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Recent results for geometrically ergodic Markov chains show that
there exist constants R < », p < 1 such that

sup
Iflsv

where 7 is the invariant probability measure and V is any solution of the
drift inequalities

[P (e, - [r(@nf()| < RV (),

JP(x,dy)V(y) < AV(x) + blc(x),

which are known to guarantee geometric convergence for A <1, b <
and a suitable small set C. In this paper we identify for the first time
computable bounds on R and p in terms of A, and the minorizing
constants which guarantee the smallness of C. In the simplest case where
C is an atom a with P(a, ) > & we can choose any p > ¥, where

[1-9]" =_;)‘)2[1—)\+b+b2+{a(b(1—)\)+b2)]

a
32 - 852 b \?
S ('r_“x)

and we can then choose R < p/(p — 9). The bounds for general small sets
C are similar but more complex. We apply these to simple queuing models
and Markov chain Monte Carlo algorithms, although in the latter the
bounds are clearly too large for practical application in the case consid-
ered.

and

1. Bounds for geometrically ergodic chains. Let ® = {®,: n € Z,}
be a discrete-time Markov chain on a general state space X, endowed with a
countably generated o-field %#(X). Our notation will in general follow that of
[16]. We denote by P™(x,A), n€Z,, x € X, AcB(X) the (stationary)
transition probabilities of the chain, that is,

Pn(x’A) = Px{q)n EA},
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where P, and E, denote, respectively, the probability law and expectation of
the chain under the initial condition ®, = x. When the initial distribution is
a general probability A on (X, (X)), the corresponding quantities are denoted
by P,, E,. For any nonnegative function f, we write Pf and P"f, respectively
for the functions [P(x,dy)f(y) and [P™(x,dy)f(y), and for any (signed)
measure pu, we write u(f) for [u(dy)f(y). We assume throughout that the
chain is yrirreducible and aperiodic ([16], Chapters 4 and 5), and we write
BH(X) ={A €BX): y(A) > 0}.

In this paper we consider chains which are geometrically ergodic; that is,
when there exists a unique invariant probability measure 7 and constants
R, <, p <1 such that
) |P(x,) -l <R, p"
for all x€X, n<€Z,, where for a signed measure u, we use | ull =
sup 7 <1/ #(f)l to denote the total variation norm. Our specific goal is to find
computable bounds on the constants R, and p. Recall from [16], Chapter 5,
that for a y-irreducible chain every set A € #*(X) contains a small set C;
that is, a set for which there exists some probability measure v, some & > 0
and some m with

(2) P™(x,A) > év(A), x € C, Aez(X).

Our expressions bounding R, and p will be in terms of the quantities § and
m in (2) together with constants A < 1, b < « and a function V > 1 satisfying
the “drift inequality”

(3) PV <AV +b],,

where C is small. That the existence of solutions to this inequality is
equivalent to geometric ergodicity was first shown by Popov [20] in the
countable space case and in [18] and [34] in the general case, and verifying
geometric ergodicity is most often done through such bounds (see Chapters 15
and 16 of [16], or examples such as [3]-[5]).

To set up our results we need the concept of a V-norm for the kernels
(P™ — 7). For a positive function V > 1, first generalize the idea of total
variation by defining the V-total variation ([16], Chapter 14) of a signed
measure u on ZF(X) as

Iully = sup | w(f)I.
IflsV
Conditions for the convergence of ||[P"(x,:) — w|ly for appropriate V are
given in [16], Chapter 14. Essentially all that is required to move to this
convergence from total variation convergence is that 7(V) < .
Next, for any two kernels P; and P, on (X, (X)) define the V-norm as

[ Pi(x,-) — Py(x, 91
4 Il P, — Pylllv = su
@ Rl TG
In studying geometric ergodicity, we will consider the distance || P* — II |||y,
where II is the invariant kernel

(x, A) = 7(A), Ae®BX),xeX
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The key concept is that of V-uniform ergodicity, introduced in [10] and [30]
for countable spaces and [15] for general chains. A Markov chain @ is called
V-uniformly ergodic if there exists an invariant probability measure 7 such
that

(5) lP* —TIIlly >0, asn— .

We then have [10, 15] that V-uniform ergodicity is, for the correct class of
functions V, actually equivalent to geometric ergodicity as studied in [17] and
[19]. Indeed we have from Theorem 16.0.1 of [16], the following theorem.

THEOREM 1.1. For a yrirreducible aperiodic chain ®, the following are
equivalent for any V > 1:

@) ® is V-uniformly ergodic.
(ii) There exist p < 1 and R < ® and an invariant probability kernel TI
such that foralln € 7,

(6) IlP* —IIlly < Rp™.
(iii) For some one small set C [and then every small set in #*(X)] there

exists a function V, > 1 and constants A¢ <1, by < ®© such that the drift
condition

holds, and V, is equivalent to V in the sense that for some ¢ > 1,
(8 clWVW<Vy<cV.

This allows us to place V-uniform ergodicity in an operator theoretic

context. Let L; denote the vector space of all functions f: X — C satisfying

|flv = sup =)l

xeX V(x )

If P, and P, are two transition kernels and if || P, — P, |llv is finite, then

P, — P, is a bounded operator from L7 to itself, and || P; — P, lllv is its

operator norm. It then follows from a standard operator norm convergence

approach [16] and the fact that P* — I = (P — II)* that the convergence
must be geometrically fast so that (i) must imply (ii) in Theorem 1.1.

Identifying upper bounds on the rate of convergence p and the constant R
in (6) for chains on finite state spaces has been a well-studied problem for
many years [27], and in special cases the optimal rates of convergence can be
found explicitly. For a recent example, see [11].

On countable spaces, this problem was studied soon after the original work
on geometric ergodicity [35], although no generally applicable results seem
available. On these and on more general spaces such as R”, the problem has
attracted considerable attention recently, largely as a result of the use of
Markov chain Monte Carlo (MCMC) techniques. In this context one key to
stopping rules for simulations is knowledge of the accuracy of n-step approxi-
mations, and this motivates the calculation of computable bounds in (6).

However, existing results have been sparse. For example, even for specific
situations on continuous spaces in the MCMC area, only the simple facts of

< o,
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convergence in total variation, or the existence of some unknown rate p < 1
for which convergence is geometrically fast, have been asserted by most
authors (see, e.g., [3, 8, 22, 32]). Some special cases have been studied
through spectral theory of operators [26], but again bounds on the actual
value of the “second eigenvalue” have not proved easy to establish in any
closed form. In our concluding section we give one such application, although
regrettably the actual bounds found are too large for practical purposes as
yet.

To our knowledge, the results here are the first explicit general bounds on
the rate of convergence, even for countable space chains, although there are
several recent approaches which give related results.

First, under the assumption that the whole space is small, so that there is
an m, a v and a § such that for all x,

P™(x,") = év(-),
then (see Theorem 16.0.2 of [16]) there is an elegant coupling argument to
show that we have
(9) 1P*(x,) —wll<(1-8)"", =xeX
that is, we can choose R =1 and p = (1 — 8)/™. This is exploited in, for
example, [7, 13, 23 and 32]. However, the requirement that X be small is
extremely restrictive and is not satisfied for most models of a truly “infinite”
nature.

