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DIFFUSION APPROXIMATION FOR AN
AGE-STRUCTURED POPULATION

BY A. Bosg! anD 1. Kag?
.Carleton University and Uppsala University

We prove a diffusion limit theorem in the sense of weak convergence
of measure-valued processes for a population age model first studied by
Kendall. We show that in the diffusion limit scaling, the population struc-
tured in age groups behaves in the same way as the total population size,
but with an exponential weight. A particular feature of the limiting process
is that in general it is discontinuous at time zero.

1. Introduction. Consider a population where each element (individual)
either gives birth to a single offspring or dies, with constant and equal rates
A. Let N = (N;);>0 denote the population size. Then N is a linear, critical
birth-and-death process on the nonnegative integers with jump intensities at
time ¢ given by AN;. .

We are interested in the distribution of age among the members of the
population. In order to study the age distribution we will introduce a process
X = (X;)=0 on a set of measures on R*, which is such that

X;([x1, x2]) = number of elements with age in the interval [x1, x3].

Thus for bounded Borel measurable functions ¢,
(Xi,0) = [~ o(3) Xeldy).

In particular, if 1 denotes the indicator of [0, oo,
N, = X (R*) = (X;,1).

Let N denote the continuous state branching process (with parameter )\)
defined by the Laplace transition function

Elexp(—6N,) | Ng = 1] = exp(—0(1+ At6)"1), 6>0.

This is the critical branching diffusion with zero drift, variance function 2Ax
and generator L = Axd?/dx?; see, for example, Athreya and Ney [(1972),
Chapter VI.6]. It is a classical result that N can be viewed as a diffusion
approximation of N. In terms of weak convergence of processes, one has

13y~ -
(1.1) —ZN,JM Z N, n— oo, Ng =1,
n =
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where {N/; j > 1} is a sequence of i.i.d. copies of N with initial condition
Ny =1.

Our purpose is to demonstrate an analogous result for the measure-valued
age process X. To illustrate, let {X/; j > 1} be a sequence of i.i.d. copies of
the process X with initial condition X, = 8y, where Y is an exponentially
distributed random variable with mean 1/A. Each copy thus describes the
distribution of age among the descendants of a single ancestor assumed to be
of age Y at time # = 0. Let u, denote the exponential distribution such that

() = [ ” b(y)re ™ dy.

We prove that with respect to weak convergence of measure-valued pro-
cesses,

¥ =

1 .
(1.2) ~ Y X), =%, n- o,

where the limiting process Z is the product of the continuous state bran'ching
process and the (deterministic) exponential measure:

Zt = Nt,U«A-

For arbitrary initial conditions, finite-dimensional distributions converge to-
ward the same limit process Z, eventually modified for a discontinuity point
at the origin. To obtain the weak convergence when the Z process is contin-
uous at the origin, we need to impose a condition for the rate of convergence
toward w,.

The interpretation of the result is that in the diffusion limit the size of
age groups behaves in the same way as the total population does, but with
an exponential weight. For example, the diffusion limit of elements of age
exceeding some number a is given by e **N,.

After some preliminaries in Section 2, we give a precise formulation of the
result in Section 3. The proof consists mainly of two parts—convergence of
finite-dimensional distributions and tightness—dealt with in Sections 4 and 5,
respectively.

2. Preliminaries. Let ¢3(R*) denote the continuous and bounded and
€ Z(R’f) denote the continuous, bounded and nonnegative functions on R*.
Similarly, € %(R+) denotes the continuous and bounded functions on R* with

continuous and bounded first derivatives. Also write € :f’l(R’f) for the subset
of ¢ ;(R+) consisting of nonnegative functions with compact supports. Let
M ;(RJF) denote the dual cone of positive finite measures on R*. Assume that
_ the function spaces are given their supremum norm topology with norm | [

and that .#; (R*) is endowed with the topology of weak convergence generated
by ¢} (R*). Let 2([0,00[, .#; (R")) denote the space of cadlag functions on
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the time interval [0, co[ with values in .#} (R"), equipped with the Skorokhod
topology.

