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ON WEAK CONVERGENCE OF CONDITIONAL SURVIVAL
MEASURE OF ONE-DIMENSIONAL BROWNIAN
MOTION WITH A DRIFT

By ToBIAS POVEL
ETH Zurich

We consider a one-dimensional Brownian motion with a constant drift,
moving among Poissonian obstacles. In the case where the drift is below
some critical value we characterize the limiting distribution of the process
under the conditional probability measure that the particle has survived
up to time ¢. Unlike the situation where the drift equals zero, we show in
particular that in the presence of a constant drift, the process in natural
scale feels the “boundary.”

1. Introduction. The “kinetic description” of a diffusing particle in a
medium that contains randomly distributed static traps is known in the phys-
ical literature as the trapping problem. It serves, for instance, as a model to
describe the so-called diffusion controlled chemical reactions. In particular, a
question of interest is the large ¢ behaviour of the number of particles not
yet trapped until time ¢, as well as the mean squared displacement of an
untrapped particle, (see, for instance, [5], [8] and, for a review, [2]). The situ-
ation, when the particle “feels” some external force, that is, when the particle
has a drift, was also studied in the physical literature. For instance, a one-
dimensional system was analyzed by Movaghar, Pohlman and Wiirtz in [9],
where they found the existence of a threshold for the external force, above
which the decay rate of the density of untrapped particles undergoes a transi-
tion. A discrete analogue was studied by Kang and Redner [7]. Simulation in
higher dimension were performed by Grassberger and Procaccia [6]. On the
mathematical side, Eisele and Lang (see [3]), and Sznitman (see [14]) inves-
tigated the survival probability in arbitrary dimension. For particles in the
absence of drift, the study of the limiting distribution of the process under
the conditional probability measure that the particle has survived up to time
t has been carried out in dimension d = 1,2 (see [13], respectively, [15]).

The goal of this article is to investigate the one-dimensional situation when
the particle feels a constant drift 2. We let P denote the law of a Poisson point
process with constant intensity » and (X;):>o be a Brownian motion in R with
constant drift 4, starting in 0. Let C;(X.) be the image of the path X, up
to time ¢ and W(’)‘ the law of (X;);>0. We say that the Brownian motion gets
killed when it hits a Poisson point. Now denote by 7' the hitting time of these
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SURVIVAL MEASURE OF BROWNIAN MOTION 223

random points. Then
(1) Sh(t)y = Wk QP[T > t]

is the probability that the Brownian motion survives up to time ¢. Because
{T >t} ={N(C;) = 0} we see that

©) S"(t) = EG[P[N(C,) = 0]] = Eglexp{-v|C:(X.)[}].
This shows that the probability measure

1 73
3) 0] exp{—v|Cy«(X.)|} dWy,

where S! is the normalization, is the conditional measure of Brownian motion
with drift A starting in 0 given it survives up to time ¢, the “survival measure.”
An interesting fact is that the model exhibits a transition between the small
and large drift regime. Indeed, from the Girsanov theorem we may rewrite (1)
as

(4) Sh(t) = e "1PE® Eo[e" X, T > t],

where E, denotes expectation with respect to Wiener measure starting from
0, and if we introduce S*(¢) := S"(¢)e’’*/2, then one has

(5) lim t1log S"(¢) = LAl —v)?, |l >

(see [3], Theorem 2), respectively,
®) lim ¢~ log S"(¢) = ~§(w(v — |RD)*’,  0<|hl<w

(see [14], Theorem 4.1)

The last two formulae reflect a transition between “localized” behaviour of
the surviving particle when the drift is below some critical value, and “de-
localized” behaviour when the drift is bigger than this critical value. In the
following text we will only deal with the localized behaviour. Our main aim is
to show:

THEOREM A. For |h| € (0,v) the following hold:

(i) The limiting distribution of (1/tY/3)X.t*/® under (3) as t goes to infinity
is given as the taboo measure starting from 0 with taboo interval (0, ¢y), where
co = (72/(v — |h|))/3 (and the taboo measure is defined below).