Second, and closely related in spirit to our results, in [12] it has been
shown since we developed this paper that if one has stochastic monotonicity
properties on the chain, then it is possible to get very much tighter bounds
which are in very many circumstances exact, using only the same minimal
information which we use here. In fact the rate of convergence can be
bounded by A, where this is the contraction factor in (3), provided C is a
single point (an “atom”) at the “bottom” of such a stochastically monotone
chain. This can be shown to be the best possible under weak (and natural)
extra conditions.

Third, Rosenthal [24] has recently extended the method of argument used
in proving (9) for uniformly ergodic chains to find bounds on chains such as
those we consider here. His method assumes slightly greater structure than
does ours, but the corresponding bounds may well be considerably tighter in
many cases as a consequence. No systematic comparison has as yet been
undertaken, although the links between the two methods are now understood
[25].

Finally, Spieksma [31] and Baxendale [1] have both considered the struc-
ture of Kendall’s theorem (Theorem 15.1.1 of [16]) which lies at the heart of
the analytic approach to convergence rates. As in [12], Spieksma shows that
for a special class of models on countable spaces (which include many
" single-server queueing models) the rate of convergence can be bounded by A
in (8) when C is a single point. This relies crucially on her Assumption A,
which is unfortunately not always satisfied. Baxendale’s approach makes no
such assumption, and as in this paper, his results give general computable
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bounds which are complex in nature but could be compared with ours in
specific circumstances.

It is clear that, other than the results in [12] and [31], both of which
require special structure, none of these bounds is likely to be tight, but the
methods of proof indicate areas in which more explicit knowledge of specific
models may be used to sharpen the results.

In the next section we give the main results; the proofs and related results
then follow. We consider specific numerical values which the bounds produce
in a queuing and a uniformly ergodic context, and conclude with a more
detailed application, to a specific MCMC context, which is related to rather
more detailed studies in [13]. This illustrates the approach needed to apply
these methods in practice.

2. Computable bounds. We first consider the case where (3) holds for a
small set @ which is an “atom”; that is, P(x, ) = P(a, ) for all x € . More
general cases will later be reduced to this using the Nummelin splitting
technique ([16], Chapter 5).

Our central result is the following theorem.

THEOREM 2.1. Suppose that for some atom a € B(X) we have A < 1,b < »
and a function V > 1 such that

(10) PV <AV + 5L,
Let 9 =1— M., where

1
(11) Ma=z1_—/\)2[1—/\+b+b + £,(B(1 = A) + b2)]
and
(12) L =sup| Y [P*(a,a) - P Y(a,a)]z"|

|zl<1ln=0

Then ® is V-uniformly ergodic, and for any p > 9,

n p n
(13) Il P HIIIvSp_ap, nelz,.

This theorem, which is proved in Sections 3 and 4, gives an explicit bound
for the constant and the convergence rate, provided we can also find a bound
for £,. Although in specific cases {, can be estimated precisely (see, e.g.,
Section 9), which is why we give the bound M, in the form of (11), we have
found no such results in the renewal theory literature. In Section 5 we
. therefore prove following the general result.

'THEOREM 2.2. Suppose that (10) holds for an atom « € B(X), and also
that the atom is strongly aperiodic; that is, for some §,

(14) P(a,a) > 6.
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Then

15 32 -882( b \?
(15) ba = 83 (1—/\)'

It is instructive to consider the possible performance of these bounds.
Under the plausible configuration of smaller values of 8,1 — A and larger
values of b, the leading term is likely to be of the order

32[b/(1 - 1)]*673.

This is clearly not close to the value of 1/(1 — A), which is known for
stochastically monotone chains [12] and indicates that the bounds cannot be
expected to be tight. The conversion of these bounds to the general strongly
aperiodic case is given in Section 6. The situation there is more complex, and
we have the following result.

THEOREM 2.3. Suppose that C € B(X) satisfies
(16) P(x,') = ov(), x€C,
for some & > 0 and probability measure v concentrated on C, and that there
is drift to C in the sense that for some A, < 1, some b, < © and a function
V>1,
(17) PV < AV + bc1,,
where C,V also satisfy
(18) V(x) <vp < oo, x e C.
Then ® is V-uniformly ergodic and
p
19 P —1TIlIlly < (1 +
(19) Il Iy < ( Yc)p_ﬁ

p*, neZz,,
forany p> 9 =1- Mg, for
1
-5’
defined either in terms of the constants
’yC = 6_2[4bc + ZS)LCUC],
(21) A=[ac+ v l/[1+ ] <1,
I; = vC + 'yc < ®©

(20) M- [1- X+ 8482+ L(Ba - 1) + 57)]

and the bound

0 _ 4-82( b, \?

or in the case where
(23) n:= inf P(x,C) —86>0

xeC
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in terms of the constants
b = [1 - 8] "[bc + 8(Acve — »(V))],
(24) Yo =[on]'[1- 8108, bl =w(V) - A,
A=The+vl/[1+ 7] <1, b=bf+y<w
and the bound

- 1 - 1’2 bc 2
25 = .
( ) {C 2847] ( 1 _ /\C )

These expressions give computable bounds on the rates of convergence for
strongly aperiodic geometrically ergodic chains. Because of their generality,
the bounds in Theorem 2.3 are of necessity far from tight. Indeed, in the form
using (21) and (22), we can consider again the probable leading terms and
find that we are likely to produce a value of M, of the order of

o6 &5 17 4 &5 1 8 72

() {Cl_x ~—8—5-1—X 1—)\0'
Since & /(1 — X) is itself of order 87*16b2/(1 — Ao) this gives a lower bound
on M, of order at least

(27) 212b8/[61%(1 — A¢)"].

In the case where we can use (24) and (25), then we have similarly that
Yo = be/(8m), so b/(1 — A) = bZ/[8°n%(1 — Ag)]l. Moreover, {; = bZ/[28*n(1
— Ac)?]. Thus M is at least

(28) b/ [28%°(1 - A0)Y],

which we might find to be considerably smaller than (27) in some circum-
stances. There is thus clearly a premium on making & and 1 as large as
possible, and this is somewhat independent of the choice of V. Even so, we
always have 8§ + 1 < 1, and so the intrinsic capacity of this calculation seems
doomed to be never better than M, > 23 = 10*, regardless of the value of A,
or b..

This shows that, in general, one will want to use more structure to get
explicit bounds. In particular, it will pay handsomely to get far better bounds
than (22) or (25) for Z, (as we do in some of the examples below), and in
particular we find that it is certainly worth attempting to make the small set
C as small as possible in order to maximize the value of 8 that can be chosen,
" provided that this can be done without making A too close to unity or b, too
large. This tradeoff is illustrated in detail in our last section.

In Section 7, we extend the results from strongly aperiodic chains to
general aperiodic chains. In this case the bounds become somewhat less
explicit unless there is an atom in the space, although this is an important
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special case since it means that for chains on countable spaces, or for chains
such as queuing systems with identified regeneration points, we do have a
complete solution to the problem in principle. The result we prove is the
following theorem.

