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A PROBABILITY INEQUALITY FOR THE OCCUPATION
MEASURE OF A REVERSIBLE MARKOV CHAIN

By I. H. DINWOODIE

Tulane University

A bound is given for a reversible Markov chain on the probability that
the occupation measure of a set exceeds the stationary probability of the
set by a positive quantity.

1. Introduction. Consider a reversible Markov chain x = X, X,,... on
a finite state space S with irreducible transition matrix 7 = (). By re-
versible we mean that the stationary distribution u and = satisfy w;m;; =
w;m;. Since 7 is irreducible, u; > 0.

Let L, be the occupation measure for the process, so that L,(A) is the
proportion of time that the chain spends in the set A Cc S:

L(4) = £ 1,(X)/n

It is well known that L,(A) - u, as. Let f: S — R satisfy 0 <f; <1 and
let u;= [ f du. We are interested in probabilities of deviations of the type
{/fdL, - Mp = e}, e> 0.

As motivation for the results, we describe a few applications. Consider a
connected graph with undirected edges bearing positive edge weights. Define
the transition probability from vertex x to y to be the weight of the edge
connecting x to y relative to the total weight of all edges attached to x. The
resulting Markov chain on the vertices is reversible and irreducible. The
stationary probability u, at vertex x for this random walk is proportional to
the total weight of the edges. attached to vertex x. If one is estimating the
stationary probability u(A) of a set of vertices A with L,(A), it is useful to
know how long one must wait until the proportion of time spent in A is close
to w(A) with high probability. This problem was addressed by Gillman
(1993), where different simulation methods were compared. Theorem 3.1
gives a way to compute sufficient waiting time. Recall that every irreducible
reversible Markov chain can be described probabilistically as a random walk
on a graph in this way.

A variation on the above estimation problem arises with the Metropolis
algorithm. Here we are interested in simulating random elements in a very
large set S with a prescribed distribution u > 0, or perhaps only with
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prescribed ratios u,/u,. If we start with simply an irreducible and sym-
metric transition matrix K on S, then K can be modified to a revers-
ible transition matrix 7 with stationary distribution u. To define 7, let
p(x, y) =min{u,/u,, 1} and let = be the stochastic matrix that satisfies
m(x, y) = K(x, y)p(x, y), x # y. Thus, we only make a transition from x to
y if both pointers K(x, -) and p(x, -) indicate y. Again, the question is how
long one must wait until L, (A) is reliably close to u(A). For the marginal
law u, of the Markov chain, which is the nonrandom distribution of the
coordinate process at time n, this problem was studied in Diaconis and
Hanlon (1992). More specific applications of the algorithm can be found in
Smith and Roberts (1993), where the convergence issues are also raised.
The large deviation result of Donsker and Varadhan (1975) says

1
lim sup;log P{[fdL, — u,> ¢} < —inf{I(q): [ fdq > ps + &},

where I is the rate function I(q) = sup,, . ,[log(u/mu) dq. However, rather
than asymptotic results, we are concerned with bounding the probability of
the event {f f dL, — u; > &}. Our main result is Theorem 3.1, where such a
bound is given involving computable quantities. There are almost no results
of this type in the literature, and ours improves on that of Gillman (1993).
The articles of Hoglund (1976) and Nagaev (1961) are relevant, but do not
lead readily to computable inequalities.

2. Spectral radius. Let p = |S|and let M be the p X p diagonal matrix

given by
Ve 0
0 \/M—z 0 .
M=| o0 0 us O
0 0 0 iy

The matrix 7, = MmM~' has entry (i, j) given by G / ‘/[L_j)’ﬂij and is
symmetric by the reversibility of w. The spectrum of 7, is that of =:
1=XM>A 273> - 21, > —1. By symmetry, these correspond to or-
thonormal eigenvectors v; = M1, v,,...,v,. V will be the matrix with row :
equal to v;. The matrix 7, allows one to extend techniques for symmetric
chains to reversible chains and was used for a similar purpose in Diaconis
and Stroock (1991).
For ¢ > 0 let 7, be the matrix given by (i, j) = exp(¢(f; — u N7 (i, j).

