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We present sharp bounds on the minimal errors of linear estimators
for multivariate integration and Lg-approximation. This is done for a ran-

dom field whose covariance kernel is a tensor product of one-dimensional
kernels that satisfy the Sacks—Ylvisaker regularity conditions.

1. Introduction. We study multivariate integration and L;-approximation
for random fields Y that are defined on the d-dimensional unit cube D =
[0,1]% and that have mean zero and known covariance kernel K. We as-
sume that K is at least continuous, and hence we may assume that Y is a
measurable random field whose realizations are in Lo(D) with probability 1.
For integration we want to estimate the integral [}, Y (¢) dt, whereas for Lo-
approximation we want to estimate the values Y (¢) for all ¢, and we study the
distance of the estimate and the realization of the field in the space Lo(D).

For both problems we mainly consider linear estimators that use n obser-
vations of the random field. These estimators are of the form

L(Y)=)¥(t)-a and A.(Y)=Y¥(t)- &
> .

i i=1

with sampling points #; € D as well as real weights a; for integration and
functions g; € Lo(D) for Lo-approximation. In both cases we define the errors
in the mean square sense

e(1, K) = (E( fD Y(t)dt — In(Y))z)l/ 2
and
e(An K) = (EIY — A = ([ BV @) - AD)@)2d)

where E denotes expectation.
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Each finite set of sampling points is called a design. For a fixed design it is
well known that the best linear estimators are defined by orthogonal projec-
tions in the Hilbert space generated by Y. More precisely, let C = (K (¢;,¢;)),;
denote the n x n covariance matrix of Y (¢1),..., Y (¢,), let b = (fp K(¢,2;) dt);
denote the n x 1 vector of covariances of [, Y(¢)d¢ and Y (#;) and let 2(¢) =
(K(t,%;)); be an n x 1 vector. Then any solution a = (ai,...,a,)T of Ca =5
defines an optimal linear estimator for integration. Analogously, any solution
gt)=(g1(t),...,8.(t))T of Cg(t) = 2(t) defines an optimal linear estimator
for Lo-approximation.

The design problem of how to choose n sampling points optimally, that is,
with minimal error in the class of all linear estimators using n observations,
is in general much harder.

Equivalent formulations of the design problem are well known. See, for
example, Sacks and Ylvisaker (1970b), Cambanis (1985) and Wahba (1990).
In particular, it is known that for integration the error e(I,, K) coincides with
the maximal error of I, in the unit ball of the reproducing kernel Hilbert space
H(K), that is,

1.1 I,,K)= t)dt — 3 t;)-a;.
(I, K) f;sg&)lfpm WIORY
lIflz=1

Similarly, for Ly-approximation we have

n 2
19) e(An K = [ s )(f(t) - Zf(t,-)~g,~(t)) dt.
€ =1
Ifllg<1

Moreover, the design problem for integration is equivalent to a design problem
in a linear regression model. Finally, estimating the integral is closely related
to a signal detection problem. See Cambanis and Masry (1983). _

The majority of the results for design problems are for the univariate case
d = 1. For example, the optimal n-point design for Brownian motion is #; =
2i/(2n + 1) for integration [see Suldin (1959, 1960)] and ¢; = 3i/(3n + 1) for
Lo-approximation [see Lee (1986)]. The minimal error is 1/(+/3(2n + 1)) for
integration and 1/,/2(3n + 1) for Le-approximation.

In a series of papers, Sacks and Ylvisaker (1966, 1968, 1970b) introduced
regularity conditions for the covariance kernel K and studied the design prob-
lem for weighted integration. Modifications of these conditions for the design
problem for weighted integration and Lq-approximation are used in Wahba
(1971), Hajek and Kimeldorf (1974), Speckman (1979), Eubank, Smith and
Smith (1982), Benhenni and Cambanis (1992), Su and Cambanis (1993) and
Miiller-Gronbach (1993). The conditions assure that the stochastic process has
exactly r ¢ Ny mean square derivatives. Strongly asymptotically optimal de-
signs and sharp error bounds are obtained for weighted integration and ap-
proximation. There are no such results yet for the multivariate case d > 2.

