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LEVY BANDITS: MULTI-ARMED BANDITS DRIVEN BY
LEVY PROCESSES

By HAvA Kaspi AND Avi MANDELBAUM

Technion—Israel Institute of Technology

Lévy bandits are multi-armed bandits driven by Lévy processes. As
anticipated from existing research, Lévy bandits are optimally controlled
by an index strategy: One can associate with each arm an index function
of its state, and optimal strategies are those that allocate time to arms
whose states have the largest index. Furthermore, the index function of an
arm is calculated independently of the other arms, and the optimal
reward can be expressed in terms of the indices. Somewhat less antici-
pated, however, is the fact that the index function of an arm, driven by a
Lévy process, has a representation in terms of the decreasing ladder sets
and the exit system of its Lévy driver. Moreover, the Wiener—Hopf factor-
ization of the Lévy exponents of an arm can be used to obtain the
characteristic function of some excursion law, through which the index of
the arm is defined. We use this factorization to calculate explicitly index
functions and optimal rewards of some interesting Lévy bandits, rediscov-
ering along the way that local time naturally quantifies switching in
continuous time.

1. Introduction. Multi-armed bandits are models of dynamic allocation
of a scarce resource among competing projects. It is customary to interpret
the resource as “time,” which is dynamically allocated among several inde-
pendent stochastic processes, each of which represents the evolution of an
arm. The goal is then to find an optimal allocation strategy which maximizes,
for example, cumulative reward discounted over an infinite horizon.

The present work is devoted to Lévy bandits. These are multi-armed
bandits whose arms evolve as Lévy processes [7, 10]. We start in Sections 2
and 3 with a formulation of the multi-armed Lévy bandit problem and its
solution (Theorem 3:1), within the framework of multiparameter processes
[16, 17, 4, 5, 6]. The solution entails associating with each arm an index
function of its state and showing the optimality of index strategies, namely,
those that engage the arms whose index is maximal. Optimally is proved in
Sections 5 and 8. Specifically, in Section 5 we establish the existence of index
strategies, extending [17] and [18] to cover discontinuous processes. In Sec-
tion 8 we prove optimally, relying on formula (3.7) for the value in terms of
indices. Our proof differs from that in [5] and [6] in that it is based on
excursion theory rather than martingale methods.
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542 H. KASPI AND A. MANDELBAUM

While optimality of index strategies is anticipated, in view of existing
research on bandits [20, 3, 8], rarely is it the case that index functions can be
explicitly computed, and Lévy bandits provide a host of exceptions to this.
Indeed, as described in Sections 4 and proved in Section 7, the index function
of a Lévy arm can be represented in terms of the decreasing ladder sets and
the exit system of its driver (Section 4.2). Furthermore, the Wiener—Hopf
factorization of the Lévy exponents of an arm can be used to obtain the
characteristic function of some excursion law, through which its index is
defined (Theorem 3.1 and Section 4.3). This enables, in Section 6, explicit
computations of indices and value functions, notably for arms driven by
Wiener, compound Poisson and some stable processes.

The importance of bandit problems, as well as their difficulty, stems from
the fact that they embody the conflict between taking actions that yield
immediate rewards, as opposed to pursuing those whose benefit is realizable
only in the future (due, for example, to learning prerequisites). The scope of
bandit problems is amply manifested by the three recent books on the
subject: Presman and Sonin [20], Berry and Fristedt [3] and Gittins [8].
Quoting freely from [20]: “while these three books have equal rights to use
the term bandit, the intersection of the content of any pair out of the three is
either empty or rather small.” Our models are closest to [11], with some
overlap with [3] (especially Chapter 8). Our results can be viewed as a rare
contribution of Markovian excursion theory to applied probability. There is
further potential for practical applications, in view of the fundamental signif-
icance of Lévy processes (they are “the” continuous-time random walks),
combined with our explicit expressions for Lévy indices.

2. Problem formulation. A multi-armed Lévy bandit consists of d
individual arms, indexed by k£ = 1,..., d. The primitives for arm k are given
by X*, (Q*, %%, P*) and r*, described as follows. The state process X* = { X%,
t > 0} is a real-valued stochastic process on the filtered space (Q*, *); the
information process $* = {F*, t > 0} is a filtration in Q* which satisfies the
usual conditions and to which X* is adapted; P* = {P%, x* € R'} is a family
of probability measures on (%, %*), such that under P%, the process X* is a
Lévy process starting from X} = x*; finally, the reward function r*(x*) is
real-valued, nondecreasing, continuous and for which

(2.1) Pfkfwe‘ﬁtlrk(xtk)l dt<o Vax,eR!,
0

where B > 0 is a given discount rate. (Here and in the sequel, Pf denotes the
integral of a measurable function f with respect to the measure P.)

The evolution of the multi-armed bandit is described in terms of the
multiparameter process

X = {Xs = (Xsll,...,X;i),s = (S1,.-+,8g) 20},
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adapted to the multiparameter filtration
F={F=Fv- Vvl s=>0}

Specifically, X, = (Xsll,..., X;fi ) is the state of the bandit after s, units of
time have been allocated to each arm k, 1 < k < d, at which instant the
information accumulated is given by &, = 7 V -+ V FZ. Formally, the multi-
parameter process X is constructed on the filtered product space (Q,5) =
®f_,(Q*, F*), equipped with the family of product probability measures {P,,
x € RY, given by P, = ®¢_,Pk, x=(x1,...,x%). Thus, under each P,
x € R9, the stochastic processes X*, k = 1,..., d, are mutually independent
and X, = «x.

The evolution of the bandit is prescribed by an allocation strategy T, which
is a d-dimensional stochastic process T' = {T'(¢), ¢ > 0}, where

T(t) = (Tu(t),..-, Tu(t)), =0,
has the following properties:

1. T'(¢) is nondecreasing in ¢ > 0, with T'(0) = 0.
2. Ty@) + - +Ty(t) =t,for all ¢t > 0.
3. {Tt) <s}eg, forall t>0and s > 0.