THEOREM 2.4. Suppose again that (17) holds and that there exists an
atom a such that for some N > 1 and 8, > 0,

N
(29) Y Pi(x,a) > &, x €C.
j=1
Define the constants
oy = 3C/N2,
by=bo(1+8")", k=0,..,N,

k-1
A=1-(1-2a)/ TI(1+8,/8y), k=0,...,N.
i=0

(30)

Then there exists a function Vy with
V<Vy<V+by

such that

(31) PVy < AyVy + by 1,.

Thus Theorem 2.1 holds using Ay, by and with Vy in place of V, so that in
terms of V we have ,

(32) P =TIy < [1+ by]

p n
95— pP ’ nelz,.
for p> O where ¥ is defined as in Theorem 2.1 using Ay, by.

This result is not quite explicit. It still involves ¢, for the atom in (29) and
the theorem contains no assumptions that will bound this. We need either
special pleading or extra conditions, such as the strong aperiodicity in
Theorem 2.2, for a completely computable bound.

3. Bounding the convergence rate for a bounded operator. Theo-
rem 2.1 is a consequence of two sets of observations: the first using the
spectral theory of operators and the second using probabilistic bounds most of
which are inherent in Chapters 14-16 of [16]. As we saw in Theorem 1.1, (10)
implies V-uniform convergence of the operator P := P — II at_some geometric
rate. It therefore follows that the norm of the inverse (I — zP)~! is bounded
for |z| in some region containing the unit circle, and so at least for |z| on the
circle itself. To use this fact we will generalize a result of [21], which enables
us to move explicitly from a bound M on the unit circle to a bound in a larger
circle, as given in (13). This is the operator-theoretic observation. The proba-
bilistic observations then come in generating the bound on the unit circle,
which will give the form of M, in (11).
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Let D(r) c C denote the open disk centered at the origin of radius r. When
r =1 we set D = D(r). We now extend a remark given on page 416 of [21].

THEOREM 3.1. Suppose that &/: Ly, — LY, is a bounded operator, that the
inverse (I — z5/)™ ! exists for each z in the closed unit disk D and that for some
finite M,

(=20l <, 2D
Then (I — z%)~! exists in the larger open disk D(M /(M — 1)), and for any
1<r<M/(M-1):

@ NI -2z lly <M/(r — (r — DM), 2| =r.
@ N llv<M/(r—(r—DM)r ", nelz,.

PROOF. Suppose that M = sup,.p I —2%) ! ||y. The function (I —
29) 1V(x) of z is analytic in the open unit disk for any fixed x € X. By the
maximum modulus principle, we must have

sup (1 - 29) "'V (2)| 2|(1 = 29) 'V ()], = V(2),

which immediately implies that M > 1. For any z we have

o e ) (22

The first factor ((|z|/z)I — ) is invertible by assumption, and the second is
< 1.

invertible if
n( - )_l(lzl 1)
I— - —_ - -
2 z z /|y

By the conditions of the theorem, this holds if M(|z| — 1)/|z| < 1, or equiva-
lently, if |z| < M /(M — 1). Hence we have established that (I — z%) ! exists
for z in this range.

Now we have from (83), whenever |z|=r < M/(M — 1),

-1 1 1
I === o s~ e = 170l
1 1
< Mia-imm
1
e -yme

which is the desired bound.
As also observed by Spieksma [31] for countable chains, (ii)) now follows
from (i) and Cauchy’s inequality. For if we have for some M,,

licz = 2y lv < M,
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where |z| = r, then averaging over the circle of radius r in the complex plane
we obtain for any |f| < V,

1 o N
E[; (I-re~i%) " fei"0dg < M.V,

and since the integral is precisely r"o™f,
| f(x)| =<r "M, V(x),
which proves (ii). O

4. Bounding (I — zP) ! on |z| < 1. To apply Theorem 3.1 to the opera-
tor P = P — II we now obtain an upper bound M, on the norm of the inverse
(I — 2zP)7! for |z| < 1 when the drift condition (10) holds. This bound follows
from the regenerative decomposition theorem (Theorem 13.2.5 of [16]). We
have in convolution notation

(34) P'(x,f) =,P"(x,f) +a,*uxty(n),
where for n > 1, writing 7, for the first return time to «,
«P"(x,f) = E.[f(®,) (7, 2 n)],
a,(n) =Py(7, =n),
u(n) =P(®, = a),
tr(n) = E,[f(®,)1(7, = n)]
and for convenience we set ¢,(0) = 0. For any f € L'(w) define f = f — w(f).

We first bound the V-norm |||(I — 2P)7 |||y in terms of these quantities and
then move to bound the quantities themselves using (10).

PROPOSITION 4.1.  If an atom « € X exists, then for |z| < 1,

JE— 1 Ta -
|”(I —zP) IIIV <1+ 5[‘3 V(%) {Ex[ngl|f(¢n)|]
(35) xeX

5 nlf(fbn)l]},

n=1

+§aEa[
where {, = sup, . 5 |3(u(n) — u(n — 1))z"| as in (12).

ProoF. From the first entrance last exit decomposition (34) we have for
lzl <L, Ifl<V,

(I-2P)" f(x)

L 2"P"f(x)
n=0

, (36) f(x) + ng,lz"P"f(x)
= f(x) + P(I - 2z1,.P) " f(x)

1 _
+A,(2)((1 = 2)U(2)) T P(I — 21,P) " F(a0),
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where
U(z) = glz"u(n), A (2)= i:lz”Px(fa =n).

We have that |A,(2)| < 1for any z € D, x € X. The term P(I — z1,.P) *f(x)
is less than or equal to E,[Y7_, | A(®,)l] for |z| < 1 and [(1 — 2)U(2)| < ¢, for
any |z| < 1. Hence the proposition will be established if we can obtain
appropriate bounds on

1 -
£(z) = T_‘;P(I—z]lavp)_lf(a).
Writing B8, = E,[A®,)1(n < 7)] =, P™a, f) we have that ¢&(2)

X, _q1 B(z"/(1 — 2)). Since, from Theorem 10.0.1 of [16], X;_; B,
m(a) 17 (f) = 0, it follows that for |z| < 1,

2" —

* 1
n§1B" z—1

l€(2)] =

< Lladn= LE[@)1(n<w)]n

This combined with (36) proves the proposition. O

The most difficult term to handle in (85) is the final one. The following
result, which is a generalization of Corollary 3.1 of [6], enables us to control
the second expression in this term.

PROPOSITION 4.2. For any positive function h and any set A € Z*(X) we
have

TA

fAEx[ 2 nh(®,)

n=1

7 (dx) =fXEx[ - h(d)n)]n-(dx).
n=1

ProOF. By Fubini’s theorem first, and then using the Markov property
and the fact that {7, > &} € #® |, we have

/ Ex[ 3 nh(dz,)]w(dx) - [e|T ¥ h(cb,,)]w(dx)
A n=1 A

 n=1k=1

( TA  Ta

= [E| L X A(®,)|7(dx)

k=1 n=¢k

- [ E, ZA Eq,k_l[ f: h(®,) ]w(dx).
A k=1 n=1

By Theorem 10.0.1 of [16], the right-hand side is equal to

JE-

which proves the proposition. O

X:‘,lh((b,,) m(dx),
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We are now able to use (10) to relate (35) to the required bound M, in (11).