Let r, denote the spectral radius of the matrix ,. Let @ be the symmetric,
_nonnegative definite matrix given by
Q. - i v(2)ve(J)

i 1-A,

k=2
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and let 8 =1 — ), denote the spectral gap of 7. The column vector (f; — u;)
will be denoted wy.

LEMMA 2.1. Let t [0, B/24]. Then r, <1+ bt? + B27(1 + 2/B)3t3,
where
b= waMQwa
and furthermore b < 1/48.

Proor. Let 7, , be the symmetric matrix given by

Wp,t(i’ J) = exp(t(fl - lu‘f)/z)ﬂ-,u.(l’ .]) eXp(t(f] - l“l’f)/z)7
which clearly has spectral radius r, as well. Let D be the diagonal matrix
with entry (i, i) given by f; — us. Then r, is no greater than the spectral
radius a, of the matrix A, for ¢ € [0, 1], given by
A, =[I1+tD/2 +¢*D*/4| 7 [I +tD/2 + t2D?/4],

since exp(¢(f; — ur)/2) < 1+ tD,;;/2 + t?D?;/4 when t € [0, 1]. Now A, is a
finite expansion of symmetric matrices in the parameter ¢:
2

t t
A =m + 5(mD +Dm,) + —4—(77#1)2 + Dm,D + m, D?)

3 4
+ %(D%T#D + D7, D?) + %D%Dz.
It follows that the spectral radius a, of A, has a power series expansion
a, =1+ bt + byt?+ byt®+ -
and Theorem 1 of Rellich [(1940), page 360] gives a radius of convergence of

at least 8/24 (in the notation of Rellich, p=1,a=1,6=0and C =8 +
16/8 < 24 /). Furthermore,

16\° 2\°
8+ —|t3= 271+—)t3.
B) g B

(2.1) N +b¢t+b,t%2—a,l< g

Now A, is conjugate to the matrix B, = (1 + tD/2 + t2D?/4)%*r, which can
be written

3¢2 ¢8 t*
1+tD+TD2+———D3+"—D4 .

B, = 4 16

Let v, be the eigenfunction of norm \/p for the spectral radius a,, so
v, = 1. Both a, and v, have power series representations and we let

v,(8) =1 + ¢yt + ¢y ;2% + O(2%).
Now we have '
B,(v,)i=1+ t[ﬂ — ppt wcl(i)]
+ 2[3(f = ) + (F = mp)mes(i) + wey ()] + O(2%),

a,v, =1+ ¢(b1+c;) +t2(byl + bic; +cy) + O(¢3).
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Set B,(v,) = a,v, and integrate with respect to u. This implies that 6, = 0
using the reversibility of 7, and ¢, satisfies mc,(i) +f; — up=c;,;. Now
B/M(f — wp)? + (f — ppmey + wey = byl + ¢y, which with the above equa-
tion becomes
2
$(F= ) + (F=me)(er + pp=f) + ey = byl + ¢y

Integrating again with respect to u and using the reversibility of r,
2
—s o m(fi = mp) + Lm(fi — mp)er; = by,
i i

Let V be the p X p matrix whose rows are the orthonormal eigenvectors v,,.
Then
(m—1I)e; = —wy,

VM(m — I)M 'V VMe, = VM(~w;),

0 -1 0 :
0 0 a-1 0 |VMe=VM(—uwp),
0 0 0 A-1

which means that 0 = VM (wf)1 =%, m(fi — ,uf), comparing the first entries.
Now

Mc, — vy, Mc;)v,

O O e O
0 1/(r - 1) 0 -

Vo 0o y-n o |YMEw)
0 0 0 1/(A, — 1)