The random variable T,(¢) stands for the total amount of time allocated to
arm k over the interval [0, ¢]. Properties 1 and 2 are thus self-explanatory.
Property 3 is a mathematical articulation of the nonanticipative nature of T':
For all &, the event “no more that s, units of time have been allocated to arm
k” does not depend on information beyond %ﬁ. Formally,

{Ty(t) <s1,...,Ty(t) <sg} €EF V- VILE  Vt20,V(sy,...,55) 2 0.

In the theory of multiparameter processes, T'(¢) is called a stopping point in
R?. An allocation strategy is called an optional increasing path [24]; being a
nondecreasing family of stopping points, it is also referred to as a multipa-
rameter random time change.

Under a strategy T, the state of the bandit at time ¢ > 0 is given by the
random vector

Xp(t) = (X - Xfs)
and the information available then is the o-field
Fr(t) ={BeF:Bn{T(t) <s} €eF,Vs=>0}.

[The common notation for #,.(¢) is F7,), which is the o-field of events prior to
the stopping point T'(¢).] Associated with T is its present value R(T') of
cumulative discounted future rewards. This is the random variable

R(T) = [:e-ﬁtr[XT(t)] -dT(¢),

where r[x] = (r(x1),...,ry(x%) and r[ X;(#)] - dT(¢) is an abbreviation for
xd_.r¥ Xﬁ(t)] dT,(¢t). The multi-armed bandit problem is to identify optimal
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strategies that maximize the expected reward. Formally, one seeks T'* that
attains

v(x) = sup P,R(T), x € RY,
T

over all strategies T'. The function v is called the value function of the bandit.
It must be finite in view of (2.1).

3. Solution. Optimal strategies will be described in terms of dynamic
allocation indices: with each arm k one associates an index function of its
state, and optimal strategies always engage arms whose state has the highest
index. We now proceed with a formal description, starting with the ingredi-
ents that make up the index functions.

Fix an arm k € {(1,..., d}. Introduce the lower envelope X k of its state X*
by

Xk = inf Xk, t>0.
O<u<t
The excursion process of X* from X* is ¢* = X* — X*. Excursion times are
the elements in the complement of the weak-descending ladder set

(3.1) M* = Closure{t > 0: £ = 0}.

They constitute an open set, which is a countable union of disjoint open
excursion intervals.

The set M* is regenerative [15]. As such, it is either a.s. perfect or a.s.
discrete and it admits a local time L*. (A perfect set is closed and dense in
itself; a discrete set consists of isolated points. The construction of local times
is given, for example, in [7] or [13]. Here we just note that a local time at a
point of a Markov process is unique up to a positive constant, its inverse is a
subordinator and its sample paths are continuous for perfect sets and discon-
tinuous for discrete ones.) Let 7* denote the right-continuous inverse of L*.
Then the process U* = (7#,— X%) is a two-dimensional subordinator. Its
Laplace exponent ¢* is defined through

exp[te*( B,v)] = Pt exp[—Br} + vX4], B,v>0,

and it is given by
o 1
o*(B,7) « exp[f dt—[o PE{X} e dy)(e™t — e Pt ],
0+ t — 7

Here o indicates that ¢* is determined up to a positive constant, as a
consequence of the same fact for L* and its inverse 7*.
The index function T* of arm k is given by

(3:2) PA(xt) = [Tri(ak + y)ut(dy),
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where u* is the probability measure determined by the characteristic func-
tion

e*(B,i0)B
e*(B,0)[ B+ yt(0)]’

and ¢* is the Lévy exponent of X*, namely, exp[ —¢¢*(0)] = P} expli6X/].
Several alternative expressions for the index, some more familiar and
others computationally more convenient, will be provided in the next section.
The concreteness of (3.2) and (3.3) stems from the Lévy nature of the arms.
A strategy T* = (T},...,TF) is an index strategy if each Ty = {T}(2),
t > 0} right-increases at time ¢ > 0 only when

(3.3) [0 "tk (dy) = 6 <R,

d
(3.4) T*[XE(2)] = ‘Yle[Xf*(t)],

and M* includes all the times that are left-increases of 7% but not right-
increases. This definition mathematically articulates two properties: first, T*
follows the leader among the indices and second, it does not switch arms
within interiors of excursion intervals.

THEOREM 3.1 (Optimality). Consider a multi-armed Lévy bandit as de-
scribed above. Then index strategies exist, they are all optimal and their
common value function is given by

(3.5) v(x) = Pxfwe'ﬁt e/ T¥[ Xk (t)] dt, xeR,
0 k=1

where T* is any index strategy.

The theorem is proved in Sections 5 and 8. Specifically, in Section 5.1 we
establish the existence of an index strategy, by constructing a strategy T*
that follows the leader among the index processes T* = T*[X%.], k = 1,...,d,
while assigning priority to I'V over I'* for j < k. Formally, each T} increases
at ¢t > 0 only when (3.4) prevails, and whenever T}* increases at ¢ and
TE(t) = V 9,T4.(¢) for some k <[, then I'f. decreases at t. Optimality is
proved in Section 8, in two steps. First, it is shown that

w d
(3.6) P,R(T) < ij e PtV TH[XE.(t)] dt, xe€RY
0 k=1
for any strategy 7. Then, optimality of T* is an immediate consequence of

. d
(3.7) P.R(T*) = Pxfo e B\ TH[Xk(t)] dt, x€RY
k=1

which is verified for any index strategy T*.
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4. Index representations. The index function in (3.2) admits several
representations, five of which will now be presented. Along the way emerges
an intrinsic relation with excursion theory and, consequently, with the
Wiener—Hopf factorization. Note that, in view of (3.2), the index of an arm is
an operator on its reward function that inherits properties such as mono-
tonicity and continuity.

