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PERTURBATION OF NORMAL RANDOM VECTORS BY
NONNORMAL TRANSLATIONS, AND AN APPLICATION
TO HIV LATENCY TIME DISTRIBUTIONS'

By SiMEON M. BERMAN

Courant Institute of Mathematical Sciences

Let Z be a normal random vector in R* and let 1 be the element of R*
with equal components 1. Let X be a random variable that is independent
of Z and consider the sum Z + X 1. The latter has a normal distribution in
R* if and only if X has a normal distribution in R'. The first result of this
paper is a formula for a uniform bound on the difference between the
density function of Z + X1 and the density function in the case where X
has a suitable normal distribution. This is applied to a problem in the
theory of stationary Gaussian processes which arose from the author’s
work on a stochastic model for the CD4 marker in the progression of HIV.

1. Introduction and summary. Let Z be a random vector in R* having
a N(p,3) distribution where 3 is nonsingular. Let X and Y be random
variables such that X and Z are independent and Y and Z are independent.
Let 1 be the vector in R* with equal components 1. The basic result of this
paper is a formula for a bound on the absolute difference of the densities of
Z + X1 and Z + Y1, stated in Theorem 2.1:

(1.1)  (27) **(det 3) "2 fm |E expi**X) — E exp®**¥)|p(x) dx,

where ¢(x) is the standard normal density and A = (1’3~ '1)1/2, Since ¢(x)
decreases rapidly for |x| — «, the key to the closeness of the densities is in
the closeness of the characteristic functions in a bounded interval containing
the origin. In particular the bound (1.1) is relatively small if X and Y have
the same set of moments up to a certain order or if they have a common mean
and small variances (Theorem 2.3). ‘

The main applications of (1.1) given in this paper are in the case where
EX =EY, EX2=EY?, E|X|? <» and Y is assumed to have a normal
distribution. In Theorem 2.4 we consider the bound (1.1) in the particular
case where X is itself the normed sum of n ii.d. random variables. It is
shown that (1.1) is bounded by a Liapunov-type function involving the
absolute moments up to order 3 and the sample size n.
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The motivation for (1.1) arose from the following general problem in the
theory of stationary Gaussian processes: Let Z(¢), —© < ¢ < =, be a real-val-
ued stationary Gaussian process and let X be a random variable indepen-
dent of the process. Then Z(¢) + X = X(¢) is stationary, but is not Gaussian if
X is not normally distributed. The question that led to (1.1) is: If X is close to
having a normal distribution, how close is X(¢) to a Gaussian process? More
exactly, what properties of the process Z(¢) based on its Gaussian nature
hold approximately for X(¢) and what is the “error” of approximation? In
applying (1.1), we take Y as a normally distributed random variable having
the same mean and variance as X, and define Y(¢) = Z(¢) + Y, which is, of
course, a stationary Gaussian process. Then (1.1) takes the form (2.5) and
furnishes a uniform bound for the difference of the k-dimensional densities of
the processes X(¢) and Y(¢), respectively. In the bound (2.5), the covariance
matrix of the Gaussian k-vector enters the analytic expression only through
the determinant in the denominator and the number 1'% 11 = sum of all the
entries of 371 in the numerator. The mean vector has no role.

The particular problem that led to this more general question for station-
ary Gaussian processes is the refinement of the author’s model for the CD4
marker in the progression of HIV [Berman (1990)]. In the original model, the
logarithm of the CD4 marker of a seronegative (for HIV) person was, as a
function of time, taken to be a stationary Gaussian process Z(z¢). At the
moment of seroconversion, a negative linear term — &t is added to Z(¢),
where 8 > 0 is a parameter, so that the process is changed to Z(¢) — 8¢ and
the Gaussian property is preserved. The model is now refined by incorporat-
ing the more recently observed fact that there is a nearly instantaneous drop
of the CD4 level just following the time of seroconversion; see Levy (1988).
Thus the stochastic process is transformed by the addition of a negative
random variable X representing the CD4 drop, and which does not have an
exactly normal distribution (because it is negative). The bound (2.5) is applied
to the determination of the possible error that enters the calculation of the
posterior density of the HIV latency time when the distribution of X
is replaced by a corresponding normal distribution. This is analyzed in Sec-
tion 4.

