

(2.9) EL(U,,...,U,) < m* EL(Uy,..., U, pa) + Kn@=D/24m@-D72
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and

(2.10) EL(U,,...,U,) > m* EL(U,,..., U, ) a) — Kn(@- D/ @Dpd-17/2,

Proor oF LEMMA 2.1. The proof of (2.9) has been shown already in Step 1
of the proof of Theorem 1.1; (2.10) may be shown similarly. O

We now deduce the rate (1.6) given by Theorem 1.2. Letting K be a
constant whose value may vary from line to line, by (2.9) we have for n/m?
integral,

EL(Uy,...,U,) EL(U,,...,U,, pne) Km(d-1/2
@Dd S (ymd) @72 t @ h/ed

and therefore, for all n and m,
EL(Uy,...,U,,«) EL(U,,...,U,) K
EENCERY S T @ v @ ves:
Letting m — o« and applying Theorem 1.1, it follows that

EL(U,,...,U,) -K

- B(L) > ——55 -
L@-D/d B(L) R@-D/@d)
Therefore,
(2.11) EL(Uy,...,U,) — B(L)n¥~V/2 > —Knd-/ed),
In exactly the same way, use the dual estimate (2.10) to conclude
(2.12) EL(U,,...,U,) — B(L)n¢-D/? < Rp@-1/Cd),

By the approximation (1.5) it follows that
EL(U,,...,U,) — B(L)n'¢~ 14| < Knd-2/4d,
This completes Case 1.
CaskE 2 (d = 2). This follows Case 1, with some simple modifications

which take into account the weak continuity assumption. The following
lemma is based on an observation of Alexander (1994).

LEMMA 2.2. Let N(n) denote a Poisson random variable with parameter n
and which is independent of U,, ..., U,. Then the weak continuity hypothesis
(1.7) implies both ’
EL(Uy,...,U,) — EL(U,,..., Uy, = 0(1)
and
EL(U,,...,U,) — EL(Uy,..., Uyl = O(1).
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ProOOF. By the approximation (1.5), it will suffice to prove the first esti-
mate. Conditioning on N(n) yields

EL(Uy,...,U,) — EL(Uy,..., Uyu)l
< Y Clk—nl(n/2)"V?Pr{N(n) =k}

n/2<k<3n/2

+ Y Cglk—nl"?Pr{N(n) = k)
0<k<n/2

+ Y C4lk —nl"?Pr{N(n) =k)
k>3n/2

< Cy + Cyn/2 Pr{N(n) < n/2} + CE{IN(0)["*Ly(us 502}
Since (N(n) — n)/n'/? has exponential tails, the last two terms approach
zero. O
Adhering to the notation of Lemma 2.2, we may now find the desired rate
of convergence. By subadditivity and superadditivity, we obtain
(2.9) EL(Uy, ..., Uygam?y) < MEL(Uy, ..., Uyg,) + Cim
and the dual estimate
(2.10) EL(U,, ..., Uyme) = mEL(Uy, ..., Uyq) — Cim.
From (2.9') we deduce for all n» and m, by Lemma 2.2,
EL(U,,...,U,,:) <mEL(U,,...,U,) + Km.
Dividing by (nm?)!/2, letting m — » and applying Theorem 1.1 with d = 2, it
follows that
EL(Uy,...,U,) — B(L)n'/? > —K.
Similarly, the dual estimate (2.10') implies the estimate
EL(U,,...,U,) — B(L)n"? <K.
By the approximation (1.5), it follows that
EL(U,,...,U) — B(L)nV? <K,
completing Case 2. This completes the proof of Theorem 1.2. O

3. Proof of Theorem 1.3. We first point out that the TSP, MST and
Steiner tree functionals all enjoy the weak continuity property, as noted by
Alexander (1994). It now remains to show that the TSP, MST, Steiner tree
and minimal matching are all quasiadditive, that is, satisfy the approxima-
tion (1.5). We will treat these one at a time.