(ii) Let a € (0,00). The limiting distribution of X, under (3) as t goes to
infinity is given as a mixture of Bessel-3 processes under which (X;):>o starts
in 0 and never hits —a. The density of the mixture is given by h?ae™!"e,

This result should be contrasted to the case where A = 0: the limiting
distribution of X, under the conditional survival measure up to time ¢ is just
standard Wiener measure. This means that the process X, has not enough
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time to feel the “boundary” of the trap-free region whence it starts. In other
words, when A = 0 the scaled process (1/t/3)X ;25 feels the boundary of the
trap-free region, but not the unscaled process X,. Theorem A shows that in
the presence of a constant drift 4 € (0, v) the particle starts near the left end
of the interval and feels the boundary even in natural true scale.

2. The result. We define Q := C([0,00),R) and (X;);>o the coordinate
process on (), equipped with the usual metric, which induces the uniform
convergence on bounded intervals and which makes () a complete separable
metric space. W, is the Wiener measure on (), starting from a € R, and we
denote by E, the expectation with respect to W,. We let &, := o(X;; 0 <
s <t)and F o = 0(Us»0 F¢). For h > 0 we denote by W(’} the measure on
(Q, F ») under which the process (X;);>o is a Brownian motion with drift A,
starting in 0, and by E! the expectation with respect to this measure. For
t €[0,00) welet Cy(X.) :={X,; 0 <s <t} bethe image of the path X, up to
time ¢, and |Cy(X.)| its length. Let f: ) — R be bounded and measurable.
We want to study the limiting distribution of (1/¢Y/3)X s (respectively, X.,)
under the probability measure

7 dQh = Sh(t) exp{—v|C:( X, )|}dW0,
where S”(¢) is the normalization. If we put for s > 0,
(8) Al := Eo[f(X.) exp(hsX) exp{-vs|Cs(X.)I}]

and define the functions f1(X.) := £(X.) and fo(X.) := f(sX./s?), then using
the scaling property of Brownian motion and the Girsanov transformation, we
see that the study of the limiting distribution of (1/¢1/3) X 23 (respectively, X.)
under Q" is the same as the study of convergence of the following expectations:

Agl A£2
© Ep[fi1]:= ar (respectively, Eq,[f2] = A_s})’

where s := t1/3. Before we state Theorem 1, we want to introduce some nota-
tion and recall some definitions.

For real numbers a,c with 0 < @ < ¢, we denote by P the probability
measure on ({), % ), under which the coordinate process (X;):>o is a taboo
process starting in a with taboo interval (0, ¢), that is, for B € %,

(10) PY9[B] = E [1Bl{7 > H(Xe)],

¢()

where a € (0,¢), T (0,) = inf{¢ > 0; X; & (0,c)} is the exit time from (0, ¢),
w = m2/2c? and

2 . (7@x
.(11) b(x) = ﬁsm(—;), x € (0,c¢),

0, otherwise.
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Let us comment on the definition of the taboo measure. We will restrict our-
selves to the one-dimensional case although an analogue result holds for ar-
bitrary dimensions.

Let I be an interval and a € I. Then P! is constructed as the weak limit of
the conditional probability measure W,[-|.7; > ¢] as ¢ tends to infinity. This
means you condition your Brownian particle, starting from a, not to leave the
interval I until time ¢, where ¢ gets large. Using an eigenfunction expansion
and Lemma 1 gives you the explicit formula (10). In particular we have the
following proposition.

PROPOSITION 1. Leta € (0,c). Then {P%9; a € (0, ¢)} is tight. Furthermore
there exists a probability measure P(()o,c) on (Q, F o), such that P converges

weakly to PE,O’C) asa | 0.

Although this is quite a classical result, we were not able to find it in the
literature, and we provide a proof in the Appendix for the reader’s convenience.
Let us introduce some more notation.

For a > 0 we define E,, the expectation with respect to the measure on
(Q, F ) under which the coordinate process (X;):>o is a Bessel-3 process
starting in a. In particular, we have for B € &,

~ 1
(12) Ea[lB] = EEa[]-BXt/\yo]a

where 9o := inf{t > 0; X; = 0} and ¢ A s = min{¢, s} (see [12], page 419).
Observe that Ag in (8) depends on A only through the absolute value || due to
symmetry of Brownian motion. Thus it is clear that we can restrict ourselves
to the case where A € (0,v). In what follows, we will work with ¢ instead of
s = t1/3 to simplify the notations. We are now ready to state Theorem 1.

