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In the setting of the Heath—Jarrow—Morton model, this paper pre-
sents sufficient conditions to assure that the stochastic forward rates are
strictly positive while maintaining the martingale property of the dis-
counted bond price processes in the case where the stochastic forward
rates are described as stochastic differential equations with explicitly
state dependent stochastic volatility. Moreover, the stochastic develop-
ment of the term structure of interest rates is generalized to be described
by a class of continuous local martingales instead of Wiener processes. An
example showing that this is a true extension of the Heath-Jarrow-
Morton model is provided.

1. Introduction. The purpose of this paper is to present a consistent
continuous-time model for the stochastic evolution of bond prices. This is the
key issue in order to price contingent claims in general and contingent claims

written on the term structure of interest rate dependent securities in particu- -

lar. Part of a consistent model is the existence of a probability measure such
that the simultaneous evolution of security prices discounted by a numeraire
security is a martingale. This is a well-known sufficient condition to assure
that there are no arbitrage opportunities to be exploited by trading the
securities. However, an additional part of the consistent model, that many
authors have set aside, is to assure nonnegative forward rates.

In this paper, the term bond is a pure default-free zero-coupon bond. That
is, a security that pays one unit of account at its maturity date for sure.
Using linearity of prices, any default-free (coupon) bond can be priced using
the prices of pure zero-coupon bonds. Moreover, a bond with default risk can
be thought of as a contingent claim on default-free bonds and is, therefore,
not part of the primitives of the model.

It is well-known that current bond prices, denoted by P(0,7), of all
maturities, T, can be described equivalently by the current forward rate
function, denoted by f(-), using the equation

(1.1) P(0,T) = exp(—fon(s) ds).

In this paper f is referred to as the initial forward rate function.
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The equivalence in (1.1) is exploited such that the stochastic evolution of
bond prices of all maturities will be described by the evolution of a so-called
forward rate process, which we denote X, ... That is, the sample path
s = X, ,, is to be interpreted as the (stochastic) forward rate function at
date .

We model the forward rate process as a solution to a stochastic differential
equation (SDE) with a stochastic volatility that is explicitly state dependent;
that is, the volatility is directly omega dependent besides its dependence on
the present value of the forward rate. This description unifies and extends
the two forward rate process descriptions in Heath, Jarrow and Morton
(1992) and Morton (1988). Further, we present a theorem giving sufficient
conditions on the volatility of the forward rate process that assures strict
positiveness of the forward rate process.

The paper is organized as follows. Section 2 introduces the notation and
the financial bond market. Section 3 defines the forward rate process and
provides sufficient conditions on this forward rate process to assure no
arbitrage as well as positive forward rates. Finally, proofs of the theorems are
presented in the Appendix.

2. The financial bond market. This section introduces the stochastic
model of the financial bond market including the securities traded on the
market. Moreover, it presents a set of sufficient conditions on the price
processes of the traded securities in order to avoid arbitrage between the
traded securities and to avoid negative forward rates.

First of all, we set up the time horizons:

DEFINITION 2.1. Time horizons:

1. 1:=[0,T] is the time horizon in the economy, where I' € R,.
2. Iy == [0, T] is the lifetime of a bond expiring at T € .
3. II:={kT)e=[0,T] x[0,T]lt < T}is the time parameter set for the bonds.

The fundamental probability space has the form (Q,F{Z}, <, P), where
{#), <, is a right continuous filtration, that is, a nondecreasing (right continu-
ous) family of sub-o-fields of &, and P is a set of equivalent probability
measures on .%. (Without loss of generality, we assume that [P is the set of all
probability measures equivalent to an arbitrary measure from P.) Further-
more, we assume that &, = o(#/(P)). That is, the fundamental probability
space fulfills the usual conditions. To shorten the notation of the filtration, we
denote {7}, ; as F. Moreover, the subfiltration {7}, . ;, will be denoted Fr, for
Tel.