4.1. Gittins—Jones. The first two representations arise in a general
Markovian setting, in particular Lévy processes:

Ph[se Purt[ X}] du

l"k kY —
(4.1) ) = o Ph e au
4.1
. Pk f—rse—Bu k[Xk] du
= lim , x*eR!,
£10  Phfre Pudy

where the supremum is over all stopping times 7 with respect to #* and
7, = inf{t > 0: T*[ X*(¢)] < T*[X*(0)] - &}.

The sup representation is the familiar Gittins—Jones dynamic allocation
index (Gittins and Jones [9]; Gittins [8]). It follows from the fifth representa-
tion in (4.7) below and it reduces to the lim representation when the reward
function r* is monotone. (This last fact is established in [17] for continuous
processes, but the proof applies to our case as well.) Neither representation is
actually used here.

4.2. Excursions. The third representation (4.3) is based on exit systems
[14] associated with the excursions £*. This representation is the one that is
applied in Section 8 to prove optimality of index strategies.

Let

Df =influ >t:ueM*), RF=DF-t, t>0,

and
G*={t>0:R} =0,R! >0}, R*=RE.

Elements of G* are beginnings (left endpoints) of excursion intervals, and R*
is the first hitting time of M*. Theorem 3 in [12], adapted to our context,
guarantees the existence of a o-finite excursion measure P* on F* and a
scalar I* > 0, such that P*(R* = 0) = 0, and for every stochastic process Z,
bounded and predictable with respect to {9"’% t > 0}, and every function f,
bounded and measurable, the following two relations prevail:

42 Ph Y Z,f(XL,. )AD5)=ijjo Z,Phf(¢k p)dLh,  x* e R,

ueG*
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and
[ar(u)du=1*- L5, t>0,
0

where
pxkkf( §,k/\ rk) = ISkf(xk + f,k/\ Rk).

(This last relation follows from a similar one between PJ and P} that
expresses the spacial homogeneity of a Lévy process.) The third representa-
tion of the index is

Ihrk(xh) + I—'A’k[(fke'ﬁtrk(xk +&f)ar
1k 4 Pr[R'e=Bt gt

(4.3) T*(x*) = , xFeR.

In Section 7, it is shown to coincide with the familiar (4.1), by checking its
equality with (4.7) below. It also implies (8.2) and (3.3) in a way that typifies
our use of excursion theory and hence will now be presented.

As a start, (4.3) gives rise to (3.2), with u* that is characterized by

I*f(0) + PR F'e Pif(&F) dt
1% 4+ Pr[R'eBt gt

w*(f) =

2

f bounded and measurable. To deduce (3.3), recall that * denotes the Lévy
exponent of X*. Then calculate

w 1
Pt — Bt 10X} dt = ————.
§[] exe(~pryesp(ioxt) dt = s
Next, observe that also
P({‘foo exp( — Bt) exp(i0X}) dt
0
3 Dk .
=P¢ Y exp( —Bu)f “exp(—B(t — u)) exp(zOth) dt
uecG* u
+ P(ffoo exp( —Bt)1,:(t)exp(i6X}) dt.
0

Thus, applying (4.2) with Z, = e #* and

f(X(’f”.),\ Dk) = LD'I‘eexp( —B(t —u)) exp(iOth) dt
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yields
P(ffw exp(—Bt)exp(i0X}) dt
0

= P(ffwexp( —Bt) exp(ieX,k)(lk + ISkka exp( —Bu) exp(i0F) du) dL*
0 0

Il

P({“f:exp(—ﬂrtk) exp(iOXTkt)(lk + ﬁkfoRk exp( —Bu) exp(iefuk) du) dt
I* + P*E" exp(—Bu) exp(i0&}) du
o*( B,i6) ’

where the second equality is a consequence of a time change and the last
equality is due to P} exp(—pBr* + iOXTkt ) = exp(—t@*(B,i0)). Therefore,

¢"(B,i0)
B+ yt(6)’

revealing the characteristic measure of u* to be as in (3.3).

1* + ISkka exp( —Bu) exp(i6L)) du =
0

4.3. Wiener—Hopf. The fourth representation amounts to a simplification
of (3.3) to (4.5) below, while leaving (3.2) intact. This representation is the one
most convenient for computations.

Let X* stand for the upper envelope of X*, in terms of which one defines
the strict-ascending ladder set

(4.4) M* = Closure(t > 0: X} =X} > X}, 0 <u <t}.

The set M*, similarly to M*, is regenerative and it admits a local time L*.
Let 7* denote the right-continuous inverse of L*. Then U* = (7%, X*(7*)) is a
two-dimensional subordinator, with Laplace exponent @* given by

o] 1 ©
—k dt — Pk XF d —t _ g~ Bt—yvy) |,
<P(B,7)0texp[f0+ P [ Po{X! e dylent — e

The index function I'* is again given by (3.2), but u* is now characterized by
its Laplace transform

#*(B,0)
2" (B,y)’

The derivation of this simplified representation starts with the
Wiener—Hopf factorization of X*, which asserts that

(4.6) ?*(B, —i0)¢*(B,i0) « [ B+ y*(0)].
Now substituting (4.6) into (3.3) yields (4.5).

(4.5) [ ek (dy) = y> 0.
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4.4, Whittle—Weber. The fifth and our last representation (4.7) of the
index is Weber’s modification [25] of Whittle [26]. Define

vh(x*,y) = suprkkae_ﬁ”(rk[X,f] -vy)du, yeR,
>0 0

where the supremum is over all stopping times 7 with respect to #*. Then
(4.7) T*(x*) =infly > 0: v*(x*,y) =0}, x* eR.