PrOPOSITION 4.3.  If (10) holds, then the following bounds are satisfied for
all x € X:

@ (@(V)/(m(a) <b/(1 - ).
(i) E [E%_; V(®)] <[A/(1 — MIV(x) + [b/(1 — M1, (x).
(i) E X%, nV(®,)] < [A/(1 — V]aw(V)/m(a) + b/(1 — ).
(iv) E,[7,] < [1/(og(1/A)Klog V(x) + (b/M)1,(x)}.

() E,[X%_; n] <[1/Qog(1/ MK (mQog(V))/m(a)) + b/A}.

PrOOF. (i) This follows directly from Theorem 14.3.7 of [16] with = (1 —
MV and s =51,.

(ii) From an obvious extension of the comparison theorem (Theorem
14.2.2) of [16] with f= (1 — M)V, s = b1, and 7 = 7,, we have the bound

T,— 1
(1-NE,| ¥ V(®,)| <V(x) —E,[V(®,)] +bL,(x).
n=0
Subtracting (1 — M[V(x) — E [V(®, )]] from each side gives
1- /\)Ex[ ) V(d)n)} < AV(x) = AE,[V(®,)] + bL,(x)
n=1

and this gives (ii).
(iii) This follows from (ii) and Proposition 4.2.
(iv) By Jensen’s inequality and (10),
b
PlogV <logV + log(A) + 3 1,.

Hence the result again follows from the comparison theorem of [16].
(v) As in the proof of (iii), this follows by combining (iv) and Proposition
42. O
By putting together these estimates we now give the following proof.

ProOF OF THEOREM 2.1. From Propositions 4.1-4.3, we have for |z| < 1,
—A \%4 + b 1 1+ #(V
(1257 + 75 1)@+ m(v)

A m(V) .
g“(l—/\'lr(a) * 1-2

1+( A b (1 b )
<
= 1—,\+1—,\) 1

1
A b b )(1+ b )
+{“(1—/\1—/\+1—/\ 1-A

lz-22) |y <1+ SUp s

)(1+ 7T(V))}
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L IR S
1-x 1-2 (1-a1% (@1-27°

L b [,
L5 )

= (1_—/\
The result then follows directly from Theorem 3.1 on letting .o = P. O

! )2[1—/\+b+b2+§a(b(1—/\)+b2)].

5. Bounding the renewal variation and {,. The bounds in the previ-
ous section are in general relatively tight, as can be seen from their deriva-
tion. The only term which is not explicitly controlled here is ¢,, and in this
section we consider bounds on ¢, in terms of the known quantities for a
model satisfying (10).

To do this we introduce the renewal variation Var(z) ([16], Chapter 13),
defined by

(37) Var(u) = ) |u(n) —u(n - 1)|,
n=0
where u(—1) = 0 by convention. It is immediate that Var(«) is a bound for ¢ :

o= sup|Xz"(u(n) —u(n - 1)< X |u(n) —u(n - 1)|.

lzl<1' n n=0
We will use Var(x) as the bound for ¢, in what follows. In the case of
stochastically monotone chains with o at the “bottom” of the space as in [12],
this is exact since u(n)| m(a). We note that in Assumption A of Spieksma
[31] it is in effect assumed that the quantity [T, z2"(u(n) — u(n — 1) is
bounded on a suitably large disk D(r) c C and thus the need to find a bound
on ¢, is avoided.

To bound Var(u) we will use a variation of the coupling technique in [16]

(Chapter 13). For convenience let 7 denote the time of first return to a and
let the corresponding return time distribution be given by
(38) p(n) =P, (7=n).
As is usual in coupling arguments, we will consider two independent renewal
sequences with the properties of u; that is, consider S;,(n) and S,(n), where
the initial variables S;(0) and S,(0) may have arbitrary distributions and
where the increments Y,(n) = S;(n + 1).— S;(n) are independent and each
have the distribution

P(Y;(n) = m) = p(m)
for each copy i = 1,2 and each n > 0.
Next suppose the first component commences with zero delay [i.e., S;(0) =

0] and the second is a delayed sequence with deterministic delay of one time
unit [i.e., S3(0) = 1]. Let T,; denote the coupling time of these two sequences;
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that is, the first time that both sequences renew simultaneously. Then we
have as in Proposition 13.4.1 of [16] that
(39) Var(u) < E[T,,].
We now recast this bound in terms of the forward recurrence time chains for
these renewal sequences. For i = 1,2 let
Vi'(n) =1inf(S;(m) —n: S8;(m) >n), n=0,
denote these chains, and construct the bivariate chain V*(n) = {V{(n),
V5 (n)}. If we put
71,1 = inf(n: V*(n) = (1,1)),
then in the specific case of an initial delay V;(0) = 1 and V;(0) = 2
Top =711
so that from (39),
(40) Var(u) < E; 5[7,4]-
[Note that in (13.70) of [16] the less accurate bound E[T;] < E; ,[7, ;] + 11is

used.] The key calculation is the following, which expresses E; 2[71 ] in
terms of E; ,[7, ,]. We have by symmetry

E1,1[7'1,1] = k=E_ E1,1[7'1,1]1{Y1(1) =Y,(1) + k}]
= E1,1[7'1,1]l{Y1(1) = Yz(l)}]‘

+2 i Ey,1[71,:1{Y1(1) = Yy(1) + &}]
k=

(41) ,g: np(n)® + 2kZl nzlp(n)p(n +RB)E; 1 aln + 4]
R

p(n)2 +2 E Z np(n)p(n + k)

k=1n=1

0

2 Y. p(n)p(n + 1)E; 4[7,,]

2) Y p(n)p(n+ E)E; 1ial711],
k=2 n=1

so that in particular, using only the fact that E; ; ,[7, ;] > £ in the last
term, we have

0

Elralz X np(n)?+2 Y ¥ np(n)p(n + k)

n=1 k=1n=1

- (42) +2 % ¥ kp(n)p(n + k)
\ k=2 n=1

+2 Z p(n)p(n + 1E, 5[]

n=1
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Thus if we can control the terms p(n), we will be able to bound E, ,[7, ;] in
terms of E; ;[7; ;]. We can then use the fact that, if 7* denotes the invariant
measure for the bivariate forward recurrence time chain V*(n), then from
Kac’s theorem (Theorem 10.2.2 of [16])

-1
(43) m*(1,1) = [E1,1[71,1]] .
However, since the bivariate chain consists of independent copies of the
forward recurrence time chain, we further have

(44) 7*(1,1) = [#(a)]’.

Thus we will be able to bound Var(z) in terms of 7(a).

In the examples below we show various model-dependent ways to do this:
Here we will develop a bound that holds for arbitrary strongly aperiodic
renewal sequences, although this introduces some undesirable inequalities
that can be avoided by direct use of (42) if we are able to assume knowledge
of, say, higher values of p(k), and in particular of p(2) as well as p(1).

With the structure above, we proceed to the next proof.

PROOF OF THEOREM 2.2. Suppose only that (10) holds and that P(a, a) >
8. Then (15) will hold if we can show
32882/ b \?