The model of the financial bond market includes bonds for all possible
maturity dates, T, in the time horizon of the economy. The bond price process
of the bond maturing at date T' € [ is denoted {P(¢,T)},,, and is assumed to
be adapted to the filtration F;. Finally, the financial bond market includes a
numeraire security with price process {A,}, . ;. Besides being a traded security
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in the whole time horizon, this security will also be used to discount future
values. The process {4,}, ., is adapted to the filtration F. The tuple

(Q,.%F,P, {P(t’T)}(t,T)EII’ {At}tell)

will be termed a financial bond market. The financial bond market is open for
trading in the whole time horizon, [. The investors trade portfolios of bonds
which they can buy and sell at all times in [. They are allowed to take short
positions (i.e., to have a negative position of some bonds), but they have to
fulfill their obligations before the end of the time horizon (i.e., they are not
allowed to go bankrupt). Furthermore, the investors can trade in the nu-
meraire security and they are allowed to store a positive amount of the unit
of account (i.e., to carry cash).
To ensure an arbitrage free market, we introduce the following notion:

DEFINITION 2.2. Viable bond market: A financial bond market
(Q"?’ F’ Ip’ {P(t’ T)}(t,T)EII ) {At}tEﬂ)
is said to be a viable bond market if:

1. A, >0, P-ae,t el

2. There exists @ € P such that {(P(¢,T))/A} <, are (F;, @)-martingales,
forall T € l.

3. (a P(,T)e(0,1], P-ae, ¢,T)ell;, (b P(T,T)=1, P-ae, TE<l;
(¢) T~ P(t,T): (¢t,]) > R is differentiable, for every w € Q, t €l
@ (0P, T)/IT < 0, P-ae., (¢,T) €I

Condition 2 in Definition 2.2 is a well-known sufficient condition to pre-
clude arbitrage between all securities in the bond market. This is proved in
Harrison and Kreps (1979) for investors allowed to trade a finite number of
times and it is later extended in Harrison and Pliska (1981), which defines,
similar to condition 2 in Definition 2.2, a security market model to be viable if
an equivalent martingale measure, @, exists. Condition 3(d) in Definition 2.2
is equivalent to the assumption of nonnegative forward rates. Combined, the
four conditions in condition 3 assure that there is no arbitrage between
investments in bonds and costless storage of units of account.

For the purpose of contingent claims pricing we only have to model the
price processes of the securities in the financial bond market under an
equivalent martingale measure. Therefore, for the rest of the paper let @ € P
be fixed and let us call this measure an equivalent martingale measure.

3. The construction of a viable bond market. In this section we
" introduce the forward rate process and we construct a financial bond market
with this forward rate process as the basic modeling element. This means
that we define the bond prices and the numeraire security from the forward
rate process such that the discounted bond price processes are martingales
under an equivalent martingale measure by construction.
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The forward rate process is described as a solution to an SDE with
explicitly state dependent volatility, thereby unifying the two distinct de-
scriptions of Heath, Jarrow and Morton (1992) into a single forward rate
process description. That is, this description unifies both the general It
process description with state dependent, but forward rate independent,
volatility and the SDE description with state independent, but forward rate
dependent, volatility of the forward rate process. Moreover, this unification
extends the SDE description from Wiener processes to time changed Wiener
processes. This description facilitates an interpretation of the unbiased expec-
tation hypothesis and it gives further insight into the mechanism that ties
the forward rate process and the spot rate process together. Moreover, it gives
a basis for finding conditions which almost surely make the whole forward
rate process strictly positive everywhere while maintaining the martingale
property of the discounted bond price processes—the main result of the
paper. According to Theorem 3.5, a sufficient condition for this result is that
the volatility of the forward rate process is Lipschitz in the forward rate
process itself and zero when the forward rate is zero. The section includes an
example demonstrating the usefulness of the results.

DEFINITION 3.1. Forward rate process: Suppose we have a @ € P, called
an equivalent martingale measure, a family of K-dimensional stochastic
processes {{o (¢, s, )}, e cr and a K-dimensional (F, @)-TC Wiener pro-
cess, {Z,}; <y, (cf. Definition A.1) satisfying:

1. o(¢, s, x) is F-measurable, (¢, s, x) € I X R.