THEOREM 1. For v > h > 0, the following hold:

(i) P, converges weakly to PE,O’C") as t — oo, where co := (w2/(v — h))'/3,
and Pgo’c") is the probability measure from Proposition 1.

(i) @ converges weakly to a probability measure @ on (), F ), as t - oo,
where

(13) QUB1=#? [~ ae ™ Eo[1a(X. - a)]da,
with B € F « and the notations from (12).

In particular this result shows that when we are in the “localized regime,”
that is, when the drift is sufficiently small, even the process X, feels the
boundary of the trap-free region whence the particle starts. This is in contrast
to the case without drift, where the motion of the surviving process in natuaral
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scale is at long times essentially that of a Brownian particle in the absence of
obstacles.

Before starting the proof of Theorem 1 we need some preparation. The
first lemma is a reduction step, for it says that it is enough to investigate
the quantities in (9) for paths up to a fixed time u > 0. More precisely, for
u>0letIl,: O3> wr wlpou) be the restriction on [0,u]. We then have for
probability measures L; on (£, ¥ ) (see, for instance, Proposition 3.2.4 in
[4]) the following lemma.

LEMMA 1. {L;; 0 < t < oo} is tight & {L; o H;l;O < t < oo} is tight,
Yu € N.

If we denote by Q, := C([0,z],R), then Lemma 1 tells us that it is enough

to show for f € Cp(Qy,) and u > 0 that Eg,[f oIl,] and Ep,[ f oII,] converge
to Eq[f oIl ] and E joe[f o IT, ], respectively, (f o IT, € Cp(Q)).
0

We also want to reexpress (8). Let f: ) — R be bounded, measurable and
v > h > 0. Denote by M; := maxo<s<: Xs and by m; := ming<;<; X;. Now
|IC:(X.)| = M; — m;, which gives us
m; poo
exp{—v#|Cy(X.)|} = Vztzf fM exp(—vt(b — a)) dbda.
—o0 M,

However, then, because C¢(X.) C (a,b) & T (up) > ¢, and Xo =0 a.s., we
get a.s.,

m; poo 0 00

f fM exp(—vt(b—a))dbda =f f exp(—vt(b — a))(s,,, - dbda.
—0o0 + —00 JO ’

Putting @ .= f(X. — a) we finally get

A =22 Eo[f(X,)exp(htXt) fo /0 exp(—vt(a+ b))z, -y da db]

= vztzf dcexp(—vtc)/o daEo[f(X.)exp(htX )17 .. .>t}]
o ,

2.2 [ A ?
:yt](; dcexp(—t!c(v— )+@})

(14)
c 2
[ daexp(t7; ) BoLF(X.) exp(ht(X: =)Lzt
=22 /00 dcexp(—tg(c))
0

<[ " da exp(tpi(c)) exp(—hta) Eq f* exp(ht(X: — ¢)1(gquon s

‘where g(e) := c(v — h) + pi(c), with ¢ € (0,00), and ui(c) := 7%/2¢% is the
lowest eigenvalue of — %( d?/dx?), with Dirichlet boundary conditions on (0, c¢).
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Before we give the strategy of the proof we want to make the following
comments.

REMARKS.

1. In fact, the proof of Theorem 1 will provide an asymptotic equivalent of A{
as t tends to infinity, for a suitable class of functions f, take for instance [ >
0, ¥, measurable, u > 0. For such functions with /1 = f(X.), respectively,
fe=f(tX,,2), one finds

272 2w

fi,. &7 | 47 _ (0,¢0)
(15) A} 23k té(CO)eXp( tg(co))Ey ™[ f(X.)]
and
2
(16) AP~ 2T 2T n(—tg(co))

tzcgh?’ tg(co)
x /Ooaexp(—ha)Ea[f(X, —a)]da.
0

2. We define the semigroup

(17) (R'v)(x) == Ex[v(X)1{57,>0)]

for bounded measurable v, t > 0, ¢ > 0. If we choose a complete orthonormal
system (¢;);>1 of L%(0,c), where the ¢; are eigenfunctions of —31(d?/dx?)
with Dirichlet boundary conditions on J(0, ¢), the corresponding eigenval-
ues (uj);>1 form a strictly increasing sequence of positive real numbers.
If we denote by ¢, = (v, $1)12(0,), and ||| the L?(0,¢) norm, then the self-
adjointness of R’ (see, for instance, Chapter 2, Theorem 4.3 in [11]) and
Parseval’s identity give us