This representation is not used in our proofs. Nevertheless, we show in
Section 7 that it coincides with (4.3) in order to place our results in the
context of existing literature. The verification is carried out through discrete
approximations of X* by random walks. One first verifies that the function
x* — v*(x* y) is increasing lower semicontinuous. It then follows that
v*(x*,y) is attained by a hitting time of a set of the form (-, b), b € RY,
which enables our use of excursion theory. (This special structure is lost once
the reward functions need not be monotone. Difficulties then arise which have
been resolved only in special cases, e.g., Brownian bandits with bitonic
rewards [19].)

5. Index strategies. Let I'!,..., I'? be stochastic processes on a common
probability space, whose sample paths are right continuous with left limits.
In Section 5.1, we prove the existence of a strategy T* that follows the leader
among them, and which assigns priority to I'V over I'* whenever j <k
(precise definitions will be provided as the need arises). Applying this exis-
tence result to I'* = I'*[ X*] yields an index strategy.

The evolution of the switched process I'y. = (I'fy,...,I'f;) has an illumi-
nating sample-path decomposition, which is depicted in Section 5.2. The
general setup is then specialized, in 5.3, to symmetric Lévy bandits. There,
from the sample-path decomposition naturally emerges the role of local time
in quantifying continuous-time switching.

5.1. Following the leader. Two processes. The existence of a strategy that
follows the leader between two processes, say I'! and I'?, is established as in
[18]. Specifically, let #* denote here the complete right-continuous filtration
generated by I'*. Assume without loss that I'} = I'? and introduce

D = {(sy,85): T} <2},

=y

(I'* is the lower envelope of I'*.) Then the closure D of D has the following
three properties:

1. {(s;,0): s; > 0} c D. _
2. (s1,8) €D = {(uy,uy) uy >25,,0<u, <s,} CD.
3. {s € D} eFLV I =5, 5= (5,5,
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By Theorem 2.7 of Walsh [24], the northwest boundary of D can be
parametrized as a strategy 7 = (7, 7,), adapted to {7, s > 0}, such that 7,
increases at ¢ > 0 only when

Iry()] 2 D[r()] > Dr(w)]  Vu>t.

We have thus constructed a strategy 7 that follows the leader between I'!
and I'?, and which assigns priority to I'! over I'2. As in Theorem 12 of [17], T
also follows the leader between I'! and T'2.

Induction. Suppose that there exists a strategy 7= (ry,...,7;_;) which
follows the leader among TI',...,T? 1, while assigning priorities to I'/ over
T'* for j < k. Define

d-1

M= Vrieg=9,
j=1
=Tdegd =92,

(Note that the sample paths of T'! are created by concatenating the active
segments of Fk, k=1,...,d — 1) From the first induction step, there exists
a strategy (771,1;2) that follows the leader between (I'!,5%), i = 1,2. The
sought-after strategy T* = (T}, ..., T) is now given by

T:=Tk(n1)’ k=1y’d_1’ T;='fl2

Indeed, T'* enjoys properties 1 and 2 of a strategy. Next, each T}* increases at
t > 0 only when

Th(t) = \d/ Tf(2),

and whenever T}* increases at ¢ and T}.(¢) = T7.(¢) for some k <1,
then T'}. decreases at ¢. Finally, the verification of property 3 starts with the
observation

(T*(t) <s)
(5.1) = U{n(u) <sp b =1,...,d — 1;,(t) <u, ny(t) < s,)

for any s = (sy,..., s;) and u running over the rationals in [0, s; + -+ +5,_,).
The collection

= {B: BN {r(u) <(S1,---,84-1)} eFL v v.?d}

is a o-field that contains both Z(u) and yd hence also Z(u) v gf"i

The fact that (n,, n,) is a strategy with respect to Vv 4 1mp11es that the
particular set B = {n,(¢) < u, n,(¢) < s;} € F(u) Vv 9’”’ C &. Hence each ele-
ment of the union in (5.1) belongs to %, and we are done

5.2. Sample-path decomposition. Let T* follow the leader among
I'Y,...,T% The sample paths of the switched process I'z. have a simple
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description in terms of the following d processes, all of which are d-dimen-
sional:

gl =(T,I,...,I"),...,&% = (I%,...,[4T9).

Each &* moves down along the diagonal when I'* = I'*, executing positive
excursions in parallel to the k-axes whenever I'* > I'*. Its sample paths chart
the motion of I';. when I'* is active (T} increases). A graphical representa-
tion (see Figure 1) is illuminating for d = 2.

The motion of I';. has two components: an excursion part, in parallel to
one of the axes, when only the single leader is active, and the motion down
the diagonal when “several processes share leadership.” This last description
is only intuitive. For example, when I'! and I'? are two ii.d. Brownian
motions, the times of mutual leadership coincide with the zero set of another
Brownian motion; hence its Lebesgue measure vanishes. We expand this
example in the next subsection.

5.3. Symmetric bandits. A symmetric bandit is one whose arms are i.i.d.,
with reward functions all of which coincide. The index functions of the arms
are also equal to each other; hence an index strategy follows the leader
among the state processes. Identifying an optimal strategy is, therefore,
trivial. Nevertheless, the processes that it gives rise to are quite subtle, as
will be demonstrated momentarily.

It was noted in [17] that if X!,..., X¢ are independent standard Brownian
motions, then Y¢_, X%(¢) is as well, for any strategy 7. In fact, the following
statement holds.

THEOREM 5.1. Let X!,..., X% be i.i.d. Lévy processes, with Xt = 0. Then
for any allocation strategy T = (T, ...,T,), the process S = {S,, t > 0}, given
by

d
St = Z XTkk(t)y
k=1

is a Lévy process with the same distribution as X*, k =1,...,d.
- | v
e
(rry ‘ 5—:
— i i
v

Fic. 1. Sample path of T'p..
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REMARK. With a self-explanatory deviation from our notation, the theo-
rem asserts the following additivity property: L¢_,X*[T,] = X[T¢_,T,],
with equality in distribution.