2. (¢,8) = o(t,s,x): I > R¥ has continuous sample paths, x € R. [If
(t,s) = o(t,s, x) has only continuous sample paths P-a.e., then, since
Fo 2 0(/(P)), it is possible to choose a P-indistinguishable process,
{a(t,s, x)},, e n, Which has continuous sample paths for every w € (.
Therefore, whenever a process has continuous sample paths in this paper,
it is implicitly understood that we have chosen the one with continuous
sample paths, for every w € Q.]

3. o is uniformly bounded and uniformly Lipschitz in the third variable over
Q [ie., a constant, M > 0, exists such that [lo(u,v, xXw)| <M and
lo(u,v, xXw) — o(u,v, Yol <M|lx —yl, x,y €R, (u,v) €1I, and v €
Ql.

4. f is Lipschitz.

Then any solution, {X, .}, ;e n, to the SDE,
t ¢
X5 =F(s) + j;)o-(u,s,X(u’s))~dZu + foa(u,s,X(u’s))
(3.1) )
. D(/ U(u,v,X(u,v)) dv)d(Z)u, (t,s)ell, P-ae,
u

is called a forward rate process.
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Here the multidot (-) represents the usual inner product of RX and || |
represents the corresponding norm. For this definition to be proper a solution,
{X., k¢, sye 1> to the SDE (3.1) must exist. In Morton (1988) the existence of a
strong solution to the SDE (8.1) is proved for o state independent and {Z,}, .,
as an (F, @)-Wiener process.

In Definition 3.1 we assume that {Z,},_,; is an (F, @)-TC Wiener process
which generalizes a standard (F, @)-Wiener process. That is, {Z,},., is a
continuous (F, @)-martingale which coordinate by coordinate can be trans-
formed into independent (F, @)-Wiener processes by the same time change.
We have made this generalization in order to relax the boundedness assump-
tions on o in condition 3 in Definition 3.1. The exact definition of a TC
Wiener process can be seen in the Appendix, Definition A.1. The following
example illustrates this generalization:

ExampPLE 3.2. Let {W,},., be a one-dimensional (F, @)-Wiener process and
let {Y;}, <, be a solution to the SDE

Y, =Y, + /:p(Ys) dw,, tel, Pae.,

with Y, > 0, p: R, — R, Lipschitz, bounded away from zero on any compact
set in (0,%) and p(0) = 0. This process is a continuous square integrable
(F, @)-martingale [cf. Karatzas and Shreve (1988), Proposition 5.17, page
341]. [If p(x) = x, then, for ¢t € [ fixed, Y, is lognormally distributed, i.e.,

log Y, ~ N(log Y, — 3t2,¢) ]

This process is widely used, for example, to model asset prices, since it has
the convenient property of not becoming negative at any date. Moreover, the
process {Z,}, o, defined as

Z,=Y,-Y, tel,

is an (F, @)-TC Wiener process (cf. Definition A.1) with quadratic variation
process, {{Z )}, ;, defined as

2= [‘p(Z,+1)*ds, tel
0
If {X, o): s)en is a solution to the SDE (3.1), for given f and o fulfilling
conditions 1-4 in Definition 3.1, then, of course, {X; )} syen is a forward
rate process with {Z,}, ., as a TC Wiener process. However, {X, ;}; s)en is
not a forward rate process with {Z},., as a. Wiener process unless
a(t, s, xXw) = o(t,s, xXw)p(Z,(w) + 1) fulfills the boundedness assump-
tions of Definition 3.1, that is, condition 3, which is not necessarily the case.