The main result of Berman (1990) is also extended in another direction. In
the latter work, the posterior distribution of the latency time was a con-
ditional distribution whose conditioning variable was the first CD4 mea-
surement following seroconversion. The current work provides a posterior
distribution defined as a conditional distribution with the conditioning set
containing any number of CD4 measurements following seroconversion. By
utilizing this extended posterior distribution, one can employ more observa-
tions and thereby obtain more information about the conditional distribution
of the latency time. An interesting feature of this extension is that the
éxtended posterior distribution is exactly of the same parametric form as that
of the original posterior distribution, namely, it is a censored normal distribu-
tion. In the extended version the parameter values of the censored normal
distribution depend on the set of all the conditioning variables.
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2. The bound for the difference of the densities.

THEOREM 2.1. Let Z be a normal random vector in R* with nonsingular
covariance matrix 3 and let X and Y be real-valued random variables such
that Z and X are independent and Z and Y are independent. Let ¢(z) be the
standard normal density, and define

(2.1) - A= (r3)"”
and
(2.2) f(u) = Ee’**,  g(u) = Ee™*”.

Then the absolute difference between the densities of Z + X1 and Z + Y1 is
uniformly at most equal to

(2.3) (27) ¥/ %(det 3) " /? f_wwlf()tx) — g(Ax)ld(x) dx.

Proor. By the form of the multivariate normal characteristic function
and the inversion formula for an arbitrary density function in terms of the
characteristic function, the absolute difference of the densities is at most
equal to

G f---fexp(—%u’Eu)IE exp(iw'1X) — Eexp(iu'lY)|du
Rk

or

(2.4) 27) 7" [+ [ exp(—3u'Su)If(w1) - g(u'1)| du.
Rk

The expression (2.4) is, in fact, equal to (2.3). Indeed, it is true that for any
bounded measurable function 4,

(27) ~*/*(det 3) /2 f fexp(—%u’ﬁu)h(u’b) du
Rk

= [ h(x (0 ) %) g(x) d,

because the left-hand member represents Eh(§'b), where £ is a N(0,371)
random vector in R*, so that &b is an N(0,b’'3~'b) random variable, and
the right-hand member is a version of the same expected value. Applying the
foregoing equation with b =1 and A =|f — g/, one obtains the equality of
" (2.3) and (2.4). O

COROLLARY 2.2. Let T be an arbitrary random vector in R* which is
independent of X, Y and Z. Then the bound (2.3) for the absolute difference of
the densities continues to hold if Z is replaced by Z + T.
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ProoF. By the reasoning involving the inversion formula that led to the
bound (2.3), the addition of the random vector T yields the modified bound

(2m) " f fexp(—%u’ﬁu)IEei“'TI lf(W'1) — g(u'1)| du,
Rk
which is obviously at most equal to (2.3). O
If Y has a N(v, 72) distribution, then g(u) = exp(ivu — su?r?) and (2.3)
takes the form
7 lexp( —ivAx) f(Ax) — exp(—x°A*r?)|$( %) dx

(2.5) (277)k/2(d tE)l/z

THEOREM 2.3. Assume, for some m > 2, that E|X|™ < » and E|Y|™ < «
and EX’ = EY/, for j=1,...,max(2, m — 1). Let z, be the upper 100& per-
centile of the standard normal distribution. Then, for any & > 0, the bound
(2.3) is at most equal to

PrROOF. Change the variable of integration in the integral in (2.3) to
obtain
x x x \ dx
7) =3l 5 )5
T T

TA] TA
The latter is at most equal to
2.7A x x x \ dx x \ dx
: Z)-gl =)l == +2 —|=
f f(T) g('T) ¢( T)t) TA f|x|>zsf,\¢( 'T)t) ™’

—2,TA
which, by the symmetry of ¢ and the definition of z,, is equal to

5] -elZ)el )5

TA] TA
= |Eexp(ix(X — p)/7) — Eexp(ix(Y — p) /7).

Y-EY|"
E

T

(2.6) (27) *?(det 2)‘“2{4s+ (Z‘:::) [E‘X_T

where 72 = Var X = Var Y.

ol

I.

(2.7) 4+ [

—2,TA

Put u = EX = EY and note that

)l

Thus, by the local expansion of a characteristic function [e.g., Loéve (1963),
page 199],

- X

j=o J!