A. The TSP functional. For n > 2, let L(x,,..., x,) denote the length of
the shortest tour through the points {x,}; _ ,. By tour we mean a closed path
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which visits every vertex exactly once. By convention, L(x,, x,) is twice the
length of the edge joining x; and x,. Let L,(F,{a,b}) be the length of the
shortest path through F U (a, b) with endpoints @ and b, where a and b are
not necessarily distinct and lie on the boundary of [0, 1]%. The key to quasiad-
ditivity lies in defining the following dual functional: For all finite subsets
F c[0,1]¢, set
L.(F) = minZLo(Fi, {a;, bi})’
1

where the minimum ranges over all partitions (F}), ., of F and all sequences
of pairs of points {a;, b,};.; lying on the boundary of [0,1]¢. Thus L,(F)
denotes the minimum over all partitions (F;);,, and all sequences of pairs
{a;, b;}; 5 1 of the sum of the lengths of the shortest paths through F; U {a,, b;}
with endpoints a; and b,. Each path is rooted to the boundary of the unit
cube. The functional L,(F) may be interpreted as the cost of an optimal tour
through the points of F' which occasionally exits to the boundary at one point
and reenters at another, incurring no cost when moving along the boundary.

It is known that L is a continuous subadditive functional and, therefore, to
show quasiadditivity, we only need to verify that the dual L, is a continuous
superadditive functional satisfying the approximation (1.5). Superadditivity
may be established in a straightforward way: indeed, if E is the graph which
realizes L,(F), then the restriction of E to a typical subcube Q;, j < m¢, has
a sum of edge lengths which exceeds the optimal rooted tour on F N @;, with
rooting to the boundary of @;.

The next lemma shows continuity.

LEmMA 3.1. L, is continuous, that is, satisfies assumption A6.

PrROOF. By optimality and the bound

L(G) < L(G) + 1 < K(card G)“~ ",
we get
L(FUG) <L,(F)+L,(G) <L,(F) + K(card G)“ "/,
The lower bound
L(FUG)=>=L.(F)
follows from simple monotonicity arguments involving the triangle inequal-
ity. O

Thus L, is a continuous superadditive functional and it only remains to
show that the dual functional L, satisfies the approximation property (1.5).
This is accomplished with the following lemmas, the first of which follows
from simple geometric considerations.

LEMMA 3.2. Let @ be a d-dimensional cube of edge length s and centered
inside a cube @ of edge length s + 2 ¢, where s/ ¢ is integral. Then Q' \ @ may
be partitioned into at most K&'~¢ subcubes of edge length &, where K depends
upon d and s.
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LEmMMA 3.3. Let {U};,., be i.i.d. random variables with the uniform
distribution on the unit cube [0, 1]%. Then the expected number of points rooted
to the boundary in the optimal rooted tour L (U,...,U,) is bounded above by
Kn@=V/4 yhere K depends only on d.

ProoOF. The proof depends upon a dyadic subdivision of [0, 1]¢. Let @, be
the cube of edge length 1/3 and centered within [0, 1]¢. Let @, be the cube of
edge length 2/3 and centered within [0, 1]¢. Partition @,\ @, into subcubes
of edge length 1/6. By Lemma 3.2 there are at most K6% ! such subcubes.

Continue with the partitioning scheme in this way. At the jth stage, define
the cube @; of edge length 1 — 2(3- 27)~1 and partition Q;\®;_, into sub-
cubes of edge length (3 - 27/) . By Lemma 3.2 there are at most K3¢-1(27)4-1
such cubes.

Carry out k stages, where %k is the unique integer chosen such that
24k-D < n < 29k The cube @, is partitioned into at most

k
Z K3d—12j(d—1) SI{n(d—l)/d
Jj=0

subcubes with the property that each subcube has an edge length which is
smaller than the distance between the subcube and the boundary of [0, 1]¢.
Finally, by further partitioning each subcube of this partition into 2'¢ congru-
ent subcubes, where [ is the least integer satisfying 2! > d'/2, we obtain a
partition @ of @, into at most Kn'®~1/¢ subcubes, with the property that the
diameter of each subcube is less than the distance between it and the
boundary of [0, 1]¢.

Now make the simple but fundamental observation that in an optimal
rooted tour on {U}; _,,, each subcube in & contains at most two sample points
which are rooted to the boundary. Indeed, as the diameter of the subcube is
less than the distance to the boundary of [0, 1]¢, optimality implies that at
most one path from each subcube of & may be joined to the boundary.