Since we have made this generalization to TC Wiener processes and since
we have introduced explicit state dependent volatility, a new proof of the
existence of a strong solution to the SDE (3.1) is needed. This existence proof
is provided as Theorem A.2 in the Appendix.
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Given the forward rate process, the bond prices are naturally defined as
P(¢,T) = exp(—/TX(t,s) ds), (¢,T) I

[ef. (1.1)]. For a fixed t €1, the stochastic process {P(¢,T)}yc(, ) is of
bounded variation. In partlcular T — P(¢t,T): (¢,T) — R is differentiable, for
every w € (), such that

dlog P(t,T) (oP(t,T))/oT

oT Bl P(t,T)
Moreover, the diagonal process, {X, ;)};c, is denoted as the spot rate. The
numeraire security is defined, using the spot rate, as

—exp(/ (s, 5) ) t el

This process, {A,}, ), is also denoted the savings account, because it can be
interpreted as an account initialized with one unit of account at date zero and
continuously earning the spot rate of interest. Using the spot rate process the
discounted bond prices are written as
P(t,T)
- —exp( [X(t o ] o.5) ) (¢,T) eTI.

Now, the construction
(Q’EFJP)’{P(t’T)}(t,T)€H7{At}tE[I)

is a financial bond market. This financial bond market is defined with the
forward rate process {X, ,)}; ;) as the basic modeling element.

The issue is now under what conditions will this financial bond market be
viable? The first step is to give conditions assuring that all the discounted
bond price processes are martingales (cf. condition 2 in Definition 2.2):

Xemy =~ (¢, T) e1I.

P*(¢,T) =

THEOREM 3.3. Suppose we have a forward rate process, {X; o} syen>
from Definition 3.1 with o fulfilling the additional condition .

5. EQ[exp(%/F»[Fa(u,s,X(u,s)) ds

Then all the discounted bond price processes, {P*(t,T)},c,,, are (Fr,@)-
martingales, for T € . Furthermore, {P(t, T)}tell are FT-semzmartmgales
and

(32 (PODlenenand {EQ[exp(—/tTX(s,s) ds)%*;]}(men

are P-indistinguishable.

2
d{Z),

Note that it is not necessary to make the probability measure specific when
we are talking about semimartingales. The Novikov condition (i.e., condition
5 in Theorem 3.3) is not stated to assure the possibility of a change of
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measure, but is merely used as an integrability condition assuring that the
bond price processes are martingales. It appears from Theorem 3.3 that
under the measure @ € P, the one-dimensional process {X|, ,},, generates
all the processes {P(¢, T)}, ,,, for all T' € [, as specified in (3.2). That is, the
bond price at date ¢ for a bond expiring at date 7" is a conditional expectation
under an equivalent martingale measure, @, of a known function of the
future spot rates up to date T'. However, this does not mean that the family of
stochastic processes, {{P*(t,T)};<,,|T € [}, has a martingale multiplicity of 1,
for example, generated by the spot rate process, {X, ,)};<;, since there is, in
addition, a conditional expectation to be evaluated using a filtration which is
not generated by the spot rate process.

OBSERVATION 3.4. Sufficient for condition 5 in Theorem 3.3 is that

~

5. E%[exp(3M?T*(Z)r)] < =,
which is trivially true for {Z,}, ., as an (F, Q)-Wiener process.

To have a viable bond market we are only missing conditions ensuring
positivity of the forward rate process. Therefore, define a family of K-dimen-
sional stochastic processes

s
{ﬁf"’(tt,s)}tells = {_/ G(t’ U’X(t,v)) dv} > sel
t t

el

If we define
s t t 2
YS = exp(focp(u,s)-dzu - éfollw(u,s)ll d<Z>u), (t,s) €11,

then {Y},c, is an (F,, @)-martingale for s € [ because of condition 5 in
Theorem 3.3. Using this density process for each s € [, we can induce a new
measure, @°, equivalent to @ by defining

d s

Define
t
Zi=Z ~ [ GundZh, tel,sel
0
According to Girsanov’s theorem [cf. Ikeda and Watanabe (1989), Theorem
IV.4.1, page 191], {Z}, ., _is an (F,, @°)-local martingale, s € I. Using (3.1) we
get that

t t
X5 =F(s) + joa(u,s,X(u,s))-dzu - foa'(u,s,X(u’s))-qo(u’s)d<Z)u

—f(s) + [(o(u,5, Xy p)) - dZs,  P-ae,(t,8) €L
0
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Furthermore, if we assume that {Z,}, ., is square integrable in each coordi-
nate, then it follows that {X, ,),c; become square integrable (F;,@Q°)-
martingales, for all s € [, such that