83 1-A)°

In order to bound Var(u) in this way, using only the minorization bound on
P(a, @), we need a further and somewhat artificial construction on the
original chain. Let us “split” the atom « (in the simplest possible way) into
two equal parts a, and a; by tossing a fair coin each time « is reached and
by putting, for all A C «°,

P(a;,A) =P(a,A), 1=0,1.
Rather than using a formal split chain, we will assume for convenience of

notation in this proof that this is the structure of the original chain, so that in
particular

(45) Var(u) <

(46) m(o) =m(a)/2, 1=0,1,

and

(47) P(a;, ;) =P(a;, ;) =6/2, 1,j=0,1

Now focusing on «,, let us consider the renewal sequence u*(n) given by
(48) u*(n) = P"(a,, a)

corresponding to returns to «, with corresponding renewal times

(49) p*(m) =P,(1,,=m), meL,.

This is related to our original renewal sequence by
u(n) = P"(a,a) = 2P"(a, ay) = 2u*(n), n=1,



996 S. P. MEYN AND R. L. TWEEDIE

and so we have
(50) Var(u) = 2Var(u*).

Our reason for this somewhat tortuous construction is simple: (47) enables us
to assert for n > 1 that

(51) p*(n) = P(ay, a))[P(ay, a))]" *P(ay, ap) = [8/2]"

and this control of p*(n) allows us to control Var(z*), using (42).
If we now consider 7§, to be the return time to (1,1) for the process of
returns to a,, we have as in (42), using (47) and (51),

0

Ey[.]= ¥ np*(n)” +2 Y > np*(n)p*(n + k)

n=1 k=1n=1

42 % Y kp*(n)p*(n + k)
k=2n=1

12 Y p*(n)p*(n + DE; olrhi]

n=1
N [5/2]2[14-2[5/2]3].+ 2[8/2]°
- [1-—(3/2)2]2 [1-(5/2)
Thus we have successively from (50), (40), (52), (43), (44) and (46),
Var(u) = 2Var(u*)
< 2E1,2[7’1k,1]
<E;[rf.](8 —26%)/8°
< (4/7(a)*)(8 — 28%) /8%,

where we have ignored the possible increase in accuracy from the first term
in the last line of (52). We now need one last step. From Proposition 4.3(i) and
the fact that V > 1, we have

(54) m(a) = (1—-7)/b
and so, finally, from (53) and (54) we find (45) as required. O

(52)

E1,2[7’1k,1]~

(53)

These bounds involve at least two approximations which are likely to be
very poor. The first is the bounding p*(n) by [8/2]"; which ignores a great
deal of the probability of the event {7 = n}. The second is the bounding of

,E; o[7F 1] as in (52), which is clearly not tight, although it does perhaps pick
up the main part of the bound in (42).

We see in the examples below that the weakness in this estimate of Var(u)
warrants every effort to improve this term in our estimate of M, in practical
situations.
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6. Bounding strongly aperiodic chains. We have from Theorems 2.1
and 2.2 a computable bound under the conditions that (i) there exists an atom
with P(a, a) > & and (ii) there is a known solution to (10) with drift to this
same atom.

In this section we find bounds under the much more general condition that
for some A, < 1, some b, < © and a function V > 1,

(55) PV < AV + b1,
for some (not necessarily atomic) set C satisfying
(56) P(x,") = év(+), xeC,
for a 6 > 0 and a probability measure v concentrated on C, and
(57) supV(x) = vp < .
xeC

Thus through (56) we assume that the chain is strongly aperiodic (see [16],
Chapter 5) and the conditions of Theorem 2.3 all hold.

We first consider a chain containing an atom « and a small set C such

that o € C and for some & > 0,

(58) P(x,a)>68, =x€C.

This is the special case of (56) with a a singleton and v its Dirac measure,
and will be shown below to be an appropriate route to analyzing general
strongly aperiodic chains using the Nummelin splitting.

Let us further look at the bounding constant b, separately on and off the
atom in (55) and define the two constants b} < b, and b¢ < b, such that
(59) PV < AV +bELgn,e + XL,

In practice we may often have b, = b} = bf, but it is worthwhile separating
them in what follows. With this structure we have the following theorem.

THEOREM 6.1. Under (58) and (55), there exists a function V' with V <V’
<V + b{/8 such that

(60) PV' <AV' +b1,,

where

(61) A=[Ac+b5/8]1/[1+bf/8] <1
and

(62) b=0b+bf/6 <.

Thus Theorems 2.1 and 2.2 hold with this choice of A, b and with V' in place
of V, and so for p > 9,

bl »p
(63) P -TIllv < 1+—6— 3‘:—1)9", .nez,.

ProOOF. The construction we used is based on that in [33]. For a B to be
chosen later, set

V(x), x € a,
(64) Vilx) = {Vgx; + B, x z a’,
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so that for x € C°¢,

PV' <PV+B
(65) <AV +B
<AV’
provided A > [B + A;]/[B + 1]. For x € a, we have
PV' <PV+B
(66) <AV +b+B

<AV' +b¥+B

since A > A,. Here we are ignoring a presumably small negative term (A —
Ac)V(a). In order to establish an appropriate value for B, we calculate for
xeCna’,
PV'(x) =P(V+B)(x) —P(x,a)B
<(AV+B)+b§— 6B
<AV' +bf - 8B
<AV

provided we choose the value B > b§/8. Using the exact values B = bf/6
and A =[B + A;]/[B + 1], we get the values in (61) and (62) as required.

Since we now have drift to « as in (60), Theorem 2.1 holds, and from (58)
with x = a, (14) holds and so Theorem 2.2 is also valid. Now in terms of our
original function V, we have for p > 4 given by (13),

1P"(x,-) = wlly <[|P*(x,") — 7y

(67)

’ p n
(68) Sv(x)ﬂ—pp

b1 »p
1+ —= n
Sv(x)[ 5]?9—/1’)’

so that (63) holds as stated. O

We now move from the atomic to the general strongly aperiodic case using
a splitting argument. Suppose that (55) holds but that C satisfies only (56)
and (57). If we now write 8 = §/2, then obviously we still have

(69) P(x,) = Br(-), xeC,
and also, since v(C) = 1,
(70) P(x,C) — pr(C) = B.

Recall now the construction of the Nummelin splitting ([16], Chapter 5) based
on (69). We define a “split” chain ® on a state space X = X, X X; cons1st1ng of
two “copies” of X. We write x, € X, and x; € X, for the two “copies of x” and
A, c X, and A; c X; for the “copies of A” for any set A in Z(X). If u is any
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measure on (X), then we split u into two measures on each of X, and X by
defining the measure

1) W(Ag) =[1-Bla(ANC) +u(ANCo),

n*(A;) = Bu(A N C),
where B and C are the constant and the set in (69). Rather more simply, any
function V on X is split by setting V(x,) = V(x,) = V().

The split chain is then governed by the transition law P, which is defined
by

(72)  P(xy,") = P(x,")*, xo € X0\ Co,
(73) ﬁ(xo,-)=[I—B]_I[P(x,~)*—BV*(~)], xOECO’
(74) Pv(xl") =v*(-), x; € X;.