Finally, as the Lebesgue measure of [0, 1]\ @, is O(n~!/%), the expected
number of points in [0, 1]\ @, which are rooted to the boundary is also at
most Kn®~V/¢ Combining this with number of points in @, which are
rooted to the boundary gives the desired conclusion. O

In the sequel, given a graph E, let I(E) denote the sum of the edge lengths
in E. The next lemma is straightforward and follows from the triangle
inequality.

LEMMA 3.4. LetA,,..., A, be disjoint finite sets of points in [0, 1]¢, let G,
beatouron A; andleta; € A;,1 <i <k. Let A :={a;};,_, and let G be a tour
on A. Then

L( LkJAi) <l(G) + il(Gi).
i i=1

i=1
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Equipped with the above lemmas, it is now possible to prove that the
functional L is quasiadditive:

LEMMA 3.5. Let {U},_, be i.i.d. with the uniform distribution on [0, 1]%.

Then
EL(U;,...,U,) —EL.(U,,...,U,)| < Kn¢-2/4,

Proor. Consider a rooted tour G which achieves L,(U,,...,U,). Call the
points where G is rooted to the boundary “marks.” Each mark is thus the
endpoint of a rooted path through a subset of {U}, _ ,; possibly the subset is a
singleton, in which case the path contains two copies of a single edge.
Construct an optimal matching E on the set of marks (if the number of

marks has odd parity, connect one point to itself). As the marks form a subset
of the boundary of [0, 1]¢, it follows that

I(E) < L({marks}) < K(card{marks})® ?/“"P,
By Lemma 3.3 and Jensen’s inequality
(3.1) El(E) < K- E(card{marks}))®~?/“"V < gp@-2/4d,

The matching given by E takes paths rooted to the boundary and forms a
collection of tours {G;} from them. The sum of the lengths of the tours satisfies

YUG) = UG) + U(E).

It follows from the definition of G and from (3.1) that
(3.2) EY I(G;) <EL,(Uy,...,U,) + Kn4-2/4,

Next, choose one representative mark from each tour G, and connect these
representatives with an optimal tour G’ on the boundary. As in (3.1), we
deduce

(3.3) El(G') < Kn'@~%/¢,

Finally, by the monotonicity of L, Lemma 3.4, (3.2) and (3.3), in this order, it

follows that
EL({U},.,) < EL({U;};., U {marks})

<EUG) +ELUG)

i<n

< EL,({U};.,) + Kn@- /4,

Since we trivially have
ELr({l]L}zsn) = EL({l]l}lSn) + 1’

Lemma 3.5 follows immediately. O
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We have thus showed that the TSP functional is quasiadditive. It is a
relatively simple matter to see that the MST, the Steiner tree and the
Euclidean matching functionals are also quasiadditive. Indeed, the methods
are very similar and, in some cases, easier. We sketch the arguments as
follows.

B. The MST functional. Denote the MST functional by T'(x,..., x,); it is
the weight of the minimal spanning tree of V :={x,,...,x,}, where the
weight assigned to edge e is its length |e|. More precisely,

T(xy,...,%,) = min ). |el,
T ecT
where the minimum is over all connected graphs 7 with vertex set V. It is
well known that T is continuous and subadditive. To see that it is quasiaddi-
tive, define the dual functional

T.(F) = min LT(F, U {a}),

where the minimum ranges over all partitions (F}), ., of F and all sequences
of points {a;}, . ; on the boundary of [0, 1]%. Thus, T,(F) denotes the minimum
over all partitions (F)), ; and all points {a,};,, of the sum of the lengths of
the trees through disjoint subsets F; of F, where the ith tree is rooted to the
boundary point a,. The graph realizing T,.(F) may be interpreted as a
collection of small trees connected via the boundary into one large tree, where
the connections along the boundary incur no cost. To show that T' is quasiad-
ditive, we only need to verify that the dual 7, is a continuous superadditive
functional satisfying (1.5).

It is clear that 7T, is superadditive; to see that it is continuous, we may
modify the arguments of Steele (1988).