The age distribution process X is a measure-valued Markov process with
path space Z([0,00[, .#;(R")). Let (% )s-0 denote the increasing sequence
of o-algebras generated by X. The generator ¢ of X on functionals of the
form F((-,¢)) with F € €1(R"), defined as

lim & (BLF((X(,6)) | 1] - F((Xe, ),
is given by
SF (1, 8)) = Mo DI F((z, 8 + $(0)) — Fl{pz, #))]
4 [T, 8) - $(9)) = (s 6) Iuldy)

+F ((p, &), b)),  de €LRY), pe £ (R,

and is such that the process

t
F(<xt,¢>>>—F<<Xo,¢>>)—/0 SF((X,,¢))ds, >0,

is an (% ;)-martingale. See Bose (1986).

The notion of the age distribution in the context of population growth
models was introduced by Kendall (1949). In a subsequent paper, Kendall
(1950), the following closed-form expression for the characteristic functional
was given:

Elexp(i(Xy, ¢)) | Xo = 8,]
2.1 3 (eibla+t) _ l)e-—)\t+f0t(ei¢(y) —1)re27 dy
T 1 (e —A[1+ At — yle M dy

We collect some of the basic properties of X in the next lemma. Throughout
we use the notation E,[.] for the conditional expectation E[- | X¢ = 8,].

LEMMA 2.1. Let ¢ € ¢} (R"). The age process X has the following proper-
ties:

(i) The expectation semigroup operator Tid(x) = E [(X,, ¢)] is given by
t
Tib(x) = b+ 0 + [ (y)re™ dy.

(i1) The log-Laplace transition functional

K:¢(x) = —log E.[exp(—(Xy, ¢))]

defines a nonlinear contraction semigroup:

Kt+s¢= Kt(Ks¢), KO¢=¢,
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and we have

o ~ T:(1—e?)(x)
K:¢p(x) = 10g<1 1+ S T,(1_e—¢)(0)dr)'

(iii) The conditional mean and log-Laplace functions are given by

E[<Xt, d)) | Lg-S] = (XS’ Tt—s¢>7
—log E[exp(—(X;,#)) | 7 5] = (X, Ki—s9),

s<t.

PROOF. The expression for the mean is derived in the usual way by differ-
entiating the characteristic functional (2.1).

The semigroup property of K, is a general feature of branching processes
and is merely a reflection of the Chapman—Kolmogorov identity for the under-
lying transition density. The explicit form of K;¢ is obtained via a continuation
of (2.1) to the Laplace functional, and then rewriting the result in terms of T';.
An immediate consequence of this representation is the contraction property
1K tdlloo < llPlloo-

To compute the conditional expectations in (iii), note that particles alive
at time s and of age x; evolve according to independent copies of X with
X() = (st. [}

3. A diffusion approximation theorem. Let X be the age process dis-
cussed in the foregoing text. We consider a sequence {Y"; n > 1} of nonnega-
tive random variables on R*, which are not necessarily independent. For each
n > 1let {Y/"; 1 < j < n} be i.i.d. copies of Y. Let u" denote the mean
measure defined by

(u", ¢) = E[¢(Y")].

Put X} = 8yi.. Given these initial conditions, let {X/"; 1< j<n, n > 1}
denote a family of independent copies of X defined on 2([0,+oo[, .# ;:(R*)).
Note that the superscript » in X/” only refers to a possibly varying initial
state Y/,

We next define a sequence Z", n > 1, of measure-valued processes in the
state space 2([0,+o0[, .#; (R*')) by

13 L in
(3.1) (27, ¢) == (X, ).
ni4

In particular,

. 1 n ‘
(Z5, )= =) $(YI").
n i
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Let =< denote weak convergence in the Skorokhod topoiogy of 2([0,7],
A7} (R*)). Recall from the Introduction the critical branching diffusion de-

noted by N. For convenience we put e(x) = Ae~** so that

() = " d(y)e(y) dy.

THEOREM 3.1. Fix a time interval [0, 7]. Suppose that the sequence Zj has
a limit in distribution Zy, as n — 00. Then Z" converges in finite-dimensional
distributions toward a process Z given by multiples of the continuous state
branching process:

> 207 t=0,
Zt =3\ —
Ntﬂ')u t> 07

which is such that N is mdependent of Zo.

Now suppose Zy = ) so that Z;, 0 < t < 1, is continuous. Suppose also that
u" has a density g,(x) with respect to the Lebesgue measure on R* and put
an(x) = gn(x)/e(x). If (a) | gn —elloo < C/n and (b) l|an(-) —an(-+ns)lw < Cs,
then

(3.2) 7 2 7.