(18) R (v — cop1)ll < e | v].
Indeed, if we observe that with It&’s formula (R'¢};)(x) = e *'p;j(x), we get
by symmetry

1/2
IR (v — codpr)ll = (Z|<Rf(v - cv¢1),¢j>|2)

Jj=1
1/2
J=2

< exp(—pat)|v]l.
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Here then briefly is the strategy for the proof of Theorem 1. The first step
will now be to prove that for the leading asymptotic, the main contribution in
(14) comes from values of ¢ near the global minimum

2 1/3
19) ‘ co = (Vi h)

of the function g(c): we are going to split the integral over ¢ in one over
[co— 8,c0 + 6],8 > 0, and in one over its complement, and we are going to
show that the leading term comes from the integral over [co — 6, co + 8]. After
having seen that for the leading asymptotic in (14) we can restrict ourselves
to the case where ¢ belongs to some compact interval that contains ¢y, we have
to understand the asymptotics of

(20) E.[f(X.—a)exp(ht(X: — )iz, >t ]-

In order to get in (20) a term where the semigroup from (17) appears and
where we could use (18), we have to apply the strong Markov property. Now
Lemma 1 tells us that we can assume that f is &, measurable. This enables
us to use the Markov property in a profitable way. It is actually at this point
where the scaling of the process becomes relevant, because f; will be %,
measurable and f will be %, 2 measurable. Applying Laplace’s method we

can then find the leading asymptotic behaviour of A{ ! and Af 2 as t tends to

infinity, for a suitable class of functions.
The following lemma is a first reduction step in the study of the asymptotics

of Atf as ¢ tends to infinity. It says that we can restrict ourselves to the case
where ¢ belongs to some compact interval.

LEMMA 2. Let f: Q) —> R be bounded measurable, v > h > 0 and

77_2 1/3
(21) co = ( ) = arg min g(c),
v—nh O<c<oo
where g(c) was defined in (14). Let 6 > 0 be such that co — 8 > 0, and define
A :=R"\[co— 8,co+ 6]. We then have

o mexplig(eo)rs /A deexp(—tg(c)) /0 * daexp(—t(ha — p1(c)))

x Eq[f* exp(ht(X¢ — ¢))1{g7 >3] = 0.

PrROOF. Let v > h > 0 and choose some real number § > 0 such that
co — & > 0. Observe that g(c) is a strictly convex function. Thus we can find
l(c) = ac+ B, where a > 0, B € R, I(c) < g(c), for all ¢ € (0,00), and
g(co + 8) = l(co + 8). Denote by M := max{e (@2 ¢~tg+d)} ~ 0, and
ms =M gl. For some constant k € (0,00), independent of ¢ > 1, we get the
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following estimates:

vztzfA dcexp(—tg(c))/oc da exp(—t(ha — u1(c)))
< Bl exp(ht(Xe ~ iz 0]
< P20l [ deexp(—t(g(c) = pr(e))) [ daFullir, -]
< V2|l [, deexp(~t(gle) = ma(e))VEI R 1]

< V22 flloo M /A dcexp(—tg(c))msc

(23)

~ Co~3
< vztznfnooMa{ [ deexs(-t(g(e) - glco — o)

+ - dcexp(—ta(c—cy — 8))0}

co+d
2,2 '/
<vtkl fll Ms,

where we used that |R!1| < /ce~*!. However, e’¢(<) M5 goes to zero expo-
nentially fast as ¢ — oo. This completes the proof of Lemma 2. O

Thus Lemma 2 tells us that we are left with the study of the asymptotic
behaviour of

2 [ deexp(~tg(e)) [ daexp(~t(ha— ()

0—08
X Ea[fa exp(ht(Xt - C))l{y(oycpt}]-

We now want to get an expression in which the semigroup R? from (17) ap-
pears. We have to use the Markov property, but conditioning on two different
o-algebras corresponding to the different scaling of the process. As we men-
tioned already, it is enough to look at functions f, := f o Il,, where u > 0 and
f € Cp(Qy).