X—p,) m-l(ix)jE(X—,u,)j_lxl ‘X wl”

E exp( ix

T
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and the corresponding expansion with Y in place of X, we obtain, under the
assumed equality of the sets of the first m — 1 moments,

A3 ol = S =T o

r
Apply the latter to the integrand in (2.7). Then the expression (2.7) is at most
equal to

m

Y-

T

4g +

(zTA) [ ‘X "

"]

and (2.6) follows. O

In the particular case m = 2, the bound (2.6) is simply
(2m) */*(det )V *[de + (2,707

THEOREM 2.4. Let X,,...,X, be i.i.d. random variables with EX, = v,
Var X, = 72 and E|X,|® <». Put X= (X, + -+ +X,)/Vn and let Y be a
random variable with a N(wn , 72) dzstrzbutzon Then the bound (2.5) is at
most equal to

4z + ((2,0)°/(6Vn)) E{lx; — vI°} + (2,70)"/(8n)
(2m)*?(det 3)"? '

(2.8)

ProOF. Put A(x) = Ee’*X1, Then
Ee iAxX _ h"()tx/\/_)
and (2.5), with »/n in place of v, takes the form

" L ivix Ax)\"
gy ol -2 )

(2.9)

—exp( - %xz)tsz) o(x) dx.

As in the proof of Theorem 2.3, the integral factor in (2.9) is at most equal to

o2l ol

TA] TA
By the inequality [w" — v"| < n|lw — v, for complex w and », lw| < 1,|v| < 1,
the expression (2.10) is at most equal to
x \dx
o35

e 2 )l - ool -5 ol

(2.10)  4s+

|x|<z,7A

(211) 4+ [ n

|xl<z,7A
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By the local expansion of the characteristic function
2

ixv x x
exp(‘vz‘)h(ﬁ) it o
and the simple estimate

x? x?
exp(‘%) T

the expression (2.11) is at most equal to the numerator in (2.8). O

3
E\X, —v]®

1] x
S—.—_
G'n/r?

x4

8n2’

From the well-known relation
fm¢(z) dz ~ ¢(x)/x, x — o,
x

it follows that if 2 is defined as z™ = [log n — 21log(27 log n)*/%]'/%, then
[fmd(2)dz ~ n"12, for n — «. Therefore, if ¢ in (2.8) is chosen as n~1/2,
then, for n — «, the numerator of the expression (2.8) is asymptotically equal
to

73E{Ix1 - vl3}(log n)*?
6Vn '

3. Extension of an earlier result on the censored normal distribu-
tion. In Berman (1990) the author showed that if Z and T are independent
random variables such that Z has a standard normal distribution and T' has
an exponential distribution, then the conditional distribution of T, given
Z — T =1x, is a censored normal distribution having the density on the
positive axis

(2.12)

o(t+m™ +x)
Imrex®(y)dy °

where m = ET. This is now generalized to an arbitrary normal random
vector Z.

t>0,

LEMMA 3.1. Let Z be a N(w,3) random vector in R* and T an indepen-
dent random variable with the density function 6e~ %, t > 0, for some fixed
0 > 0. Define
(38.1) H(x)=6/8+13%'x .
for some fixed & > 0. Then the conditional density of T at t, given Z — 6T'1 =
X, is :

SAp(8At + ATTH(x — p))

(3.2) >
‘/:\“IH(x—p.)d)( z)dz
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ProoF. It suffices to prove the result just for p = 0 as the more general

case follows by a simple extension.
Assume first § = 1. Put R = 37! and define

(3.3) br(x) = (27) */*(det R)"? exp( - 1x'Rx).
The joint density of Z — T'1 and T at (x,¢) is
(3.4) fe Ppp(x + t1).

It follows by simple algebra from (3.3) that
ér(x + t1) = ¢pp(x)exp(—t1I'Rx — 5¢°1I'R1),
so that (3.4) is equal to
0dr(x)exp( —tH(x) — 3A%t?),

where 8 = 1 in the expression (3.1) for H(x). By completion of the square, the
foregoing displayed expression is equal to

1 H?%(x 1 H(x)\*
(3.5) 0¢R(x)exp(§—)t(2—) - EAZ(t + —)fé-l) )
Integration of (3.5) over ¢ > 0 yields

1 H%(x)\ V27
(3.6) 0¢R(X)9XP( 3 T) Tf}{(ﬂ/}\d’()’) dy.

The conditional density (3.2) is obtained by dividing (3.5) by (3.6). This
completes the proof in the case § = 1.