For A =A; U A, we will use the fact that
(75) P(%0,4) = [1-B]'[P(x,4) - Br(A)] < [1 - B]'P(x, A).

On C§ we have ﬁ(xo, ) = P(x,-), and we can essentially ignore ﬁ(xl, -)on
C1{ and shall do so, thus in effect putting X, = C,. This splitting introduces an
atom & = C,; C C into the split space. Moreover, because we have split using
B, we have from (70), (73) and (74) that for x € C,
P(x,,&) = pv(C) = B,
(76) P(xg, &) = [B/(1 = B)][P(x,C) — Br(C)]
> [B%/(1-B)],

which shows that, since B < 1/2, & is reached from every point in the split
representation C, U C; of C with probability at least

(77) = B%/(1-B).
Note that if we had used a sphttmg using & rather than B we might have
had P(x,, &) = 0 from (56). The choice of B = 8/2 can be shown to be close to
optimal in this argument, although it is likely that as in the examples below,
we can often use & itself in practice to improve the constants in the bound.
We now consider the drift inequalities for the split chain. We still have
trivially that (59) holds for x € C§, from (72). Since vy = sup, . V(x) < o
from (57) and v is concentrated on C, we have from (74) that for x, € C;,

(78) PV(x;) = [v(dy)V(y) < AcV(x;) + vc,
while for x, € C, from (75),
PV(xo) < [1 - B] " PV(x,)

(79) |
< AcV(xg) +[1=B] [bc + BAcuc].

Thus writing
(80) b = [1—-B1'[bc + Brcucl, : = Ucs
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we have that (59) holds for the split chain with A¢ unchanged and b¢, b3
replaced by bc, b*, that is,

(81) PV < AV + bt 4 + X1,
We can now put these calculations together with Theorem 6.1 to prove
Theorem 2.3.

PrOOF OF THEOREM 2.3. From (81) and (77) we can now use Theorem 6.1
for the split chain to find that for some V< V' <V + b{/6,

(82) PV' <AV’ + b1y,
where now we have
X _ Ac + e

1+ vy
with vy, given by
from (77) and (80). From (80), also
l;zl;: +l;é/g=vc+')’c.

Thus we have immediately that (20) will hold with A, b as in (21).
Hence from (63),

v

« v b p
(83) 1B~ Tilly < |1+ 5| 5==p",  neZ,
and since
(84) P =TTy < Il B Ty,

we have shown that (19) holds with p > ¥ given by (20), provided {, > Var(z),
where Var(it) is the total variation of the process of renewals to & in the split

chain.
We finally show that (22) provides such a bound for Var(i). If we put p(n)
for the return time distribution for this process, then since

P(x,,C,) =P(x,C) — Br(C) > B
from (71) and (73), we have [essentially as in (51)] from (76) and (70),

p(n) >f f (&, dxd)P(x}, dx) - (xo L &)

>(1- B)B"‘?B /(1= B)

= B™.

Ndw we note that by the splitting construction,
(86) w(a) = émw(C).

(85)
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Moreover, integrating the original drift equations against 7, we have
(1= 2)m(V) <bcm(C)
and since V > 1, we have
e 2
(87) [#(&)] 7 < [be/(8(1 = Ac))]
Emulating (53), we thus have

-8 ., 4-8? be |\
a5 |
which is the required bound, and the theorem is proved for the bounds in (21)
and (22).
To prove the bounds using (24) and (25), we refine these calculations when
1 > 0in (23). To show (81) holds with %, b* defined as in (24), note as in (78)
that for x; € &,
PV(x;) = [v(dy)V(y) < AcV(xp) + B,
whilst for x, € C \ &, refining (79),
PV(x,) =[1—- 8] [PV(x) — 8v(V)]
<[1-8]1""[AV(x) + b — dv(V)].
As in (76), we also have for each x € C\ & that
(89) P(x,&) = 8=[8n]/[1-5].
From (81) and (89) we can now use Theorem 6.1 to find that for some
V<V <V+bt/s, (82) holds with b=>*+bt/5 and X=(A; + v5)/

(1 + 7y¢) with y, = b% /3. It remains to prove "the bound on {c- We now have
that p(n) > 87" ! and as in (53) and (88) this gives

(88) Var(i) < :

_ 1- _
Combining (90) and (87) gives the requlred result. O

7. Bounding general aperiodic chains. In the general aperiodic case,
we assume only that C in the drift condition (3) satisfies the m-step mi-
norization condition (2). In principle we can reduce this to the strongly
aperiodic situation solved above, since the m-skeleton is strongly aperiodic.
In developing computable bounds in practice this presents some problems,
since the drift condition is typically available for the one-step chain and the
strong aperiodicity is for the m-skeleton.

" In this section we develop computable bounds in two situations of practical
interest and a general solution which requires more information than we
have so far assumed. Our first result indicates how to deal directly with the
m-skeleton.
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PROPOSITION 7.1.  For a general aperiodic yr-irreducible chain, assume that
for some m > 1, 8 > 0 and a probability measure v concentrated on C,

(91) Pm(x,+) = év(-), x€C,
and that there is a function V > 1 and constants A, < 1, b, < ® such that the
m-step drift

(92) P™V < AV + b1,
holds. Assume also that for some d < »,
(93) PV <dV,

which certainly holds if V is also a solution to (3). Then defining 9 and vy, as
in Theorem 2.3, we have for any p > ¥,

1+ v be 1"
94 P —11 < d+ n/m,
(94) I Iy (p_0” | v
PrOOF. From Theorem 2.3 applied to the m-skeleton, for any p > &,
1+
mF“—Hmvs(L—lgfyﬂ ke,
p— 19
Since ||| - [l v is an operator norm, it is submultiplicative, and hence for any

n=mk+ieZ,
P -1y =[|(Pm* — my(p - myl,
<llcpm* — mllyllcp - myly

1+ y:)p i
s(i—jg—%%mp—nmw.
Since PV < dV,
b
P =Ty < WPy + Ty < d + —2
| 1- ¢

and hence the result is proved. O

In many situations we will be able to find a solution to the m-step drift
equation and this bound is then practicable. However, in general we are
likely to need to consider the case where we have only the one-step drift
equation (17) holding, for C satisfying (91), and we now indicate how to
control this situation.

As is shown in Theorem 15.3.4 of [16], by iterating we have

m-—1

P"V < AEV +bg ) Pl < AV + mbele,y,,
0
where the set

m—1
C(m) - {y: T Pi(3,0) = [ - Az';]/bc}.

i=0
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Thus we do have an m-step drift equation holding, but the set C(/) may not
satisfy (2) for the m-skeleton, and so we cannot use Proposition 7.1 immedi-
ately.

As shown in Theorem 15.3.4 of [16], however, C(m) is at least a small set
for the m-skeleton. Following the proof of Theorem 5.5.7 of [16], there must
therefore exist an integer N° and a 6° > 0 such that

(95) PV¥m(x,) > 8%(:), «xeC(m),

where v is actually the measure concentrated on C in (91).