Proor. We are going to use the following characterization: X* is a
Lévy process with a Lévy exponent ¢(6) if and only if the process M} =
expli 60X} + ty(0)], ¢t > 0, is a complex-valued martingale for all real 6 ((10],
Corollary 4.13 on page 107, combined with Theorem 2.42 on page 86).

It suffices, therefore, to verify that exp[ifS, + t¥(8)], t > 0, is also a
martingale for all real 6. To this end, we make the following two observa-
tions:

{ M} X x Mg } is a multiparameter martingale
by the independence of M?,..., M¢;
{M,}l(t) X eee X Mﬁdm} is a martingale for any strategy (74,...,T}),

as a multiparameter time change of a bounded multiparameter martingale
[24]. However, this last product is precisely exp[ifS, + ty(0)], since
Yé¢_,T,(t) = t, and we are done. O

THEOREM 5.2 (Path decomposition). Consider a symmetric bandit whose

arms X%, ..., X?¢ perform no downward jumps. Then their lower envelopes are
continuous and a strategy T* that follows the leader among them must satisfy
(5~2) XTlf =2_{T2§" = =X¥;,

at all times. Furthermore, the sample paths of the switched process X,. have
the representation

1
(5.3) Xpo = &, — (EL) ‘1,

where &, is the excursion process of Xp. away from the diagonal in R?, whose
coordinates are £* = Efy = Xﬁ; — Xtx, k = 1,...,d, and L is the local time of
the Markov process ¢, at the origin, where in fact L = —S.

REMARK. The proof reveals that L = —S is also a local time at 0 of the
Markov process S — S.

ProOF. No downward jumps implies continuity of the lower envelopes
which, in turn, gives rise to (5.2), as in [17]. One deduces that

d
(5.4) S= ) Xpy=d-Xzy,
k=1
where the first equality manifests the (peculiar) fact that summation and
taking lower envelopes commute in our case. We have thus obtained (5.3)
with L = —8, and we proceed with identifying the latter as the local time of
£
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By Theorem 5.1, S is a Lévy process with no downward jumps. Hence, it is
a semimartingale with the decomposition

(5.5) S,=ct+ oB, +dJ,, t>0,
where ¢ € R!, B is a standard Brownian motion, 0 > 0 and J is a nonde-
creasing jump process, independent of B [7]. Introduce the semimartingale

V =8 — S, note that —S increases only on the set 2 = {¢: V, = 0}, and apply
to V Tanaka’s formula ((1) on page 20 of [1]) to get

¢
S, -8, = fol{s,,_ -S,_>0} ds,
+ Y lg g -AS,+3LY, t=0.

O<uc<t
Here AS, is the jump of S at u and L° is the Tanaka local time at 0 of
S — S = V. Now observe that the continuous martingale part of S — S is o B.
Hence, by Corollary 2 on page 32 of [1],

(5.6)

5.7) L9 = lim ~ [1 d(oB), = li L d
(5.7) L = Jm Efo ©u-8,2a@ 08 = A7 | HSs,-S,s0 G 25
for all ¢ > 0. (( M) denotes the squared variation of the martingale M.)

Consider first the case o > 0. The Lebesgue measure of 2 then vanishes,
and we may replace in (5.6) the first two terms by S,, leaving us with

g 2 t
L,=-8=3L}= 11_1)1(1) %,I;l(su-&s‘e) du.

We have thus identified L = —S as a local time at 0 of the Markov process
S —S. However, 0 <S —S<egatatimet>0ifandonlyif 0 < ¢, <e-1
at that time, and ¢, is Markov, being what came to be known as Walsh’s
Brownian motion ([23] and [2]). This completes the proof for o > 0.

When o =0 and ¢ < 0, the process S is of bounded variation. Then L°
vanishes, the Lebesgue measure of 2 is positive and

S, = —c X Lebesgue measure of 2 N [0,t], ¢=>0.
Again, —S is a local time at 0 of S — S and ¢,. Finally, when o =0 and

¢ > 0, following the leader is achieved by pulling a single arm, and the
theorem is trivially true. O

6. Index calculations. The present section is devoted to calculations of
some indices and values. Specifically, we analyze symmetric Lévy bandits
with no downward jumps, and then bandits driven by compound Poisson,
Brownian and Stable processes.

6.1. No downward jumps.

6.1.1. Symmetric bandits. Consider a symmetric bandit with no down-
ward jumps. Let X*(0) = a, r* = r and I'* = T denote their common ingredi-
ents. Then, it follows from (3.5), (5.2), (5.4) and Theorem 5.1 that

@ 1
_ pk —gtr| vk
v(a,...,a) Pafoe I‘(dz_(,)dt.
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In the special case r(x) = e°*, ¢ > 0,
1

T F (B ) e(Bresd)’

provided ®( B, —c) makes sense, which is equivalent to (2.1).

6.1.2. Not a subordinator. The computations, in this case, were “antic-
ipated” by Fristedt ([7], Corollary 9.9, on page 342) and they are summarized
here for reference. Since we deal exclusively with a single arm, the super-
script £ will be omitted for convenience.

Suppose that X has no downward jumps and it is not a subordinator
[0 > 0or c < 0in (5.5)]. Then the Lévy exponent ¢ is defined over the upper
half-plane and, for B > 0, the equation (in) = —B has a unique positive
solution, say n(B). Furthermore, n(-) is monotone increasing and 7(0), de-
fined by continuity, satisfies y[in(0)] = 0. Finally, the Laplace exponents ¢
and @ are given by

v(a,...,a)

B+ ¢(iy)
n(B) — v’
Calculating ¢ and 7(-) thus yields g(3,0)/%(p, y). Inverting this Laplace
transform identifies u, via (4.5), and consequently the index I' in (3.2). We
now carry out this procedure for several Lévy processes.