X and {E?°'[ X |& are P-indistinguishable
{ &, 8)tel, (s,)t] Jtel,
and by continuity in s,
{X(t,s)}(t,s)en and {EQS[X(S’S)I.Z] }(:,s)en are P-indistinguishable.

Hence,

P*(t,T) = exp(—ftTX(t’s) ds — fOtX(s,s) ds)
(3.3) ]
= exp(—/o EQS[X(S’S)LZ] ds), P-a.e., (¢t,T) €1I.

Equation (3.3) is compatible with the unbiased expectation hypothesis in Cox,
Ingersoll and Ross [(1981), (19), page 776]. However, observe that the mea-
sure used to evaluate the conditional expectation in (3.3) is dependent on the
future in terms of s. This means that, in general, the forward rate cannot be
interpreted as a simple probabilistic expectation of future spot rates. The
measure @° is introduced as the forward rate adjusted probability measure
in Jamshidian (1987).
In addition, this formulation leads to the main result of this paper.

THEOREM 3.5. Suppose we have a forward rate process, {X, o}: ocn>
from Definition 3.1 with f and o fulfilling condition 5 in Theorem 3.3 and

1. o(u,v,0) =0, P-a.e., (u,v) €Il
2. f(s)>0,s el

Then
Q(X(t’s) >0,V (t,s) € H) =1.

That is, the forward rates remain strictly positive with probability 1. In other
words, zero becomes a natural barrier of the forward rate process—a barrier
the process never touches. Combining Theorems 3.3 and 3.5 infer the follow-
ing.

COROLLARY 3.6. Suppose we have a forward rate process, {X, o}, syen>
from Definition 3.1 with f and o fulfilling condition 5 in Theorem 3.3 and
conditions 1 and 2 in Theorem 3.5. Then

(Q"%F’ Ip’ {P(t’ T)}(t,T)eH, {At}tell)
. is a viable bond market.
It should be emphasized that the combined conditions of the volatility func-

tion, o, that is, Definition 3.1, conditions 1-3, Theorem 3.3, condition 5, and
Theorem 3.5, condition 1 are sufficient conditions, but these conditions are
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not always necessary. However, Heath, Jarrow and Morton [(1992), Section 6,
pages 90-92] present two examples with nonstochastic volatility functions
not fulfilling these combined conditions. Both of these examples give negative
forward rates with strictly positive probabilities. Heath, Jarrow and Morton
[(1992), Proposition 5, page 95] also prove that a state independent volatility
function o (-, -, ) of the form

O'(t, S, X(t,s)) =o min{X(t,S)’ A}

gives a nonnegative forward rate process with probability 1 if o and A are
strictly positive constants. Note that this volatility function, o (-, -, -), fulfills
all the above stated conditions on o.

In a continuation of Example 3.2, we can also demonstrate the relevance of
our extension of the Heath—Jarrow—~Morton model to explicitly state depen-
dent volatility. Suppose that o and f additionally fulfill conditions 1 and 2 in
Theorem 3.5. Then the financial bond market is viable. This viability could
not have been shown if we had only had Theorem 3.5 for state independent
volatility because & of Example 3.2 is explicitly state dependent.

APPENDIX

This appendix contains the definition of a TC Wiener process and the
proofs of the results in Section 3. To save space, the proofs are shortened.
Detailed proofs of all lemmas and theorems can be found in Miltersen [(1992),
Chapter 3].

A.1. Definition of a TC Wiener process.