REMARKS.

1. Suppose the initial age variables Y/ are i.i.d. exponentially distributed
with parameter A (independent of n). Then by the law of large humbers
Zj — u», almost surely in the topology of weak convergence of finite mea-
sures. Moreover, in this case the assumptions (a) and (b) are trivially ful-
filled and hence (3.2) holds. This is the situation alluded to in the Intro-
duction. Also;

(3.3) E[(X;,¢)] = E[T:6(Y)] = (mr,¢), 0 <t<oo,

that is, the exponential distribution is invariant for the expectation opera-
tor T'. o ] o :

2. For large n and ¢ > 0, Z is “close” to the limit u,N; with N, — 1 as
t — 0. The last part of the theorem reflects this behaviour. Indeed, we
are not only forced to assume that Z, = M), but also to impose a suitable
rate of convergence toward the invariant measure in order to obtain weak
convergence (3.2). The assumptions (a) and (b) can.be weakened, but the
relatively simple form above mirrors well the type of condition needed in
the proof. As an alternative, we could let the X , 1 < j < n, be Poisson
point measures on Rt with intensity measures u”" converging to w,. The
same restrictions on the rate of convergence apply.
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3. Other generalized versions of relation (1.1) are known. For example, under
the corresponding scaling as in (8.1), the limiting behaviour of N is known
for general branching mechanisms such as state-dependent rates and also
for multivalued situations; see Joffe and Metiviér (1986). Concerning the
age distribution, also in a very general setting, limit results are known for
the case of unscaled time t. Then, typically, a law of large numbers holds
with convergence toward a measure determined by the initial measure. As
an example, consider the case we are interested in here with constant and
equal jump rates. Then the measure-valued process W”, defined by

(WD, ) = Z X"

nja

converges weakly to a measure-valued process W, given by (W;,¢) =
(Zo, T:¢), t > 0. For such results, see Bose (1986), Oelschliger (1990) and
Borde-Boussion (1990).

As usual in a situation like this, a proof of weak convergence has two parts.
We show next that all finite-dimensional distributions converge to the cor-
rect limits. In the last section we state and establish the required tightness

property.

4. Finite-dimensional distributions. To prove convergence of finite-
dimensional distributions for the population size process in (1.1) we may pro-
ceed from the observation that the Laplace function of N; is given by

1-e?

— —6N, — I
‘»[j(e’t)—E[e |N0_1]—1 1+/\t(1—€_g)’

and then note that the limit
lim ¢™(0/n, nt) = exp(—0(1 + At0)™1)
n—oo

is the Laplace function of N;. To identify the limiting distribution of (2%, ¢),
we shall follow the same route.
For the proofs it is convenient to introduce the auxiliary notations

0

& = (r, ), £:(0) = m
and
Ty(1—e?)(x)

1+ AffT,(1—e¢)(0)dr

Sip(x) =

* By the representation of K; in Lemma 2.1(i), then

Kip = —log(1 - Si¢).
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LEMMA 4.1. Fix 0 < t; < --- < t, < 7 and positive constants 61,...,0,.
Then

@ ~log E[eXp(_ 3 ok’ﬁtk>
k=1
C =l (01 Lyt (- O Lt (O)) ).

Furthermore, for ¢5, k=1,...,m, in €{(R"),

(ii) —log E, [eXp(— D Xy, ¢k>)]
k=1

=Ky (d1+ Ky t,(- - (b1 + Kyt 1 Om) - ) (%),

and, for any n > 1,

(iii) —log E, [eXp (— > (zy, dm))]
k=1

=n Ky, (% + Kn(tz—tl)(' . (d)"nz_l + Kn(tm—tm_l)(?nﬂ)> . ))(x)

PrOOF. The first statement is a consequence of the conditioning formula

—log E[exp(—6N;) | Fs]=Ngl;_s(8), s<t¢,

ﬁo:l]

and a simple induction on m.

The corresponding relation (ii) for X follows in the same way by using
Lemma 2.13ii).

Given the initial configuration, the summands in Z" are independent. Thus
relation (ii) immediately implies (iii). O

LEMMA 4.2. Let ¢ € €;(R"). For t > 0,

InKn(d/n) = ()l > 0, 1 — oo
PROOF. We first note that if (A, ),>1 is a sequence in € b+(R+) with |2l <
C for all n > 1, then
(4.1) | —nlog(l—h,/n) —hplle < C%/n, n>2C.