¢, = M 'QM(wy) + vy, Me )M v, = M 'QM(wy) + {v;, Me)1,

since v; = M 1. Then from the expression above for b,, we see that

by = Z#i(fi - Mf)cl,i - %Z/J'i(fi - ,U«f)2
= Z#i(fi - r“*f)M_lQM(wf) + <M01’U1>Zﬂi(ﬂ - r“*f)li
_%Z/J'i(fi - /J’f)z

2
i
Let b = wa M@Muw;,. Tt follows that
. 2
b <l Mw 12/ =Y (f, — u) s/ B < 1/4B.
i
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Now with (2.1) it follows that for ¢ € [0, 8/24],
a, <1+byt2+ B27(1+2/B)°t3
<1+ b2+ B27(1+2/8)%3. O

3. A large deviation inequality. Let ¢ € [0, (88 + 16)7%] and let ¢ =
&B. Then the estimate from Lemma 2.1 gives

r,<1+Be%/2 < exp( B82/2).

THEOREM 3.1. For £ € [0, (88 + 16) %],

+ 2 —nBe?
1+ 98( P exp( B )
Ve 2
Proor. Let D, be the diagonal matrix with entry (i, i) given by exp
t(f; — us)/2. Then

(31)  P{ffdL,—p;> e} <

ﬂ#,t(i, J) =def exp (t(fiz;w)”u(i»j)e’(p(ﬁzzu—f)) =Dt7Tth'

Thus =}, = D;"Mn M 'D, and = = M 'D,m,D;'M < M 'D,A}D;'M.
Let v, be a right eigenvector for the symmetric matrix A, with norm
I M1 || = 1. Then the estimate of Rellich [(1940), page 360] gives

IM1—v, <MLl zeB8(1+2/B)=4e(B+2).

Let 8, denote the row vector given by 6,(i) = §,;,, i = 1,..., p. By the Markov
inequality,

Px{fden — = a}

<E, exp t(ff(xi) — - a)] = exp(—nte) 8,7 (1)
= exp(—nte)d, M 'D,m),D; ' M(1)
< exp(—nte)8,M 'D,A’D;'M(1)
<exp(-nte)d, M 'D,A}(D;'M(1) — v,)

+ exp(—nte)d,D,M A (v,)
< exp(—nte)r Il 5,M~1D, I|Il D1 M(1) - v, |

+ exp(—nte)r8,D,M v,

82 1
(I 8, M~'D, Il| D; 'M(1) — v, Il +8,D,M 'v,)

< exp( D)



I. H. DINWOODIE

<exp( —n382)( ex;:/(t_/Z))
< > -
(Il 1:—1 I M(1) — v, Il +I1 D7 =T, 1)
rexs( 4] ;.))
< exp( _nZ'BSZ)exp(%)
X (‘/i_x )(exp(%) I M(1) — v,
+(exp(g) - 1) IM1I| + ”‘t/%)
—nBe? t

< exp 2 exp(E)

X

st s - o) - 22

—npBe? 1
< exp 2B )exp(t)((\/lu_)

X

(II M(1) — v, |l +%) + (M), +1I1M(1) —v, ||)))

< exp “npe” (t)(2” MQA) ~ ol + ! +1
< exp
2 Vi (2y/k.)
- 2 2
< exp nzﬁg exp(t)(Sa—(—B‘/Z_—) +1+ (2;%)
—n e’ (B+2) eB
< exp 1+ 2t)(83—— +1+
2 S Y
(B+2) —n e’ :
< (1 + 9¢ \//J’_x )exp( 2 ) O

The technique for obtaining the constant in this paper is much cruder than

the technique in Dinwoodie (1994). Here we use the Euclidean norm for the
difference between a perturbed and an unperturbed eigenvector to get the
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constant, whereas one really wants the supremum norm of the difference.
The use of the Euclidean norm accounts for the factor 1/ /u, = Yp in the
constant, as in the result of Gillman (1993), but our technique adds the factor
& to mitigate the effect of the 1/ \/-/;; . The bound in Theorem 3.1 is not
optimal. We have tried to find a simple bound in terms of computable
quantities, for an £ in an interval independent of the functional f and of a
reasonable size.
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