DEFINITION A.1. TC Wiener process: A K-dimensional continuous (F, @)-
local martingale, {Z,},., = {(Z},..., ZF)},c,, is called an (F,Q)-TC Wiener
process, for @ € P, if it satisfies:

1. Z, =0, P-ae.

2. The coordinates of {Z,}, ., are strongly orthogonal. That is, the processes
{{Z!,Z7)},, are P-indistinguishable from the null process, i # j, i,j €
{1,..., K}, where { -, - ) denotes the quadratic variation process defined in
Ikeda and Watanabe [(1989), Definition 2.1, page 53].

3. {Z!,Z")),c, and {{Z’, Z7);}, ., are P-indistinguishable, i, € {1,..., K}.
Hereafter, we use the notation {{(Z);},., for {{(Z,Z")},,, for any i €
{1,..., K}, and call this the quadratic variation process.

4. t » (Z), is absolutely continuous on [0,I'], P-a.e. That is, there exists
{Y,}, <y, an F-progressively measurable process, such that

{ f tYs ds} and {{Z),},c, are P-distinguishable.
0

tel

For obvious reasons, we refer to the process {Y}}, o, as {(d{Z),)/dt}, <.
5. (d{Z);)/dt > 0, (P X A)-a.e., where A; denotes the Lebesgue measure
on [.
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A.2. Existence of a strong solution to SDE (3.1).

THEOREM A.2. Suppose we have a @ € P, a family of K-dimensional
stochastic volatility processes {{a(t,s, x)}(t,s)el'l}xelR and a K-dimensional
(F, Q)-TC Wiener process {Z,}, ., satisfying the conditions 1-4 in Definition
3.1. Then a stochastic process, {X, ,}; sen: (Q,97) = (R, B[R)), exists such
that:

(@) X, , is F-measurable, (¢,s) € II.
®) (¢,s) > X, : Il » R has continuous sample paths.
(© {X;, ), sye is a strong solution to the SDE (3.1).

The outline of the proof is to use Picard-Lindelsf iterations to ensure
convergence of a solution to the SDE (3.1). Finally, the proof is completed
with a localizing argument. In the special case where:

6. t = (Z), is uniformly Lipschitz over Q [i.e., there exists an L € R, such
that KZ)/(w) — (Z)s(w)l < LIt — s|, for all w € Q, (¢, s) € II],

the proof is a straightforward generalization of Morton [(1988), Theorem
4.6.1, page 61ff]. In this case, uniqueness of the solution to the SDE (3.1) is
proven in Morton [(1988), Theorem 4.6.3, page 71ff] too. Now we give the
general proof of Theorem A.2.

Proor. Define the F-stopping time
T,=inf{t €l3s €l,: KZ); — (Z)| > nlt - sl}, n=1,....
Condition 4 in Definition A.1 assures that
limT, =T, P-a.e.

n—o

Let
Z;‘==ZMT", tel,n=1,....

We have just argued for the existence and uniqueness of the solutions
{X} o)Xt syen to the SDEs

t t
X, =1f(s) + j;)a-(u,s,X(’}hs))-dZ,:‘ + joa(u,s,Xg;,s))

~(fsa'(u, v, X5 ) dv)d(Z">u, (t,s)ell, P-a.e.,
u .
for n = 1,... . It is now easy to see that, for a given n € N, {(XGnT, ol sen
and {X7 .}, ;)en are P-indistinguishable, m = 1,..., n, since they are both
solutions to the same SDE and this SDE has a unique solution. That is, there
exists a set A € %, with A c {lim, T, = I'} and Q(A) = 1, such that

X(,tl/\T,,,,s)(w) =X(rtn,s)(w)’ w EA, (t, 8) € H’ m = 1’“-,n’ n e N.
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Suppose we have fixed w € A and (¢, s) € II, with ¢ < I'. Then
X7 o(0) =X} (@), m,n>inflk €Nt <T,(w)}.

Therefore, the limit lim,, ,,, X} () exists. This limit also exists for ¢t =T
because all the processes {X; ,)}; ., cn have continuous sample paths, for
n € N. Given (¢, s) € II, define

lim, . X% (0), w©cA,

(A2) X, o @) = {o w¢&A.