Let us fix u > 0 and denote by

(24)

(25) ¥(x) = exp(ht(x — ¢)) and ¢ = /O”f(y)(,,(y)dy,

where ¢ is defined in (11). We have to treat the following two cases [cf. (9)]:
@) 1.(X.) =fu(X.—a) whichis ¥ ,-measurable;
(i1) f2.(X.) = fu(tX, 2 —at) whichis F 4 2-measurable.

For the second case, calling Y. := ¢ X2, and remembering that (R‘¢)(x) =
e #tg(x), we get for all ¢ € R* with 3 > u, using the strong Markov
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property,

Eo[f5,(X.)exp(ht(X; — )i, »t)]
= Eo[fu(Y.)exp(ht(X; +a —¢c)) {7 .. 0>1}]
=EolfuY)lygr
x Eqy, [exp(ht(X _yje2y +a — C))l{yea,c—a)»—uﬂ“’}]]
6 = Eo[fu(X-)l{yfi;,,c,_atw}
x Eqnx, [exp(ht(X iy +a— c))l{yﬁ,p-aw-u/tz
=Eulfu(X. - at) {750
x Eyox, [exp(At(X ¢-u/i) = )7 g >t-u} 1]
= Eul fu(X. = at) 17 =1 $(Xu/t) exp(—p1(e)(t — u/t*))ey ]

+ Bl fu(X. = at) 17 -u} IRTYE (W — cy$)(Xu/0)}].

1

For the first case we get, by the same calculations,

E.[f],exp(ht(X:—c))lig 0]
27 = Eolfu(X. - a)l{g,>u1d(Xu) exp(—u1(c)(t —u))ey]
+ Eo[fu(X. — )7 >y {RT (& — cyd)(X )}
- Our next step to show is that when we consider (24) and use the identities we
obtained in (26) and (27), the last terms (involving the semigroup) multiplied

with e%(<) are going to zero exponentially fast, as ¢ — oo. To this end we
will show the next lemma.

LEMMA 3. Define the function

co+6 c
F(it) = y2t2/ dcexp(—tg(c))/ daexp(—t(ha — 1))
(28) co—6 0

x Eo[R (v~ cop)(X.)],

where v € L%(0,c) and t is some positive real number. Let u > 0 be fixed. We
then have:

(6] lim exp(tg(co)) F(t —u,t) =0,

(ii) lim exp(tg(co))F(t - 2“5 t) =0.
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PROOF. Let us denote by p(¢,a,y) = (27t)~Y2 exp{—(a—y)?/2t}. For some
arbitrary v € Ly(0,c) we have the estimates

V daEa[(Rtv)(Xu)J] < [ da B,D(R'0)(X,)]
0 0
= [ " da /  dy plu, a, )|(R)(y)|
0 —00

- / ‘ da / " dy p(u,a, y)I(R)(y)]
0 0

< 32| Rl

However, then with ug := 272/¢2, for all positive real numbers £ and a constant
K := (co + 6)%2, we find

co+6 c n
V2t2/ de eXp(—tg(C))/ daexp(—t(ha — u1))Eq[R' (v — c,¢)(Xy)]
co—8 0

0—

co+6 ~
29) <% / _, deexp(=t(g(c) — p1))c¥* exp(—pad) vl

Co
co+96 A
< k2 v] / °8 deexp(—t{c(v — h) + ua}) exp(—ua(f — 1)),
co—

where we used (18).
With ¢; := (47%/(v — h))Y3 and k(c) := c(v — h) + ug2, we find for ¢ €
[CO - 6’ co + 8]:

(30) k(e) > k(cr) = gclw ~B) > eolv — ) = glen)

Observe that V¢ > 0 we have |¢|| < 4/c. Now for the first case we have t=t—u,
as for the second case f = ¢ —u/t2. But since e** and e**(*/**) are both bounded
for ¢ € [co — 8, co + 8] and ¢ large enough, estimates (29) and (30) finishes the
proof of Lemma 3. O

We are now ready to begin the proof of Theorem 1.