In the previous argument, let us now replace T by 87T, which has an
exponential density with mean &8/6. It follows from what has just been
established (in the case 8 = 1) that the conditional distribution of 87 at ¢,
given Z — 6T1 = x, is given by

Ap(At + H(x))\_l)
flo;'(x)/A¢(z) dz

where H(x) is defined as in (3.1). It then follows immediately that the
conditional density of T itself is (3.2). O

4. An application to the distribution of HIV latency time based on
CD4 levels. An individual who had not previously tested positive for the
presence of HIV infection now undergoes such a test and is found to be
seropositive. At the same time the level of CD4 cells in the blood of the
individual is measured. In Berman (1990) it was shown, in terms of a
+ stochastic model, how one could determine the distribution of the time since
seroconversion took place on the basis of the CD4 level observed in the
subject. It is well known that the CD4 level declines after seroconversion, and
the analysis in Berman (1990) was based on a comparison of the lowered CD4
level with the normal level in the absence of HIV.
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Let X(¢), where ¢ is the time variable, be the function representing the
CD4 level in a randomly selected seronegative individual, that is, one who is
free of HIV antibodies. In the previous stochastic model we assumed that
X(t) is the sample function of a stationary stochastic process. The correspond-
ing stochastic process for a seropositive individual is obtained from X(#)
(defined for seronegatives) by two successive transformations. Let ¢, repre-
sent the time of seroconversion. The first transformation is an instantaneous
drop in CD4 at time ¢,: The sample function X(¢) is replaced by QX(2),
for t > ¢,, where @ is a random variable that is independent of the process
X(¢) and assumes values in [0, 1]. The next transformation is the append-
ing of an exponential damping factor: The sample function is changed to
QX(t)exp (—8(¢ — ¢y)), for t > t,, where & > 0 is a fixed number representing
the rate of decay of CD4 after seroconversion. It follows that the value of the
sample function ¢ time units after seroconversion is Q@X(¢ + #,)e *’.

Since X(-) is stationary, the finite-dimensional distributions of the process
are independent of ¢, and so we may put ¢, = 0 and write the process for
seropositives as

QX(t)e ™™, t>0.

Since the values are positive, we may write the process in exponential form
as
exp(Z(t) — 6t +V),

where V = log @, and then consider the logarithm of the process
(4.1) R(t)=2Z(t) +V-6t, t=0.

Berman (1990) assumed that Z(¢) is a stationary Gaussian process. The
random variable V was absent from (4.1) in the original formulation. The
assumption that Z(¢) is Gaussian was crucial in the calculation of the
conditional distribution of the latency time. The addition of the random
variable V disturbs the exact Gaussian nature of the process, and so the
calculations involving the conditional distribution of the latency time are no
longer strictly valid. However, the point of Theorem 2.1 is that, under a large
variety of conditions, the underlying Gaussian nature of the process and, in
particular, the joint density of finitely many observations, is only slightly
modified, and so the conditional density of the latency time is altered by at
most a small amount. The actual discrepancy will, in Theorem 4.2, be
computed on the basis of the bound furnished by Theorem 2.1.

For a randomly selected seropositive individual, let T' represent the length
of the time interval from the moment of seroconversion to the time of the first
HIV test when seropositivity is first discovered. The time T is considered to
be the “latency time” of HIV for the selected individual. Its distribution is
called the “prior” distribution of 7', to distinguish it from a conditional
distribution, to be defined, that is called the posterior distribution. The value
of the logarithm of the CD4 level at time T is, by (4.1), R(T') = Z(T) + V — &T.
For k > 1, put s; =0 and let s,,...,s;, for 0 <s, < :=* <s, be defined as
the time differences between the succeeding £ — 1 CD4 level measurements
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and the first one at time 7'; thus there are % readings represented as the
vector with components R(T +s;,) = Z(T' +s,) + V- 8T — 8s;, i = 1,..., k.
By the assumed stationarity of Z(-) and the independence of 7', the preceding
random vector has the same density as the vector with components

(4.2) Z(sy) +V—8T — 8sy,...,Z(s,) +V — 8T — 8s,.
As in Berman (1990), we define EZ(t) = u, Var Z(¢t) = o2 and Cov(Z(0),
Z(t)) = r(¢). Now we also define EV = v and VarV = 72. Let g(¢) be the

(prior) density of 7' and let G(v) be the distribution function of V. Then
define

S; zZ ( 81)
s=|:|, Z= .
St Z(sy)
3 = matrix(r(s; —s;))
and let ¢x(x) be the normal density (3.3). Then the observations (4.2) are
represented as the 2-component random vector
(4.3) Z+V1-6T1 - 5s.