To see that approximation (1.5) is satisfied, we use a modification of the
approach for the TSP. Using the notation of subsection A, note that

(34) T(U,,...,U,) < T.(Uy,...,U,) + L({marks}) + 3(U,,...,U,),

where 3 :=3(U,,...,U,) denotes the sum of the lengths of the edges of
T.(U,,...,U,) which are rooted to the boundary of S, :=[0,1]%. We will
sketch the proof that E3, = O(n'®~2/9) when d = 2. Let S, be the square of
edge length 1 — 2n"1/2 centered within S;. Edges which root vertices in
S, \ S, contribute on the average O(1) to 3. Edges which root vertices in S,
also contribute on the average O(1). To see this, subdivide S, into parallel
horizontal strips of width n~1/2, By optimality, at most only the left and right
most points in any such strip are rooted to the sides of S;. On the average,
these points are a distance n~'/2? from the boundary. Repeating this argu-
ment for vertical strips gives E2 = O(1) and also shows that the expected
number of “marks” is O(n(¢~V/2),
Notice also that

(3.5) T(U,,...,U,) < T(Uy,...,U,) + 1/2.
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The last inequality follows since any MST can be made into a rooted MST by
simply connecting one vertex to the boundary. Thus, the MST functional is
quasiadditive.

C. The Steiner tree functional. Denote the Steiner tree functional by
S(xq,...,x,). It is a connected graph containing {x,,..., x,} and which has
the least total sum of edge lengths among all such graphs. It is well known
that S is continuous and subadditive. To see that S is quasiadditive, define
the dual Steiner tree functional S, by

S,(F) = min L S(F, U {a;})).

The functional S, is the boundary-rooted version of S and is the analog of T,.
To see that S, is continuous, follow the proof of Lemma 3.1 verbatim. To see
that S, satisfies the approximation (1.5), simply follow the approach of
Section B, noting that S, satisfies the inequalities (3.4) and (3.5).

D. The Euclidean minimal matching functional. Denote the Euclidean
minimal matching functional by M(x,,..., x,). Thus M(x,,..., x,) denotes
the length of the least Euclidean matching of the points {x,,..., x,} € R¢,
that is,

[n/2]
M(xy,...,x,) = m‘in Z “xa(ziq) - xcr(Zi)”’
i=1
where the minimum is over all permutations o of {1,2,...,n}. Simple and

standard arguments show that M is subadditive and continuous. To show
quasiadditivity, define the dual Euclidean matching functional M,(F) as the
length of the least Euclidean matching of points in F'; matching to boundary
points is permitted. In other words, each point in F is paired with either a
boundary point or another point in F; M, minimizes the sum of the edge
lengths over all such pairings. The functional M, is the boundary-rooted
version of M. It is clearly superadditive. Continuity of M, may be established
precisely in the same way as the continuity of M.

To establish (1.5), observe that for essentially the same reasons as in the
previous examples,

M(U,,...,U,) <M(U,,...,U,) + M({marks})

and
M.(U,...,U) <M(U,...,U,).

Thus, the Euclidean matching functional M is quasiadditive.
This completes the proof of Theorem 1.3. O

4. Concluding remarks. We have seen that the notion of quasiadditiv-
ity provides a general approach to the limit theory of Euclidean functionals
L. Central to the theory is the use of a boundary-rooted dual functional L
which approximates L and which has a useful superadditivity property. The
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subadditivity of L, together with the superadditivity of its dual L, leads to a
natural simplification and extension of the asymptotic theory as developed by
Steele (1981). It also leads to complete convergence results as well as simple
rates of convergence.

While we have seen that the TSP, MST, Steiner tree and Euclidean
minimal matching functionals are all quasiadditive, we have not attempted
to show that other functionals are quasiadditive. In Yukich (1994), it is
shown, for example, that the Euclidean semimatching functional is quasiad-
ditive. We expect that the theory of quasiadditive functionals includes other
well-known functionals.

The theory of quasiadditive functionals may enjoy other benefits. In Yu-
kich (1994) it is shown that the quasiadditivity of L leads in a natural way to
the construction of a functional L4 which closely approximates L and which
has an expected polynomial execution time. The functional L# may be
interpreted as an analog of Karp’s heuristic for the TSP. Finally, it appears
that the methods developed here may be appropriately modified to treat
Euclidean functionals with power-weighted edges as well as those defined on
bipartite samples.
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