PROOF OF THEOREM 1. We want to apply Laplace’s method to the expres-
sion of A{ that we obtained in (14), where f belongs to a suitable class of
functions. So let u > 0, f € Cp(Q,) and f, := f o II,, where we use the same
notation as in Lemma 1. To show part (i) of the theorem we have to study the
case [cf. (9), resp. (14)] with f ‘{’u(X .) = fu(X. — a) as for part (ii) we have

g,u(X .) = fu(tX, /2 —at). Thus inserting (27), resp. (26), in (24) and using the
estimates from Lemmas 2 and 3, we see that we are left with the expressions

co+8 ¢
w222 [ deexp(~tg(©) [ daexp(—hta) exp(u(e)u)ey
co—6 0

(31)
' X Eqlfu(X, - a)l{Y(oyc)>u}¢(Xu)]’
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respectively, for the second case,

co+8 ¢
v2t2/05 dcexp(—ttg(c))f0 da exp(—hta) exp(u(c)u/t*)cy

X Eat[fu(Xo - at)l{.?(o,c,pu}qs(Xu/t)],

where c, was defined in (25).
We first show part (i), so we begin with the expression (31): Observe that

c te
o = [ exphtty - Do dy = 7 [ exp(—hly— te)g(2) dy

1 e b
- ?/0 exp(—hb)qﬁ(?) db,

where we used symmetry of ¢ with respect to ¢/2. However, then (31) multi-
plied with #2 becomes

20 [ deexp(—tg(e)) [ dbexp(~hb)(b/0
co—8 0

(32)

(33)

(34) x /0 " da exp(—hta) exp(p1()u) Eal fu(X. — @) 115 ou $(Xu)]

co+6
=02 [  deexp(~tg(e)@(t,0),

where
B, c) = /O “ dbexp(—hb)te(b/t)

(35) tc
x [ daexp(~ha)té(a/) B LFu(X. —a/t)]

and E9 denotes expectation with respect to the taboo measure P from
(10). Let us denote by I :=[co — 6, co + 6]. Because I is compact we get

(36) lim £ p(b/t) = 2m
t>oo b CcC
uniformly in ¢ € I and bounded, positive b.
We now want to show that
(37) lim EGO[fu(X. —a/t)] = Eg*[fu(X.)]

uniformly in ¢ € I, and bounded a € (0, k), where « is some constant. So let
us fix ¢* € I and let ¥ € (0,c) and denote for the moment the function ¢(x)
from (11) as ¢(%¢)(x). Observe that ¢ (x) = \/c/c*p%)(cx/c*) and u(c*) =
w(c)(c/c*)?. We then get, from the scaling property of Brownian motion,

c* c c
(38) B ,L)[fu (; X (epos — y)] = ECOfu(X. — )],
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We claim that

(89)  lim EQ )[fu< SR — — y)] = E(()O’c*)[fu(c—iX,/(c/c*)z)]

uniformly in ¢ € I. From this, (38) and the fact that for all a: a/t < k/t, (37)
now follows. So let us show (39).

Let ¢ € (0,1). Thanks to Proposition 1 we can find K cC () such that for
all y € (0,c*),

Eg,o’c*)[lx] >1-—e.

However, then

C * C
B0 (X - 29)] - B Pl E X )|
< &lflloo + | B >[fu( Jefer — —y) ]-K] EY )[fu( /<c/c*>z)]’

* C C C
< ¢llflloo + | E{* )I:fu (gX./(«:/c*)2 - ;y)lx = fu (;X-/(c/c*)z)]‘

N c
+ Eg,O,c) fu (;X./(c/c*)Z)] E(Oc )[fu( /(0/0*)2)]

The last term tends to zero as y | 0 uniformly in ¢ € I, because {f,((c/c*)
X /(c/je)2) }eel i equicontinuous at each w € () because I x ) > (¢, 0)
(c/c*) X, /(efe)? = (c/c*)w(./(c/c*)?) € Q is continuous and I is compact. Thus
Theorem 6.8 in [10] applies and together with Proposition 1, we see that we
get the limit uniform in ¢ € I. Now f, is uniformly continuous on the image
of I x K under (c,w) — (c/c*)w(./(c/c*)?), which gives us, for sufficiently
small y,

E(Oc )[fu( o/(c/c*)2 — _y)]-K fu( /(c/c*)z)jH
* C C
< &llflloo + EQ* )[Sclel}) u(;X./@/c*)Z - ;y) fu( /(c/c*)z)
< e(lflleo +1).