There is no general prescription that we are aware of for finding N° and
8°: If this situation occurs, they will need to be calculated separately. How-
ever, if they are known, then by splitting the m-skeleton over C and using
the same arguments as in (81), we can reduce the situation to one where (17)
holds for a set C [now given by C(m) in the split space] satisfying, from (95),
the condition that

(96) PN(x,&) > 85, xeC(m).

Now we can find explicit bounds in this situation (as is shown in Theorem 2.4,
which we have yet to prove), and so we can construct a bound for the rate of
convergence of the m-skeleton as in the proof of Theorem 2.3, and then
transfer this to the original chain as in Proposition 7.1.

We will not try to identify the outcome of this program explicitly, and we
feel it is a task unlikely to be undertaken except in pressing circumstances.
We conclude by providing the missing link in the chain, which is of indepen-
dent interest in many practical situations for countable chains or for chains
with a true atom in the space.

Proor oF THEOREM 2.4. Again we use a construction based on [33] and
generalize the calculations in Theorem 6.1, although here we will not try to
specify the improvement from differentiating between possible values for b,
over different parts of C such as a and a° ’

We write Cy = a and C,, = {y: P*(y, a) > k8y} and we set

k
CG=UC, C=C\Cy, k=0,..N.
0

For x € C, from (29) there is some k£ < N such that
P*(x,a) = 8;/N = kdy

and so C ¢ U} C, = Cy. Thus from (17), we certainly have

(97) PV < AV + bolg, .

We will successively develop functions V; such that this drift equation holds
with Cy replaced by Cy_;, and with A; replaced by A; and b, replaced by b;
as in (30), based on the method of Theorem 6.1. The final iterate of this

operation gives the result we seek.
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The crucial observation we need is that for any 2 = 1,..., N — 1, we have
for x € Cp, 4,

(B +1)8y < P**1(x,a)
(98) = [ P(x.d0)P(y, ) + Jo PGP, )
<P(x,C,) +kéy
so that for 2 =0,...,N — 1,
(99) P(x,C,) 28y, x€Ch,,.

In following the proof of Theorem 6.1, we will use (99) successively to play the
role of (58).
Let us define V; by
V(x), x € Cy_1,

Vi(x) = -
1( ) V(x)+bc/8N, xECI";,_l.

If we define A; = [Ag + bo/8y1/[1 + bo/8y] and b, = by + b/ 8y, then as
in (64)-(67) we find
(100) PV, < MV + bilg, -
Rewrite these constants in the form (30):
by =be(1+1/8y),
Mo=[re =1+ (1+bc/8y)]/[1+bc/8y]

If we iterate this construction, we find that by induction we get constants A,
and b, given by

b1 =b,(1+1/8y) =bc(1+ 1/6N)k+1
Mesr = [ A +0,/8y]/[1 + b,/ 8y ]

= { Ao — 1+ k]:[l(1 +b,./6N)]/ 1"[ (1+b;/8y)
i=0

k k
= [AC -1+ IJ)(l + b-,./SN)] i]:%(l +b,/8y),

-1+(1 +bk/6N)}

X{1+b,/8y) "

so that (80) defines the coefficients for
(101) PVk < )\ka + bk]]‘C-N—h’
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where the functions V) are defined successively by

Vic1(x), xeéN—k’

V.(x) = ,,
M) Vioi(x) +b,_1/8y, x € Cy_y.

Thus the result will hold as required for the Nth iteration, at which time we
will have the function

Vy(a) =V(a),

N-1
V(x) + b.[8y, xeC,,
(102) ( ) Ngk J/N k

Vy(x) = N-1
V(x)+ X bj/SN, x € Cf,
0

and so (31) holds.
Finally, note that (32) follows exactly as does (63), and the theorem is
proved. O

8. Bounding the M/M /1 queue. In this and the next two sections we
evaluate the general bounding procedure for three types of chain: for the
number of customers in the M/M /1 queue, or the Bernoulli random walk on
Z,; for a general uniformly ergodic chain so that in effect the atom in the
space is easy to identify; and for an MCMC example where the chain is truly
continuous in nature.

For the first, we have

P(x,x—-1)=p >1/2, P(x,x+1)=q=1-p, x>1,

with the boundary condition P(0,0) = p, P(0,1) = q.

For this model we know (see Chapter 15 of [16]) that in (10) with o = {0}
we can choose V(x) = (1 + y)* for some y > 0, and for each choice of y we
get for x > 1 the value

A=p(1+7y)" +q(l+y).
Choosing y to minimize this parameter leads to
y=vp/q - 1.
This then shows that (10) holds for V(x) = [ p/q]*/? with the parameters
(103) A=2/pqg, b=p-pq.

In this case we can get a considerably better bound on Var(x) than that given
by (15), since we do not need to create the artificial sequence p*(n) through
splitting the state {0}.
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By just choosing the simplest term in (42) and using the facts that
p(1) = p, p(2) = gp and #(0) = 1 — q/p, we have

2E1,2[Tl,1] <Epjilmal/p(D)p(2) -1
= [#(0)] /(1) p(2) - 1

=[p/(p-9)"/[p%] -1
and hence

(104) 2Var(u) < ————— -1

[(p-d)]q

As examples, let us consider two numerical cases. Suppose first that p = 2/3.
Then A = 0.943, which can be shown to be the best possible rate of conver-
gence (see [12] and [31]). Now we have in this case b = 0.195 and Var(u) < 13
using (104). Substituting in (11) gives us

M, = 88 + 15Var(u) < 283,

so that we get by this method a bound of & < 0.996 for the rate of conver-

gence.
Suppose second that p = 0.9. Then A = 0.6 and b = 0.6 also, while (104)
gives Var(u) < 7.3. This time substituting in (11) gives us

M, = 85 + 3.75Var(u) < 36,

leading to a bound of ¥ < 0.972 for the rate of convergence.

Suppose that we had actually used the method of splitting {0} to bound
Var(u) as in (15). In the case p = 2/3 we would have found Var(z) < 1116;
in the case p = 0.9 we would have found Var(z) < 79. In either case there is
a severe deterioration of the bound for M, and the value of more accurate
estimates of Var(x) is obvious.

9. Bounding a uniformly ergodic chain. Let us consider next a
generic uniformly ergodic chain. Suppose there is some atom in the space
such that

P(x,a)=1/2, x X,

and let the remainder of the transitions be arbitrary. Here the value of 1/2 is
for convenience alone. From the coupling bound (9) we know that we can
choose R = 1 and p = 1/2 for this example.

In this case, since the renewal sequence corresponds exactly to geometric
interarrival times with rate 1/2, we have that u(n) = 1/2 for all n > 1, and
so the only positive term in Var(u) is the first. Thus,

- (105) Var(u) = u(0) —u(l) = 1/2.

For this chain, choosing V(x) =1 + ¢ for x € a® and V(a) = 1, we see that
we can take

A=[2+c]/[2+ 2c], b=ca,
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in (10). This immediately illustrates the problem we will face in getting a
tight bound from (11): as ¢ — © we have A - 1/2, but b will go to infinity,
thus giving very poor bounds. By substituting in (11), we get from the
expressions for A, b:

(106) M,(c) =6c™! + 12 + 6¢ + ¢ + Var(u)[6 + 5¢c + c?].