For h, = nS,;(¢/n) and C = |¢|l., We see that to prove the lemma it is
enough to show

InSn(d/n) — £(P)lloo — 0,  n — oo
However, we have
RS (/1) — L(P)lloo < INTre(1 —e™%™) — Plloo

4.2) - ¢
+ P An(d) - 0(B)],
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where A,(¢) =1+ )tfot nTy-(1— e %/")(0)dr. Moreover, for n > 2C,
17T (1 — e ") — Blloo < 1Tnsdp — bllco + C2/n < 26| $llc + C?/n.

Hence A,(¢) converges to 1+ At¢ and both terms in (4.2) vanish as n — oco. O

LEMMA 4.3. For a sequence f, € €§(R"), n >0, with C = sup,, ||f1llo and
t > 0, one has

”nKnt(fn/n) - nKnt(fO/n)”oo
< ToelFa = o)l + AC | | Toalfn - F0) (0] ds
+2C%(2+ AtC)/n, n > 2C.

Proor. Take n > 2C. By (4.1),
”nKnt(fn/n) - nKnt(fO/n)“oo < "nsnt(fn/n) - nSnt(fO/n)”oo + 202/n

A straightforward estimate gives
17Sni(frn/n) — nSni(fo/n)lloo
< 1 Tni(n(1 — exp(—fn/n)) — n(1 - exp(—fo/n)))leo
+ 17 Tne(1 — exp(=fo/n))llool An(fn) ™" = An(fo) M,

with A, as in the previous proof. Use (4.1) twice with A, = n(1 — e~f+/*) and
hl, = n(1—efo/") to get

ITnt(n(1—exp(—fn/n)) —n(l—exp(—fo/n))lco < ITne(frn— Fo)lloo +2C2/n.
Similarly,
t
AR (fr) ™ — An(fo)7} < A/O |Tns(fn — f0)(0) ds + 2A¢C?/n.

Hence

”nSnt(fn/n) —n8Sni(fo/n) oo
ST ne(fn = follleo + AC/Ot |Trs(fn— F0)(0)ds +2C%(1+ AtC)/n.

Add the obtained remainder terms to finish the proof. O

LEMMA 4.4. For all 0 = ty < t; < -+ < tm < 7 and ¢, in €} (RY),
k=1,...,m, we have

log E, [exp(— Z(Z?k, ¢k))]
k=1
— log E[exp (— Xm: Gthk>
k=1

sup
X

N():l]l—)O, n — oo.
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PROOF. The proof'is by induction on m and we use the shorthand notations
Lm(tO, tl) L] tm)
= Ktl—to(-&;l + etz—tl(' o (Em—l + Ktm—tm_l(gm)) ot ))’

H7'(to,t1,. .., tm)

=n Kn(tl—to)(% + Kn(tz—tl)(' . <¢"’;_1 + Kn(tm—tm_l)(t_m)) . .))(x).

According to Lemma 4.1 we need to prove that ||[H}'(¢o,¢1,...,tm) — L™ (%o,
t1,...5tm)llo vanishes as n — oco. Lemma 4.2 provides a first induction step:

| H (o, 1) — L' (%0, £1)lloc — O, n — oo.
Now
I|H (to, 81, .. 5tm) — L™ (t0,t1, .. tm) oo
< nKny,((d1+ Hy M(t1,...,tm))/n)
—nKu (61 + L™ M1, .., tm))/0)lloo
+ 1nKnt,((1+ L™ (b1, .. s tm))/n) = L™ (0, b1, - - ) lloo-

Take ¢ = ¢ + L™ 1(t1,...,tn) in Lemma 4.2 to see that the last term on
the right side converges to zero as n — co. Moreover, if we take n > 2C with
C =37 l$jllco, then by Lemma 4.3 and the contraction property of T',

||nKnt1((¢1 + H;;n_l(t]., oo ,tm))/n) - nKntl((d’l + Lm_l(tl, R ] tm))/n)”oo
=< (1 + AtC)(”H?_l(tl, .. ,tm) - Lm_l(th ceey tm)”oo + 202/’7’)’

which vanishes as n — o0, by the induction hypothesis. O

PROPOSITION 4.5. For all 0 =ty < t; < -+ < tn < 7 we have the joint
convergence in finite-dimensional distributions:

(Z(r)" Zz’~°"z?m)=>(zo’ ﬁtlﬂ'/\’-ﬂyﬁtm}u’/\), n — oo,

where the limiting continuous state branching process N with Ny = 1 is inde-
pendent of Zy.