6.1.3. Brownian motion. Let X, =ct + oB,,t > 0, where B is a standard
Brownian motion. Then

(6.8) o(B,y)=v+n(B), @(B,y)= y# n(B).

020.2

Y(0) = —ifc +

Hence n( B) is the unique positive solution of
n%?% —2cn—2B=0,

that is,
c+ye?+2Ba?
77(3) = 2 .
g

Consequently,

_ o? Ve2 +2Bo? —¢

¢(B’7)=?(’Y+A), A= 2 .

g
Thus,
3(8,0) A

3(B,y) v+

which identifies w as the exponential distribution with parameter A. One
concludes that the index function is given by

I'(x) = j:e'yr(x + %) dy.
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This result is due to Karatzas [11], who computed it as a special case of
diffusion-driven bandits. [The dependence of I'(x) on B, here implicit in
A = X B), will be suppressed in later examples as well.]

6.1.4. Compound Poisson. Let X, = —ct +Y,, ¢t >0, where ¢ >0 and Y
is compound Poisson with rate A and jumps that are exponentially dis-
tributed with parameter a. Then

¥(6) =i6c+ A[1-B*(0)], B*(8) = —.

Hence 1( B) is the unique positive solution of

B— mnc +

b

a+n
that is,

A+B—ac+\/(A+B—aC)2+4Bca
2¢ ’

n(B) =

It follows that

ac—A—B+\/(A+B—ac)2+4ch

¢(Bm)=0(1— aa q), q=

+ vy 2ac
Thus
M_p+q pa p—]__q
e(B,7v) pa+y’ ’

which identifies u as the measure with an atom at 0 of size p = 1 — ¢, and
with weight g it is the exponential distribution with parameter pa. One
concludes that

T(x) = pr(x) + qfowe'yr(x + %) dy.

6.1.5. Stable 1/2. Let X, = —ct +Y,, ¢t > 0, where Y is a stable subordi-
nator of index 1/2. By (9.23) on page 350 of [7],

¥(in) = —mec + V27.

Hence 7( B) is the unique positive solution of

—7nc + Vzn = _B’
that is,

1+ Be+ 1+ 2pc
"I(B)= o2 .
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Substituting y = A2/2 in the expression (6.8) for 3( 8, y), we get
(.2 —(A%/2)c+ A+ B
‘P(B’?) (14 Be+ YT +2Bc)/c? - 22/2
c(rA—((1-VI+2Bc)/c))  er—1+y1+2pc

A+ (1+Y1+28c)/c T+ 1+l 2pe’

which reveals that

cy2y — 1+ 1+ 28c

a(B’Y)=Cc\/ﬂ+1+\/1+2Bc'
Thus
#(B,0) (Y1+2Bc —1)/c _ Y1+2Bc -1

2B,y Py T(Jir2Bec -1)/c’ P Vit2pe PR

which identifies u as the measure with an atom at O of size p, and with
weight ¢ it has the density g on (0, ), given by

VI+2Bc — 1
80 = T e
X|1— —iiz—cﬂc—_lv%rx exp(—;xg(l + Bc — Y1 + 2Bc ))

where ® is the normal distribution function. One concludes that

I'(x) =pr(x) + qj:or(x +¥)g(y) dy.

6.2. Negative jumps. Let X be a compound Poisson process of rate A, and
double exponential jumps with parameter «. Then
2 pY:) 2

a2+ 0%’

‘/’(9) = ’\(1 - aZ+ 02

The process X, is symmetric (isotropic in dimension 1). By (9.14) on page 341
in [7],

1 <in(B+ ¢(6y)) 1 we ™t —e Bt
0- o[ ———
2

o(B,v) =ceXp{;fo WY ; P{X, = 0} dt}.
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In our case, P{X, = 0} = e ** and

1 o(e t—e P)e M A+ 1)\V2
oxp| 5 [ ) - (55
Furthermore,
ooln(B+1//(07))d «In( B + A0%y?/(a? +02'y2))
f 1+ 62 o= 77-[ 1+ 6%
B = In( Ba? +0272(A+B))
__[ 1+ 62
ooln(a + 0%y?)
—_f 1y ¥
=ln(\/'y (A + B) + VBa? )—ln(W+X/ZE)
(\//\+ +a\/_)
Y+ «a
so that
_ B WA+B +a/B [A+1
¢(B’7)—c y+a B+/\’
and thus
$(B8,0) _ VB(y+a) L _Pa _ B e=1-»p
#(B,Y) WA+B +a/B Pr9avy P A+B’ '

We have identified u as the measure with an atom at 0 of size p, and with
weight ¢ =1 — p it is the exponential distribution with parameter pa.
Consequently

T(x) = pr(x) + q[:e-yr(x + ;{a-) dy,

exactly the form of our previous compound Poisson example in Section 6.1.4,
but with different weights. [For both indices, the weight p arises from [ > 0
in (4.3), and the scaling pa is due to the positive jumps being exponential.]

7. Proofs of index representations. The present section is devoted to
proving the equivalence of (4.3) and (4.7). As in the previous section, we
suppress the arms’ superscript k.

The proof is carried out by discrete approximations. Specifically, introduce
the random sequences X" = {X; 5., I =0,1,2,...}, indexed by n > 1. Each
X" is a discrete-time random walk. The value function v(x,y) will be
approximated by a corresponding value function for X", and similarly for the
index I'. The value and the index functions inherit properties of their
approximation (for example, monotonicity and lower semicontinuity). With
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those at hand, we identify the form of optimal stopping times for v(x,y),
which enables the use of excursion theory, especially the excursion formula
4.2).