Now, observe that, for given m € N and (¢, s) € I,

X(t/\T,,,,s) = r}l_lgo)((’tl/\Tm,s)

gy O Jm [ (e X) -z,

+ lim LtAT"'o-(u, $, X5 ) (Lso(u,v,X(';,v)) dv)d(Z)u,

n— o

P-a.e.

Using Lebesgue’s theorem two times gives

lim ftAT'"a(u, s, X% o) (fso-(u, v, X% ) dv)d(Z)u
n-ow /g u
(A3) . .
= f "o (u,s, Xy.s) (f o(u,v,X, ) dv)d(Z)u, P-a.e.
0 u

Furthermore,

tAT, tAT,
j;) "o(u,s, X} ) dZ, - -[o o(u,s,X, ) dZ, asn— =,

in @-quadratic mean. This is seen by the argument

2
tAT,

tAT, m
fOA o(u,s, Xy 5) dZ, —[0 o(u,s, X2 ) dZ,

E°

= EQ[fOtATm"(,(u, 8, X 5) — a(u,s,X(';’s))”?d<Z>u] —0asn — o,

because o is uniformly bounded and uniformly Lipschitz in the third variable
over (). Therefore, a subsequence {n,};_; exists such that

(A4)  lim [*

AT, . AT,
Lim | o(u,s, X7, dZ, =fo o(u,s, X, ) dZ,, P-ae.

u,s)
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Now, combining (A.2), (A.3) and (A.4) gives

X(z AT,,s) — hm X(, AT,,s)

=f(s) +f "o(u,s, X, ) dZ,

0

tAT, s
+ mo(u,s,Xu’s)~( a’(u,v,Xu’v)dv)d<Z>u
(A5) f (. fu (u,v)

=f(s) + j:O'(uy S’X(u/\Tm,S)) -dz;

t s
+j(‘)a'(u,s Xunr, ) (f a(u,v,X(uATm’v))dv)d<Z”‘)u,
u
P-a.e.,

proving that the two processes {X7 )}, sycn and {X,,r o), ocn are P-
indistinguishable, since they are both solutions to the same SDE, and this
SDE has a unique solution.

Now, finally, we give the proof that {X, skt.syen 18 a strong solution to
SDE (3.1):

X(t 5 = hm X(t s
= f(s) + lim [‘o(u,s, X )-dZ
nowdy 29y “MuAT,,s) unT

. t s
+ lim f o(u,s, Xy nr o))" (f o(u,v, Xyt 0)) dv)d(Z)uATn
u

n—oo©

=f(s) + hmf "o(u,s, X, o) dZ,

+ llmf "o(u,s, (u’s))~(4/;sa(u,v,X(uyv)) dv)d(Z)a

n—©

=f(s) + j:(r(u,s w.s) 4Z,

+ft(r(u, $, X o) (fso-(u, v, Xy ) dv)d(Z)u, P-a.e.,
0 u

using the same arguments as was used to prove (A.5).

Furthermore, X, ,, is &;-measurable, (¢,s) € Il and (¢,s) » X, ,: I > R
has continuous sample paths due to the way it is constructed in (A 1). This
completes the proof of conditions (a)-(c) in Theorem A.2. O

A.3. Proof of Theorem 3.3. The proof of Theorem 3.3 is (essentially) an
application of Proposition 3 of Heath, Jarrow and Morton [(1992), page 86]. A
sketch is provided.
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ProoF oF THEOREM 3.3 (Sketch). To transform to the notation of Heath,
Jarrow and Morton (1992), define

d<Z>t w
(A.6) a(t,s)(w) = (r(t,s,X(t,s)( w))( w) ——-—:i—z-(——)— R
a(t,s)(w) = a'(t, s,X(t,s)(w))( )

(A-7) s d<Z>t w

(j; (r(t,v,X(t’u)(w))(w) dv)———(—l—t(—-)—
and

- 1
aw, =

Vd{(Z),/dt ..