PROOF. Fix ¢ in € (RT), k=0,...,m. We must show that

E[exp(— i(zg,d)k))]

k=0

converges as n — 0o, toward

Elexp(—Zo, ¢0))] E[exp(— % N)]
k=1
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Note that the case m = 0 corresponds to our assumption that Zj has a
limit Zg in distribution as n — oo. So we let m = 1. By Lemma 2.1(iii) and
Lemma 4.13ii) for m = 1, we have for ¢ > 0,

172 .
Elexp(—(ZL, do) — (2, d1))] = E[exp(—<zg,¢o> -2 ZnKm(if})m"))]
J

1

_ E[exp(—<Z3’¢0 + nK(%)»]

Also, without making any assumptions on the dependence structure,
Elexp(—(Zo, $0))] E[exp(—N; ¢1)]
= E[exp(—(Zo, $0))] exp(—L:(¢1))
= Elexp(—(Zo, bo + £:(b1)))],

because ¢;($1) is independent of x and (Zg, 1) = 1.
Hence,

| E[exp(—(Zg, o) — (Z}, $1))] — Elexp(—(Zo, ¢0))] E[exp(—N; ¢1)]|
= |E[exp(—(Z], o + nKni(¢1/n)))] — Elexp(—(Zo, po + £:($1)))]|
< |E[exp(—(Zg, ¢o + nKni(d1/n)))] — Elexp(—(Zg, do + £:(b1))]|
+ |E[exp(—(ZF, #0))] — E[exp(—(Zo, b0))]| exp(—t(¢1)).

Clearly, the last term goes to zero as n — oo by our assumption on Zj. For
the remaining term, we have

|E[exp(—(Z2, ¢o + nKni($1/n)))] — Elexp(—(Zg, do + €:(1))) ]|
< E[(Z8, nK i (d1/n) — L($1))]
< InKn(p1/n) — €:(d1)llocs

which goes to zero by Lemma 4.2. _

For the general case m > 2, the functions nK,;(¢1/n) and ¢;(¢1) are
replaced by the corresponding iterated functions in Lemma 4.1. In the fi-
nal estimate above the norm ||[nK,;(¢1/n) — £:(¢1)lle is then replaced by
NH™(to,t1,...,tm) — L™(to,t1,...,tm)lleo. By Lemma 4.4, we are done. O

5. Tightness. To establish the tightness properties of the sequence {Z"}
required for Theorem 3.1, we will use the following general criterion. See
Gorostiza and Lopez-Mimbela (1990), Theorem 2.1 (p = 0).

LEMMA 5.1. The sequence {Z"} is tight in 2([0,7], #;(R")) if and only
if for each ¢ € €7 (R") the associated sequence of real-valued processes
{(Zr, ¢); 0 <t <rT}istight on RT.
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So we turn to the proof of (3.2), which relies on Lemma 5.1 and a fourth-
moment calculation of the increments of (Z7, ¢).
For this purpose we introduce for v > 1 the functions

d¥) = E[((Xiys, 6) — (X1, 6))"],

the moment functions
14 v— 01’
u(x) = E.[(Xy, )] = (1)}

a06”

S:(0¢)(x)],_o»
the cumulants

k(V) = (- 1)v—

YL t(9¢)|g 0

and the conditional moments
m)(Xs) = E[(Xirs, d)” | Fo].