Let

(71)  r(x) =2'P,[* e Pr[X,] dt = 2"y [* e Pr[ X, + x] dt.
0 0

Each r,(x) is an increasing function of x € R. Define the value function
associated with X" by

1 — exp(-p qn T-1 Bl
vn(x’ 7) = = (B / ) Tlelgp ; exp( 2" )(rn(Xl/2") - Y)
_ 1 -exp(—B/2")

/2" T;Irll) Pj; exp(—Bt)(r(X,) — v)dt,

where T runs over all stopping times, with values in N = {1,.2,...} in the
first expression and II" = {[/2": 1 = 0,1,...} in the second.

The sequence of functions v,(x, y) increases, as n 1%, to a limit which we
denote by v.(x,y). Indeed, (1 — e #/2")/(B/2")11, and suprema are taken
over families of stopping times that increase with n.

PropPOSITION 7.1. v(x,y) = vfx, ).

PROOF. Obviously v.(x,y) < v(x, y). To show the reversed inequality, fix
&£ > 0 and pick a stopping time 7, with respect to %, such that

P[e P (r(X,) = y)dt > v(x,7) — &.
0
Let
o {(z +1)/2", ifl/2"<r<(l+1)/2",
’ T = 00,
Then 7" is a stopping time in II", 7" | 7 as n T,
1 — exp(-B/2")
B/2" f

vu(%,7) = xp(—Bt)(r(X,) — v)dt
and
PxfOT e Pir(X,) dt = Pxfo 1,05 e Pir(X,) dt.

Assumption (2.1) now justifies the use of the dominated convergence theorem,
which yields

. 1 -—exp(—B/2") on
Lim B/2" Pxf

= P.[ exp(=Bo)(r(X,) = v) dt,

exp(—Bt)(r(X,) — v)dt
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so that, for all £ > 0,

v, 7) szj;)Te_ﬁ‘(r(X,) — y)dt > v(x,7) — e. O

PROPOSITION 7.2. The function x — v(x,y) is increasing and lower semi-
continuous.

ProOF. Monotonicity follows once we prove the result for v,(x, y), for all
n. To this end, note that {X; ,.: { = 0,1,. ..} is a random walk and for such,
the optimal stopping time is the hitting time of A(y) = {x: v,(x,y) = 0}.

Denote by 7T, the hitting time of a set A. Suppose that x <y and let
a = exp(—B/2").

1-a Tan~1

vn(x, 7) = 8 Px Z al(rn(Xl/2") - ')’)
=0
1-—a Tam-=—1
= B PO Z al(rn(x +Xl/2n)—'y)
=0
1—a Tagyy-x—1
< 3 P, Z al(rn(y + Xl/z") - ’)’)
=0
11—« TA(y)—’Hy—l
= B Py Z al(rn(Xl/zn) - ’)’)
=0
<v,(¥,7)-

The function x — v,(x, y) is continuous since r(x) is continuous (see (6.6)
in [16]). From v(x,y) =lim,_,v,(x,y) it follows that v(x,y) is lower
semicontinuous, as a function of x € R. O

The last proposition guarantees that v(x, y) is attained by a hitting time
of a set that takes the form (—, b(y)).

PRrOOF THAT (4.3) EQUALS (4.7). Using (4.2), in a manner that is similar to
the derivation of (3.3) in Section 4.2, one shows that

P, e Pi(r(X,) —v)dt
R U C OB

SB[ B [R5 - 9 dt + U(r(X) )|,
[0, T(— o, b(y») o
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where [ = 0 if the Lebesgue measure of M is equal to 0. Let I'(x) be defined
as in (4.3), that is,

I(x) Ir(x) + P, [BePir(¢,) dt
(2) = 1 + P[Re Pt dt '

Note that since r is continuous and nondecreasing, so is I'. If for some x,
y > T(x), then P, as., for each t € M N[0,T_.. y,y), ['(X) <T(x) <.
Since L increases on M only, it follows that, if 6(y) < x,

P e Pi(r(X,) —y)dt<O.

x
[0, T, 5(y))

Therefore, b(y) > x and v(x,y) = 0. If y < I'(x), then there exists b* < x so
that I'(6*) > y and

v(x,v) sz./[‘OT e P (r(X,) —y)dt>0.
> L (==, b*)

It follows that I'(x) = inf{y: v(x, y) = 0}, which is its definition in (4.7). O

REMARK. Let T,(x) = inf{y: v,(x,y) = 0}. Since the sequence v,(x,y) is
increasing in n (for fixed y and x), so is the sequence I',(x). Define [ (x) =
lim T,(x). Then clearly I'(x) < I'(x). To show the inequality in the opposite
direction, note that for every £ > 0 there exists n so that

0 <v(x,[(x)) <v,(x,L (x)) +e<e.
Consequently I'(x) < I (x). It now follows from our theorem and the continu-
ity of I'(x), via Dini’s theorem, that the convergence of I, (x) to I'(x) is

uniform.

8. Proof of optimality. The proof of optimality amounts to proving the
following proposition.

PRrROPOSITION 8.1. For any strategy T,

P, R(T) = i Pxfwe‘ﬁ’rk[Xﬁk(t)] dT,(t)
k=1 0
(8.1) 4 i
< X P,[ e PTH[XE()] dTu(2),
k=1 0

with equality for any index strategy T'*.
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Having established the proposition, one notes that the expression in (8.1) is
the value of a deteriorating bandit with the decreasing reward processes
T X*(@)], ¢ =0, k = 1,...,d. For such bandits [14], the optimal strategy is
simply to follow the leader among the reward processes, and an index
strategy does this. Summing up,

PR(T?) = ¥ P.[ e #T[ Xk ()] dT (¢)

(8.2) k=1 0

= P,[ eI [T*(1)] dt,
0

where for s =(sy,...,84), L(s) = V,_,_4T*[X}]. Theorem 3.1 is thus
proved.

PROOF OF PROPOSITION 8.1. The proof is carried out within the framework
of Markovian excursion theory [21]. To this end, take X* to be a right
process, specifically X* = (Q*, g, 5%, Xk, 0}, PL) is a canonical realization.