Thus at best, since ¢ > 0, we will get a bound of the convergence rate of
p > 0.933. Using Var(u) = 1/2, we see that (106) is minimized at approxi-
mately ¢ = 0.75, and here we get an approximate best value of

M,(c) = 25.06 + 10.3 Var(u) = 30.2,

leading to a bound for ¥ = 0.967 and a bound on the constant of R = 323.3 at
the value p = 0.97.

Here we have been able to use the true value for Var(u). If we use the
approximation methods of Section 5, then inevitably we get less reasonable
values. Indeed, since in this special case we can follow through the argument
for the atom « itself, rather than splitting o artificially, we get as in (42),

82 263 4  E;o[74]
+ E =— 4 ==
1- 82)2 (1-6?) 1,2[”1,1] 9 3

and since now 7(a) = 1/2, we find
Var(u) < 3/[w(a)]” - 12/9 = 10.67.

Using this value in (106) gives us a minimal bound on M_,(c) around 115 at
¢ = 0.3, so that now ¥ < 0.991.

The effect of splitting the atom at zero and using the bound (15) is again
large. We have from this approach

Var(u) < 258(2 + ¢)*

for all c, so this method yields only Var(u) < 1032.

This again indicates, rather dramatically, the benefit that flows from
attempting in special cases to get a better estimate of Var(u) than that given
in (15).

E1,1[”1,1] =

10. Bounding Metropolis algorithms. The examples considered in the
previous two sections used results where the rates depended on behavior at a
natural atom. Clearly, the bounds in Theorem 2.3 on continuous spaces will
be larger, using only the minimal information and the methods we employ. In
this section, we illustrate this by giving an application to Hastings and
Metropolis algorithms, which have recently received considerable attention
using general Markov chain theory [3, 28, 32].

We will indicate how the bounds are calculated in practice for such
algorithms. We do find, regrettably, that the order of magnitude of the
bounds is not of practical value and these techniques cannot be used at this
stage to give bounds of value for real applications. The calculations below are
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based on ideas in Section 7 of [13], where a number of related examples are
also considered.

Hastings [9] and Metropolis [14] algorithms allow simulation of a probabil-
ity measure 7 which is only known up to an unknown constant factor; that
is, if densities exist, when only 7(x)/7(y) is known. This is especially
relevant when 7 is the posterior distribution in a Bayesian context: see [2,
22, 28, 29 and 32] for a more detailed introduction.

To implement such algorithms on R*, say, we first consider a “candidate”
transition kernel @ with transition probability density q(x, y) which gener-
ates potential transitions for a Markov chain. A “candidate transition” gener-
ated according to @ is then accepted with probability a(x, ¥); otherwise, the
chain does not move. The key is that «a(x, y) can be chosen to ensure that =
is invariant for the final chain.

We will consider here only the Metropolis algorithm: other examples are
studied in detail in [13]. The Metropolis algorithm utilizes a symmetric
candidate transition @; that is, one for which q(x, y) = q(y, x). The most
common usage of such chains occurs (cf. [32]) if @ is not merely symmetric
but satisfies the random walk condition

(107) q(x,y) =q(x-y) =q(y —x)
for some fixed density q. Thus, actual transitions of the Metropolis chain with

random walk candidate distribution take place according to a law P with
transition density

(108) p(x,y)=Q(x_y)a(x,y), y #Fx,
and with probability of remaining at the same point given by
(109) P(x,{x}) = [q(x = y)[1 — a(x, y)] u™"(dy).

The acceptance probabilities then take the form

[ 7(¥)
(110) a(x,y) = mm{;‘(—xj’l}, m(x)q(x,y) >0,
L m(x)q(x,y) = 0.

The key observation for this algorithm is that, with this choice of «, the
“target” measure 7 is stationary for P. As an example of such an algorithm
for which we can calculate bounds on the rate of convergence, we will
consider the case in which 7 is N(0,1). A natural choice of symmetric
candidate distribution is then the centered normal; that is, @(x,-) is a
N(x, 1) distribution. In this situation we have

a(x,y) = min(1, e’ ~*"/2), x,y >0,

and we know from Theorem 3.4 of [13] that the chain is geometrically ergodic.
We will apply the second set of bounds in Theorem 2.3 to generate bounds on
this convergence. It is intuitively sensible to apply (17) for the symmetric
small set C, = (—x,, x,) for some x, > 0 to be chosen.
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The size of the bound (28) seems best controlled by controlling x,, which
determines 8. and 7. If one were interested only in establishing the existence
of geometric ergodicity, v could be chosen to be Lebesgue so that §, would be
given by exp(—2x3). A considerable improvement is obtained by choosing the
minorizing distribution

v(dx) ae ™ dxl,(x).

If we let N, be the normalizing constant
N, = [1/v27] [ e,
%,

this gives 8, = Nye *i. The infimum 7 occurs at x = xa, 80 that n=1/2 —
®(—2x,) — Nye i,

To choose an optimal value of x,, we now need to focus on V and A. We
will take the test function V(y) = e*"?! for some s to be chosen also. Then
straightforward calculations show

Mz, 8) = [P(x,)[V(y)/V(x)] dy

= e 2(D(—s) — B(—x —5) + e 2(P(—x +5) — P(—2x +5)))

1 x%2 — 6xs + s? —-3x+s —x+s
S 5

"7 4 V2 V2

+1 B(—2 1 e —3x (D(—x)
-+ - — —e” — | + —1].
p P2 — g %) 7z
Now instead of specifying s and calculating Ag, it appears more effective to
first specify A., which controls the size of M, and determines the remaining
constants. Thus we first calculate s by equating sup, . cs Mx, s) to the given
A¢, which is easy since the supremum occurs at x,. Since PV(x) < AoV(x) +
(M=, 8) = Ao)V(x) for all x € C,, we then find

be = sup [e**(A(x,s) — A)],

x€Cy

which has a supremum at zero given by
be =V2®(s/V2)es /4 + 1 - 1/Y2 — g,
and then we can calculate
b = (V2 /%) /(Ny))(P(V2 (25 — 5/2)) + ®(5/V2) — 1).

The terms bf, ¢, X, b, 7 and M, then follow as in (24), (25) and (20).

The terms comprising (28) and M, are given in Table 1 for several
combinations of x, and A;. As indicated, we find a minimum value of
M. = 6.29E7, obtained for x, = 1.20 and Ay = 0.99999. It is interesting to
note that best values seem to come from choosing A close to unity, leading to
very small values of b.
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TABLE 1
XA hc 8 bg 858 1]_5 (l —h)_4 MC
1.70 0.85000 1.01 0.32 2.0E11 48.0 2.0E3 42E15
0.85 0.99000 0.14 9.3E-8 4.2E4 4.0E3 1.0E8 4.7TE9
1.15 0.99900 5.0E-3 1.1E-15 1.5E6 3.0E2 1.0E4 7.2E7
1.20 0.99999 4.0E-5 3.1E-28 3.4E6 2.2E2 1.0E20 6.3E7
1.25 0.99999 4.5E-5 4.8E-28 8.2E6 1.7E2 1.0E20 1.3E8
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