We have suppressed the upper indices on X;, but it is understood that X
still depends on the scaling parameter n. We write u” = E[X(] so that, for
example,

d(l) (/.L Tt+s¢ Tt¢

In particular, if u” = w,, then dﬁys) = 0, by (3.3). With this convention we can
write

E[[(Z}, s,¢ —(Z7, ) |*]

3(n—1) 4(n—-1)
| S+ 2 D@ 4 20 b,
(5.1) ~1)(n-2)
+ -“——;3—_d;2t)ns(d§zlt3ns)2

A D0 D
n

In case E[X(] = u,, this formula simpliﬁes to
3(n
B\ ) — 2, 6] = i, + 2 Dad )2
LEMMA 5.2. For v > 2,

t
O uP =T <¢”)+AZ (k) [ Tes@®u b ds,  u =T,

(i) dY) =E[(X,Tsd— )]

+§:< 1) ’*( )E[(xt,w Hm®(X,) - (X, Todh)]
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For v > 1 (and with m{%) = 1),
(v) =, v—1 (v— k) (k)
(iii) m;s (X)) = Z B (X4, kg - (Xy), ae.
k=0
PROOF. It is easy to verify that S;¢ satisfies the integral equation
t
Seb=Te(1= ) = A [ T i(S,9S.9(0)) ds.

Apply S; to 6¢ and differentiate » times with respect to 6 to get
=
= T(¢") + )tf T, ( (k)ugk>ugv-k>(0)> ds
k=1
which is (i).

Next, by the binomial expansion,

(5.2) d) = 3 (-1 k( )E[(xt, & FmP (X )],
k=0

Obviously, the moment functions u? defined previously for ¢ € € # (R*) can be
extended to ¢ € €,(R"). For example,

E[(X,, Ts¢ — §)" ]—Z( 1) k( )E[ (Xo, )+ (X, Tod)*]

Subtract this from (5.2) to obtain (ii).
To see (iii) use Lemma 2.1(iii) and note that

E[exp( (Xits,00)) | F¢]

6‘0"

= o exp(~(X,, Ko(04)

v—1

= 7 (e (X0 Ko 000X - 2 K (09))).

Then differentiate the product » — 1 times and put § =0. O

Now we look more closely at the first four moments. By Lemma 5.2(iii),
med(X0) = (X0, Tob),
m®(X,) = (X, kD) + (X,, kD)2,
m®(Xe) = (Xe, D) + 3(X,, KDY (X, kD) + (X, b)Y,
mB(X,) = (Xo, kO) + 4K, KON Ko, D) + 6(X o, D)2 (X, kD)
+ (X, k)Y 4+ 3(X, BP)2.
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Then by Lemma 5.2(ii),
diY) = E[(X;, To$ — ¢)), )
d? = E[(X,, Ts¢ — $)21 + E[(X, k?)],
d3) = E[(X;, Ts¢ — $)3]1+ 3E[(X,, Ts — ¢)(X;, k2]
(5.3) + E[(X;, k)],
d\¥) = E[(X,, Ts¢ — $)*1+ 6E[(X,, Tsp — $)%(X,, k) ]
+4E[(X,, Tsd — ) (X4, B3]+ 3E[(X;, £2)2]
+ E[(X,, £9)].

Furthermore, we note that the functions u;” @) for v = 1, 2, 3 and 4 as they
unfold from the recursion formula in Lemma 5.2 are given by

1
ul(,‘ ) = Tt¢,

u® = Ty($?) + 2AT, / T.$(0) ds,

®) 3 2 2y [*

u® = T,(¢%) + 3AT:6b /0 T,($2)(0) ds + 3AT(6?) fo T,$(0) ds
t 2

+6A2Tt¢(/ Ts¢<0>ds),

0

4 t t

)= Ty(¢*) + 4AT [0 Ty($%)(0) ds + AT (6?) /0 T,(42)(0) ds

FANT(6°) [0 " 1.8(0) ds + 24A2Tt¢( /0 " T,6(0) ds)

< ([ Ten0)ds)
+ 12/\2Tt(¢2)(/0t T, (0) ds)2 + 24/\3Tt¢(/0t T,¢(0) ds>3,

and since the first four elements in the sequences of functions u*) and £®*)
are related by

k(l) (1)

u; ",
2 2 1
D = ug ) (D,
B = o _ 3@y M 4 9@y (V)3,

k(4) _u§4) 4u(3) (1) 3(u§2))2+12u§2)(u§1))2 6(u! 1))4
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we have
kﬁl) = Ttd),

9 t
B2 = Ty(¢?) — (Ted)? + 22T [0 T,(0) ds,
t
E® = Ty(¢%) — 3T dTo(6?) + 2(Tid)? + 3T b /0 T,(¢%)(0) ds
t t
+3AT.(42) /0 T,(0) ds — 6A(T, )2 /0 T,$(0) ds,
t 2
+6)\2Tt¢(/0 Tsd)(O)ds) ,