Under the assumption of the independence of Z, V and 7', the joint density of
(T,Z+V1 - 8T1— 8s) at (¢t,x) € R' X R* is

(4.4) a(t) [~ du(x — pl - vl + 81 + 8s) dG(v).

Therefore, the conditional density of T at ¢, givenZ + V1 — §t1 — 8s = X, is
equal to

q(t)[?npr(x — vl — ul + 8t1 + 8s) dG(v)
Jea(w) [ wpr(x — vl — ul + Swl + 8s) dG(v) dw ’

For future reference, the formula (4.5) is recorded here for the case g(¢) =
fe %t

(4.5)

Oe Y pr(x — vl — ul + 8t1 + 8s) dG(v)
[50e°"[* cpr(x — vl — ul + Swl + 8s) dG(v) dw '

The denominator in (4.6) is reducible to the product of a single integral
over v and an explicit function of x:

(4.6)

m o @ Qv o
—( = - dy| dG
(4.7) A f-w‘SeXP( 8 )(fH@-un/fﬁ(y) y) (®)
' . 62 (I'Ry)> 60TRy
X¢r(exp| oozt o 3T |
where

(4.8) y=x—ul + 8s.
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For the proof of (4.7), we integrate in the denominator of (4.6), first with
respect to w with v fixed:

fo be "pp(z + dwl) dw,
where z = x — vl — ul + §s. The integral is transformed to
f (6/8)e /9% (z + wl) dw,
0

which, by the calculations leading from (3.4) to (3.6), is equal to

] 1 H%(z) \ V27 o
(49) (5)#s@ems( 5> | S S e
Take y as in (4.8), so that z = y — v1. Then, by (3.1) and (3.3),
1 H2%(y —vl)
or(y — Ul)eXP(E __—XZ—_—)

(4.10)

2

9 2
3 + IRy — v)lz] )

1 1
= ¢r(y)exp| vI'Ry — —v? + 5
Simple algebra yields

1 1 (6 2
vI'Ry — —v2? + —2—?(— + IRy — v)tz)

2 5

62 (TRy)> 6T1Ry 6
= + — — —p.
22252 22 s A2 8°

Therefore, the right-hand member of (4.10) is equal to
62 (Ry)> 6 T1Ry
2%% | 2% 5 A )
Therefore, substituting y — vl for z in (4.9) and multiplying by dG(v) and

integrating over v, we find that the denominator in (4.6) is equal to the
product in (4.7).

(4.11) e“’”/%R(Y)eXp(

THEOREM 4.1. Suppose that V has a normal distribution and that T has
an exponential distribution with mean 1/6. Define these analogues of A and
H(x):

1 1l/2
=1+
(4.12)
H,(x) = 0/8+ 1(> + 7211) 'x.
Then the posterior density of T at t, that is, its conditional density given
Z + V1 — 8tl — 8s = X, is equal to the expression (3.2) with A, and H_ in the
places of A and H, respectively, and (u + v)1 — 8s in the role of p.
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Proor. Since Z has a N(ul,3) distribution, Z + V1 — 8s has a
N({(p + v)1- 8s,3 + 7211) distribution, and the statement of the theorem
is a direct consequence of Lemma 3.1 and the definitions (4.12). O

In the following theorem we furnish a bound for the absolute difference
[posterior density (4.6) with normal G(v)

(4.13) . : .
— posterior density (4.6) with general G(v)|.

THEOREM 4.2. The absolute difference (4.13) is at most equal to the prod-
uct of the factors

expression (2.5)

4.14
( ) denominator of (4.6)
and
(4.15) 1 + density (3.2)

with A, and H, in the places of A and H, and (u + v)1 — 8s in the role of p.

Proor. Let x, x’, ¥ and y’ be positive numbers. Then
max(|x — x'[,[y — y'| x
( T

’

X X

y
For the proof observe that

y

(4.16)

/

y

!

x x max(|x — x'[,|y — y'| x
x ( y y)(l+ )

1
-l = —|x(y —y) +y(x —«')| < -
V) e (¥ =y) +( ) 5
We apply (4.16) to (4.13) with

x = numerator in (4.6) with normal G,

y

y = denominator in (4.6) with normal G,
x' = numerator in (4.6) with general G,
y' = denominator in (4.6) with general G.