This shows (39). Furthermore the preceding calculations show that

(40) ECI[f, (X.)]=EY >[fu( /(e/mz)]

Finally Lebesgue’s theorem gives us

1

2 poo 0
lim @(t,¢) = 2013 / dbexp(—hb)b f daexp(—ha)ES [ fu(X.)]
—00 0 0

" (41)
' = (I)(OO, C)’
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where the limit is uniform in ¢ € I. Furthermore, (40) shows, that I > ¢ —
®(0c0, ¢) is continuous in ¢, thanks to the continuity of f,. Choosing § > 0 small
enough we can make the expression |®(¢,c) — ®(00, ¢)| arbitrarily small, for
all ¢ big enough, and ¢ € I. In the case where ®(o0, ¢y) # 0, for instance, when
fu > 0, the proof of Theorem 18 (page 39ff. in [1]) works as well for the time
dependent caseé with ®(¢, c), respectively, ®(oco, cp), and this gives us that the
asymptotic behaviour of (34), as t — o0, is

o« f1 2 co+6
AN~y f dcexp(—tg(c))®(t,c)

co—

(42) 5
_ 2 ™ _
=v ‘/ 12(c0) exp(—tg(cp))P(00,c0)(1+4 0o(1)),

where f1,(X.) = f4(X.). Remember we have to investigate Af " /A}l. Because
it is enough to work with, £, > 0, (41) and (42) together with the estimates
from Lemma 2 [resp. Lemma 3(i)] completes the proof of part (i) of Theorem 1.

Let us now show part (ii), so we look at the expression we obtained in
(32). We have, by the same calculations as before, that (32) multiplied with t2
becomes

co+6
(43) )2 / deexp(—tg(c)¥(t,¢),

where

Wit,¢) = exp(uau/®) [ dbexp(~hb)ig(b/0)
(44) tc ’
x /0 da exp(—ha)Eol fu(X. — a) Lo outd(Xu/t)].

Using Lebesgue’s theorem we get

. 272 oo oo 1
lim W(t,c) = —2— / db b exp(—hb) / daaexp(—ha)—
t—o0 C 0 0 a

45
45 % Eal fu(X. — )iy ou Xu]

=: ¥(o0,c)
uniformly in ¢ € I because for all ¢ € I we have

0= 1{9(o,oo)>u} - l{y(o,tc)>u} = 1{?(o,m)>u} - 1{?(o,t(co—8))>l‘}

and the last term goes to zero W,-a.s. with ¢ —> oo, Furthermore, we see that
¥ (o0, ¢) is continuous in ¢ € I. Now we have 15 >u} Xu = Xurs, W,-a.s.,
where 7 is the hitting time of 0, and we get for a > 0,

. 1 -
(46) EEa[fu(Xo - a)]-{?'(ompu}Xu] =Eq[fu(X, - a)l,
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where E, is the expectation from (12). As before we finally obtain the asymp-
totic behaviour of (43) as ¢ —> oo for functions f, for which ¥ (oo, ¢g) # 0:

2 f2u 2 cot+s
2AT / deexp(—tg(c))¥(t,c)
8

Co—

47) -
T 2
= ‘/tg( )exp( tg(co))¥(oo,co)(1+ o(1)),

where f2, = f,(tX.;2). Because it is enough to work with f, > 0, (45), (46)
and (47), together with the Lemma 1 and the estimates from Lemma 2 [resp.
Lemma 3(ii)] completes the proof of part (ii) of Theorem 1. O

APPENDIX

Here we give a proof of Proposition 1 for the reader’s convenience. We are
first going to show the tightness of {Pf,o’c);a €(0,c)}.Solet £ >0,T > 0 be
arbitrary. Define A[0 7. = {sUpg<s <7 s-tj<5 | Xs — X¢| > &}, where & is some
positive real number It suffices to check that

(48) hmhmsup P(Oc)[ sup |X;— Xy > s] =0.
510 al0 0<s,t<T
|s—t|<d

To check (48) we use the strong Markov property. Choose some fixed p € (0, ).
For all a € (0, p) we have
P(OC)[A[O T]] P(O c)“ sup |Xs+.7,, - Xt+.7,,| > & — P}]

0<s,t<T
|s—t|<d

_ pl0, [0,T]
= P ")[As_p,a )

However, by continuity of the paths, the last term goes to zero, as § | 0. This
proves the asserted tightness. The next lemma will show the uniqueness of
the limit point:

LEMMA 4. If E®9 denotes the expectation with respect to P, where a €
(0, c¢), we have

(49) lim hm E, (0, c)[? 1=
pl0 a

Before we show Lemma 4, we want to give the proof of Proposition 1.