BY = Ty(¢h) — 4T, ¢Ti($?) — 3(T($?))? + 12T ($>)(T1)? — 6(T )"

T [ "T4(6%)(0) ds + 6AT,($2) | "T.(62)(0) ds
0 0
T [ "T6(0) ds — 24AT T (42) [ 7o ds
0 0
12TV [ "T(62)(0) ds + 24A(T1)? [ "T,6(0)ds

t t
+24A2Tt¢(/0 Ts¢<0)ds)(/0 Ts<¢2><0>ds)
t 2 t 2
+12A2T,(¢2)</ Tscﬁ(O)ds) —36/\2(T,¢)2(/ Tsd)(O)ds)
0 0
t 3
+24)\3Tt¢(/0 Tsd)(O)ds) .

From now on, ¢ € £ 1(R*) and C denotes a positive constant whose numer-
ical value may change from one occurrence to another and that value may
depend on ¢ and ¢'. From the explicit formulas for ui")
conclude

,v=1,...,4, we first

Cllldll + [ Tr(0)dr), v=2,
w” < { CUIZ + tlldlloo + L T-p(0)dr)), v=3,
4

CUIpl2, + t(ldllos + fo Trp(0)dr)?), v

Then we note the estimates

t
1Tsdp — dllc < Cs, l/; (Trysd—T,¢)(0)dr| <Cs.
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In fact, the integral expression equals
t t prts
/0 (exp(—A(r+5))d(r+s)—exp(—Ar)(r)) dr+ /0 / Aexp(—Av)b(v) dv dr-.

Clearly the second term is bounded by ||¢|lo s. Add and subtract e~ A"+ ¢(r)
to get the upper bound (||¢'|l + l|¢llec) s for the first term. The argument for
Tsdp — ¢ is similar and simpler.

Writing u;(x) = u;¢](x), in order to emphasize the particular function
¢ that is used to form the moment functions, and also remembering that
X = 8y, we conclude

E[(X;, Tsd — $)”]1= (0", u[Tsd — 1).

Hence we also obtain

Cs, v=2,
(5~4) |E[(Xt’ TS¢_¢)V]| 5 C(82+St)7 V=3’
C(s®+s%t), v=4.

Moreover, from the preceding explicit formulas for the functions kg”) , V=
1,...,4, in terms of T, using again ||T:¢ — ¢|l < Ct, obtain

Ct, v=2,
1EY| < L C(t+2), v=3,
Cit+t2+1t3), v=4
Consequently,
Cs, v=2,
(5.5) |E[(Xs, K] < { C(s + 5?), v=3,
C(s+s2+s%), v=4

Furthermore, because E[N?] = (1 + 2At),

|E[(X,, Tstp — $)(Xs, )]

(5.6) - { CE[N2]s < C(s + st), v=2,

~ | CE[N?](s +s?) < C(s+s*+ st +s%), v=3,
and
(5.7) E[(X,, k#?)2] < CE[N2]s? < C(s? + s%t).
Finally, by the Schwarz inequality, (5.4) and (5.7),

E[(X:, Ts¢ — $)2(Xs, k)] < E[(X, Tsd — $)* 1V E[(X,, P)?]1/2

(5.8) T < C(s®+ s )V2 (s% + s%t)1/?
' = Cs2(t+ s+ st + £2)1/2,
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Putting the estimates (5.4) to (5.8) into (5.3), we obtain
Cs, v
(5.9) |d)] <] C(s+s2+st), v
C(P+ts®+s(t+s+st+t2)V24+s+s2+st, v

b

2
3,
4

LEMMA 5.3. Fix ¢ € €¢71(R*) and suppose that Zy = . Under the as-
sumptions (a) and (b) of Theorem 3.1 we have, for 0 <t <717and 0 <s <1,

(5.10) E[I(Z},,, ¢) — (2, )1*] < c(s2 n %)
PrOOF. By (5.9),
d(z) d(3)
nt,ns < CS, nténs < C(sz + st + i)
n n n

and

sy / i s2+st s
nténssc(s3+ts2+s2 st+t2+s+ 48 +s +_2)
n n n n

5C(sz+£).

n

Now insert these estimates into (5.1) to obtain
E[[(Z},,, ) — (Z}, $)I*]

(5.11) s

< (s 4 £+ sldihal + s(dif)? + (@)t ).