An adaptation of some of the proofs of the homogeneity results in [21]
(Chapter III, 23.12 and Section 24), up to proper completion and correspond-
ing almost sure statements, gives rise to the following: Let A = {A’f, t > 0} be
an increasing right-continuous $*-adapted process. Then for each fixed u > 0,
there exists a right-continuous increasing process {H*(u,w,w’); v > 0},
(u,w,w’) € R, X Q X Q, such that:

e For gixed (u,w), H*(u,w, ) is increasing right-continuous and adapted

to F~.

o For fixed (v,w"), Ht(-,-,w’) is F*-predictable.

o At (w) = A*(w) + HF(u,w, 6fw), for all u,v,w.

REMARK. The above prevails with each #* replaced by G* = (g}, t = 0},

Ft=gtv Vg, t=0,
J*k

in view of the independence of X* E =1,...,d. Hence, we may and will take
Xkt =(Q,9* 9% Xk, 0F,P,); Q and P, are products as defined in our prob-
lem formulation (Section 2) and (6f) is the shift that operates only on the kth
coordinate of w = (w?,...,w?).
We now prove the inequality, for any strategy T = (T, ..., Ty). Let
{(u,w) =inf{t: T,(t,w) > u}

be the right-continuous inverse of T}. Fix u > 0 and define

f(v,w) = H(u — ,w, 0fw),
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where H is given as above, with A* = £,(v), v > 0. Suppose, without loss of
generality, that M!,..., M' are perfect. Then for £ = 1,...,1,

P, [ exp(—pt)r*[ Xh(1)] dTy(t)
- Px[:exp(—ﬁzk(u))r’“[Xf] du

=P, T exp(~pet(u-)) [P exp(~B(£4(v) — £*(u —))r*[ XE] dv

ueG*

+ ij;mexp(—ﬁfk(u N r*[ XE] 1y (u) du
(8.3) N )
=P, ) exp(—BL*(u —))jl; ”exp(—B{k“(v - u))rk[Xf] dv

ueG*
+ Pxfmexp(—Bfk(u )N r*[ XE] 1y (v) du
0
=P [ exof—Bt*(u —
=P, [ exp(—pe*(u -))
X (zk + ISkkaexp(—Bfk“(v))rk[X,f + ¢F] dv | dLt,
0

where the last equality follows from (4.2).
To simplify the presentation, introduce

1%+ ﬁkf(fk exp( —BCU)rk(xk + ka) dv
1* + P*E" exp(—BC,) dv

Th(x*) =

2

where C = {C,, v > 0} is F*-adapted, right-continuous and nondecreasing.
Furthermore, recall from excursion theory (Sharpe [21]; Maisonneuve [14])
that

ﬁkkaexp(—BCv)rk(xk + .ka) dv
0
= lifr&lsxkk(Rk > ¢; PXZ’,/(;T( — " exp(—BC)rk(X}) dv),

where C* is obtained from C in a manner that resembles the derivation of or
from ¢,. Finally, if also C, > v for all v > 0, then C; > v, v > 0, as well,
which by Proposition 4.1 of El-Karoui and Karatzas [5] yields

(8.4) TE(X*) < TF(XF).

(Proposition 4.1 is a self-contained continuous-time version of Lemma 2.1 in
[22])
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We are now ready to complete the proof, taking
C,=54(v), v=0.
Indeed, multiplying and dividing the integrand in (8.3) by

1+ P* [ exp(— B (v)) dv
and applying (8.4), one concludes that
P, [ exp(~pt)r* [ Xf,()] dT,(1)

(8.5) <P, " exp(~2*(u -))*[ X}

0

X (zk + ﬁkfoR"exp(—Bfku(v)) dv) dr*

(8.6) = P, exp(—B¢*(u))T* X*] du

0

(87) = P, [ exp(~ BO)I* [ X,(1)] 4Ty (1),

where (8.6) is obtained from (8.5) through reversing the excursion argument
that led to (8.3). Summing up over all £ = 1,..., [, gives rise to inequality in
Proposition 8.1.

Fork=1+1,...,d, M* is discrete. This is an easier case because M kisa
countable union of stopping times, all #;,-predictable. The law P* is a
(properly normalized) conditional expectation and I* = 0. One may take here,
for u > 0,

L (v,w) = H}(u,w, Oukw).

The rest of the argument is almost identical to the above for & < [, except
that one does not need to go through the limiting sequence {R* > &} to obtain
again

ij:e-ﬁtrk[xﬁ(t)] dT,(t) < Pxf:e-ﬂtrk[g(;k(t)] dT,(t).

Summing up over all £k =1,...,d gives rise to the inequality in Proposition
8.1.

The equality for any index strategy T* is a consequence of the fact that T'*
does not switch arms within interiors of their excursion intervals. Thus, for
k=1+1,...,d, f,f(v,w) =v—s, for s € G*, v €(s,D}). For k=1,...,1,
we now show that almost surely, ¢,(s — ) = ¢,(s) for all s € G*. This results
from “follow the leader” (3.4) in the following manner. When an index
strategy is unique, then points in G* are points of increase of the index and
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one would not switch a leading arm. This will be the case if X% is strictly
decreasing, for all & =1,...,1; for then, by the quasi left continuity of
(Xk, %), different arms do not exit their respective M*’s through identical
values of X*’s. If, for one or more arms, X% is not strictly decreasing, its
sojourn times at points are exponentially distributed. Hence, even if such
arms are pulled simultaneously, they almost surely do not start an excursion
from their respective M*’s at the same time. Then again, “follow the leader”
ensures that £,(s — ) = ¢,(s), for s € G*. It now follows that for £ = 1,...,1,
L, w) =v —s for s € G¥, v € (s, DF). O
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