PROOF OF PROPOSITION 1. Because of the tightness, it is enough to show
that limg, o E9[ £] exists for arbitrary f € Cp(Q)."

Denote by Q) 5 0 = 94(w) := o(. + t) the shift. Let £ € (0,1) and choose
K cc Q, such that for all a €70, ¢),

(50) POI[K]>1—s.
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Then pick 6 > 0, such that |f — f o 3,|1x < &, for 0 < u < 8. Pick p > 0 and
ao < p such that for a < ay,

(51) , E®9[T ,] < &8.
Let a and a’ be smaller than ay. Using the Markov property we find
IEQOLF] = EQOLF
< |EQOLf1 = EPOLf 0 0, W+ 1EQILf 0 85,1 = EQOLS].
Now
EQf —fods,l]
=EQIf = fods,liz,-5)) + EXO[If — f 0¥, 1(7,<8]-

Because of the boundedness of the function f and thanks to (51) we have

201 f lloo .
EOOIf — Fods, Nz ,a] = D2 g0 ]

< 2||f||oos.
Furthermore, using (50),
EQOf = fods,|lir,<s1] <26l floo+ EXO(f = fo V7,117,251 1]
<&2flleo+1)

and the claim of Proposition 1 follows. O
It remains to show Lemma 4.

PROOF OF LEMMA 4. Let 0 < a* < a < p < c¢. We want to compute
Ef,o’c)[f(a*,p)], where J (4« ) is the exit time from (a*, p), and then let a* go
to 0 from above. Now

p
(52) ESOLT wp)= [ Gap(a y)m(dy),
where m(dy) is the speed measure and G is the Green’s function (see [12],
Theorem 3.6). These quantities can be expressed in terms of the scale function

s(x), which is defined as follows: Let a € (0, c¢/2) be fixed. For x € (0,c) the
drift of the taboo process is

53) bx) = - log (),

where ¢(x) is the function defined in (11). We then have

B s(x)= fxeXPI—nyb(z)dz} dy =p(a)? [ —¢(;1v)2 dy



SURVIVAL MEASURE OF BROWNIAN MOTION 237

For x € (0, c) the speed measure is given by

P(x)?

oay 9%

(55) m(dx) =2(5(x)) 1 =2

and the Green’s function

56) Glar (@, y) = (s(any)—s(a ))(8(;1) —s(aVvy))
s(p) — s(a*)

where a v b := max{a, b}. With lim,: o s(a*) = —o0, Lebesgue’s theorem and

remembering that E>9[.7 0] = EL g o] because of PRI g o> T 0] =

0, we get

EO7,] = ¢T?a—) [ *(s(p) — s(a v y)b(3) dy

b

(57) .
= ﬁ[/o (s(p) — s(a)d(y)?dy +[ap(s(p) - S(y))¢(y)2dy],

Let a € (0, @) be small enough. We have [; ¢(y)?dy < a¢(a)?. Because «
(0,¢/2), (54) gives us |¢(a)?s(a)| < ¢(a@)%(a — a); hence,

(58) ‘ [ (@163 | = ag(@r*a.
Thus

L (0,0) _ 2 v B 2
- lim E09L7 )] = 22 [ (stp) = s ()% dy

_ P P 1 2
=2 ([ s az)sorar

Because for small enough p we have by the mean value theorem z/¢(z) <
cy/c/m, for all z € (0, p), we get

Pl A (el
) were =l w

é1
_7T2y'
Thus
plrr 1 |
4 24 ——f ~é(y)? dy.
/O(fy L z)cb(y) =5 ), y¢(y) ly
Finally,

b1, o b(y)
fo S’ dy < 6(p) /0 Py

< ¢(p)p\/g%

for sufficiently small p. Now the claim of Lemma 4 follows. O
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