It remains to estimate dflltfns. However, we have

d%ne = [ (Tutrod = Toih) (@) galx) d
= exp(—Ant) <[000 ¢(x + nt+ ns)(exp(—Ans)gn(x) — gn(x +ns))dx
+ fn d(x + nt)(e(x) — gn(x)) dx).
0
Hence,

1A, < u¢noo( [ 1an(0) ~ ante + ns)ie(x) dx+ [ 1ga@) —e(x)|dx).
0 0

- Thus, by assumptions (a) and (b),
142 s ] < 1Moo (l@n(-) = @n(- + n8)lloo + 15 & — €lloo) < Cs.
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This, together with (5.11), allows us to conclude the bound stated in the
lemma. O

PROPOSITION 5.4. Suppose Zg equals the exponential measure w,. Then un-
der the assumptions (a) and (b) of Theorem 3.1, the sequence {Z"} is tight in
2([0,7], #; (R")).

PrOOF. We apply Lemma 5.1 and note that to test for weak convergence
in .4 g(R*), it suffices to check convergence only for ¢ € € §’I(R+) U 1. The
case ¢ = 1 corresponds to (1.1). By Lemma 5.3, the upper bound (5.10) on the
fourth moment of the increments of the (Z", ¢) process holds for ¢ € ¢ cT’I(R‘L).
ForO<v<sandO<it<r,

E[(Z0., &) — (Z0., )2 (ZD,,, 6) — (20, $))2] < C<s2 + 'Z’)

To prove the proposition, it then suffices, by Theorem 15.4 of Billingsley (1968),
to show that for each positive ¢ and 7 there exist a positive 6 and an integer
no such that

(5.12) P(w"((Z",¢),6) > &) <7, n > no,

where w” denotes the second modulus of continuity [Billingsley (1968),
page 118] over a partition of [0, 7] of mesh size at most 25. However, we can
mimic the proof of Theorem 15.6, in particular inequality 15.30, in Billingsley
to obtain that
2C 1
P(w' (2", $),8) = &) < —1- (25 4 —).
& n

The right member of this inequality goes to zero as n — oo and 6 — 0, which
proves (5.12).

We can now complete the proof of Theorem 3.1. In Proposition 4.5 we have
established that all finite-dimensional distributions converge and in Proposi-
tion 5.4, under the additional assumptions, that the sequence of approximat-
ing laws is tight so that Z" converges weakly in 2([0, 7], .#; (R")), which is
(3.2). Usually one establishes the inequality (5.12) from the second moment
considerations. This was tried without success.

Acknowledgment. The detailed comments from an Asscciate Editor sub-
stantially improved on several earlier versions of this manuscript.

REFERENCES

ATHREYA, K. and NEY, P. (1972). Branching Processes. Springer, New York.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

BORDE-BOUSSION, A.-M. (1990). Stochastic demographic models: Age of a population. Stochastic
Process. Appl. 35 279-291.



DIFFUSION APPROXIMATION FOR AN AGE-STRUCTURED POPULATION 157

BOSE, A. (1986). A law of large numbers for the scaled age distribution of linear birth-and-death
processes. Canad. J. Statist. 14 233—-244.

GOROSTIZA, L. G. and LOPEZ-MIMBELA J. A. (1990). The multitype measure branching process.
Aduv. in Appl. Probab. 22 49-67.

JOFFE, A. and METIVIER, M. (1986). Weak convergence of sequences of semimartingales with
applications to multitype branching process. Adv. in Appl. Probab. 18 20-65.

KENDALL, D. G. (1949). Stochastic processes and population growth. JJ. Roy. Statist. Soc. Ser. B
11 267-283.

KENDALL, D. G. (1950). Random fluctuations in the age distribution of a population whose devel-
opment is controlled by simple “birth-and-death” process. J. Roy. Statist. Soc. Ser. B 12

278-285.
OELSCHLAGER, K. (1990). Limit theorems for age-structured populations. Ann. Probab. 18 290-
318.
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
AND STATISTICS UPPSALA UNIVERSITY
CARLETON UNIVERSITY Box 480
OTTAWA S-751 06 UpPSALA

CANADA K1S 5B6 SWEDEN