Then (4.13) is representable as the left-hand member of (4.16). The product of
(4.14) and (4.15), as a consequence of Theorem 2.1, Corollary 2.2, formula
(2.5) and Theorem 4.1, represents a bound for the right-hand member of
(4.16) O

5. Approximations. It is clear in the formulation of the general problem
stated in Section 1 that the normal distribution of Z is transformed into a
normal distribution with mean p + v1 if X has a distribution that is
degenerate at v. If X is “close in probability” to v, then one expects the
distribution of Z + X1 to be close to normal, and the posterior density of T,
considered in Section 4, to be close to the censored normal density. In this
section, we illustrate precise estimates by means of the results of Section 4.
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Let G(x) be an arbitrary distribution function such that [ | x> dG(x) < o,
[2exdG(x) = 0 and [*,x2 dG(x) = 1. For arbitrary real v and 7> 0, con-
sider G((v — v)/7), a distribution with mean v and variance 72. If f(u)
represents the characteristic function of G(x), then e’*”f(ur) is the charac-
teristic function of G((v — v)/7), and the bound (2.5) takes the form

2ol f(ATx) — exp(—%xz)\272)|¢(x) dx
(2m)**(det 3)"* '

By employing for f the local expansion of the characteristic function used in
the proof of Theorem 2.3, together with the inequality lexp(— 2x2) — 1 + 22|
< 3x*, one finds that the numerator of (5.1) is at most equal to

(5.2) %73)@[

(5.1)

o)

|y® dG(y)-—4— + l#x‘
® Vomr 8 7
where we have used the known relations
f|u|3¢(u) du = 4/V27 and fu'*d)(u) du = 3.

It follows that the bound (2.5) is on the order 72 for 7 — 0, corresponding to
the first term in (5.2).

Next we show that the order 72 is preserved for the posterior density of 7.
On the basis of Theorem 4.2 it suffices to show that the denominator in (4.14),
that is, the expression (4.7), converges to a positive limit for 7 —» 0, and that
the expression (4.15) converges to a finite limit. These limits are explicit, and
their numerical values are deducible from the tables of the normal distribu-
tion and density.

The expression (4.7) depends on 7 only through the integral

o 0 o vV —V
—e /2 d )dG(—).
3 ( [H(y_vmm) y .

This converges, for 7 — 0, to the positive limit
E e~ v/

dy.
o fH(y—vl)/A¢(y) Y

In the expression (4.15), the density (3.2) with A, and H, is, by the
definitions (4.12), a continuous function of 7 and converges, for 7 — 0, to the
density (3.2) with the given A and H. This completes the proof of the
assertion about the rate of convergence of the posterior density of T'.

Next we consider the following more general problem. Let (X,) be a
sequence of random variables with EX, = », and Var X, = 7.2. Suppose that
v, » v and 7, - 7, and that X, — Y in distribution, where Y is N(v, 7%). Let
A, be the bound corresponding to (2.5):

‘ B I Llexp(—iv, Ax) f,(Ax) — exp(—%xz)\zfnz)l(b(x) dx
(53) A, = (2m) "% (det 3)/°

where f, is the characteristic function of X,. Then A, — 0 for n — .

o)
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Let us show that the difference between the posterior density of T, under
the (generally nonnormal) distribution of X, and the posterior density of 7,
under the normal distribution of Y, is on the order A, in (5.3). It suffices to
show that the denominator in (4.14), that is, the expression (4.7), converges to
a positive limit and that (4.15) converges to a finite limit.

In evaluating the limit of (4.7), we let G,(v) = G(v) be the distribution
function of X,. By the assumed complete convergence of G, to G, it follows
that (4.7) converges to the same expression with a N(v, 7%) distribution in
the place of G. This is clearly positive.

In evaluating the limit of (4.15), we again refer to (3.2) with

A= (1 + 1)),
Hy(x) = 6/8 + V(S + r211) 'x

and with (u + »,)1 — 8s in the role of p. These sequences converge under
the hypothesis v, > v and 7, = 7 to the corresponding limits A., H, and
(u + v)1 — 8s, respectively. The limit (4.15) is finite.

This application demonstrates that the particular estimates obtained for
the bound (2.5) in the expressions (2.8) and (2.12), for ¢ » 0 and n — «, can
be suitably extended to the bound for the error in the posterior density of 7'
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