Now, {W,},, is a K-dimensional (F, @)-Wiener process and SDE (3.1) can be
simplified to

X, , =f(s) +[0‘&(u,s) -dW, +f0‘a(u,s) du, (t,s) €I, P-ae.

According to Heath, Jarrow and Morton [(1992), Proposition 3, page 86], a
necessary and sufficient condition for the discounted bond price processes
{P*(t, T} c,, to be simultaneous (Fy, @)-martingales, T' € [, is that

(A.8) &(t,s)=&(t,s)'(fts&(t,v)dv), P-ae., (t,s) €I,

which can be checked by comparing (A.6) and (A.7). Note that ¢, in Heath,
Jarrow and Morton [(1992), (17)] is zero, i = 1,..., n, because, in this paper,
we are exclusively operating under the equivalent martingale measure de-
noted @ in Heath, Jarrow, and Morton [(1992), (16)]. This necessary and
sufficient condition is derived under conditions C.1-C.5 in Heath, Jarrow and
Morton (1992). Our assumptions in Definition 3.1 and Theorem 3.3 are
sufficient to give conditions C.1-C.4. In particular, note that Heath, Jarrow
and Morton [(1992), condition C.4, (12.¢)] is fulfilled by the Novikov condition
(cf. condition 5 in Theorem 3.3). Since we have no assumptions corresponding
to Heath, Jarrow and Morton [(1992), condition C.5], (A.8) is not always
necessary.
The second part of Theorem 3.3 follows from the equation

P(t,T) = EQ[P*(T,T)lZ]exp(/:X(s,s)ds)

= EQ[P(T, T)exp( - j(‘)TX(s’s) ds)l‘?t]‘exp(‘/(;tx(s,s) ds)

= EQ[exp( —/;TX(S’S) ds)k], P-a.e., (¢t,T) €11,

using the facts that {P*(¢, T)}; ,, is an (Fy, @)-martingale and that P(T, T)
= 1, for T € . The P-indistinguishability follows by continuity of the sample
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paths. Furthermore, {P(¢, T)}, ¢, is an F;-semimartingale since, according to
Itd’s lemma, one obtains that the product

P(t,T) = exp(—j:X(s’s) ds)P*(t,T)

is an Fy-semimartingale, because {exp(— [§ X, ,, ds)}; ¢, is of bounded varia-
tion and {P*(¢, T}, ¢, is an (Fy, @)-martingale. O

A.4. Proof of Theorem 3.5. The result is derived from the following
lemma.

LEMMA A.3. Suppose that {Z,},., is a K-dimensional (F,Q)-TC Wiener
process. Choose T € 1. If {Xt}tEIlT is a solution to the SDE

X, =x+ [o0(s,X,) -dZ,, tely,
0

with
x>0,
o (s, x) is F,-measurable, (s, x) € I X R,
s = a(s, x): l; > RX has continuous sample paths, x € R,
o is uniformly bounded and uniformly Lipschitz in the second variable
over () [i.e.,, a constant M > 0 exists such that |lo(s, xXw)| <M and

lo(s, x)w) — o(s, yY Nl < Mlx —yl, x,y €R, s € I, and w € Q],
5. 0(s,0) =0, P-a.e., s €y,

then

a2

Q(X,>0,Vtel,)=1.
This lemma is proved by showing that log(X; ) is @-square integrable,
where the Fy-stopping time T, is defined as
T, = inf{t € ;| X, = 0}
in the Wiener process case. Finally, the result is generalized to TC Wiener
processes by a localizing argument.
Proor orF THEOREM 3.5. By Lemma A.3 it can be seen that
Q(X; »>0,Vtel,)=1, sel.
Hence, it immediately follows that
Q(Xy.y) > 0,V (¢,5) €11) = 1,
. since the measures @ and {@°),.; are all equivalent and {X, ,)}; ,)cy has

continuous sample paths. O
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