The goal of this paper is to find sharp bounds on the minimal errors of linear
estimators for the multivariate case. Obviously the minimal errors depend on
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the covariance kernel K. For smooth K, the minimal errors go quickly to zero
as a function of n; however, it may happen that for nonsmooth K, the minimal
error is zero even for n = 1; see Ritter, Wasilkowski and Wozniakowski (1993).
To obtain sharp bounds on the minimal errors, we need to require specific
regularity conditions on K.

In this paper we assume that K is a tensor product of one-dimensional
covariance kernels K; and each K; satisfies the Sacks—Ylvisaker regularity
conditions of order r;. Kernels in a tensor product form are studied in a num-
ber of papers. We just mention Ylvisaker (1975), Micchelli and Wahba (1981),
Sacks, Welch, Mitchell and Wynn (1989), Papageorgiou and Wasilkowski
(1990), Wozniakowski (1991, 1992), Paskov (1993), and Ritter, Wasilkowski
and Wozniakowski (1993).

We prove that the minimal errors for the kernel K behave as the minimal
errors for the kernel @ of the folded Wiener sheet. For the latter, the minimal
errors (modulo a multiplicative constant) recently have been found for inte-
gration by Wozniakowski (1991) and Paskov (1993), and for Ls-approximation
by Wozniakowski (1992). Therefore, if K ; satisfies the Sacks—Ylvisaker condi-
tions of order r;, then the minimal error is at most of order

for integration: n~7"1(logn)»—1/2
for Lo-approximation: n~*"1/2(logn)»—D{r+1),

Here y =mini<j.qr; and v = #{j: rj = v}.

The presented bounds are sharp for Lo-approximation for arbitrary r; and
they are sharp for integration with r; = 0 for all j. For integration with r; > 0
for some j, the presented bounds are, in general, not sharp. In fact, it may
even happen that the integral of the random fields is zero and the integration
problem is trivial. We need an extra condition to conclude that the bounds are
sharp for integration. They are sharp if the kernel K satisfies additionally the
boundary conditions

a* .
WKj(.,t) t:0=0 for k=0,1,...,rj—1and j=1,2,...,d.

When the bounds are sharp, then an optimal design for K is modulo a
multiplicative constant equivalent to an optimal design for @. In particular,
an optimal design for Ls-approximation can be derived from hyperbolic cross
points; see Temlyakov (1987) Wozniakowski (1992), as well as Remark 5.

Our proof technique is based on the characterization of the reproducing
kernel Hilbert space H(K) with kernel K. We show that if K; satisfies the
Sacks—Ylvisaker conditions of order r;, then H(K ;) may differ from the cor-
responding Sobolev space W’i+1([0, 1]) only by a finite dimensional subspace
of polynomials.

We summarize the content of the paper. Basic facts concerning reproduc-
ing kernel Hilbert spaces are in Section 2. Sacks—Ylvisaker conditions for the
univariate case and the characterization of the corresponding reproducing ker-
nel Hilbert spaces are in Section 3. Main results concerning the multivariate
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case are in Section 4. A brief discussion of nonlinear estimators and optimal
sequential designs for Gaussian processes is in Section 5.

2. Reproducing kernel Hilbert spaces. In this section we recall some
basic facts about reproducing kernel Hilbert spaces. See Aronszajn (1950),
Parzen (1961), Vakhania, Tarieladze and Chobanyan (1987), and Wahba
(1990). Then we prove a simple lemma that will be needed later.

Let K be the covariance kernel of a random field Y(¢), t € D = [0,1]%
Equivalently, let K: D?> — R be a symmetric and nonnegative definite func-
tion, that is, (K (¢;, tj)):"ljzl > 0 for any m and points ¢; from D. There exists a

uniquely determined Hilbert space H(K) of real-valued functions on D with
K(,t)e HK) and f(&)=(f,K(-,0)) VteD,VfeHK).

By (-,-)x we denote the inner product in H(K). The space H(K) is called the
Hilbert space with reproducing kernel K.

Any closed subspace G ¢ H(K) possesses a uniquely determined reproduc-
in2g kernel M, that is, a symmetric and nonnegative definite function M on
D? with

M(-,t)e G and (g, M(.0)),, =g M(:,0)),=g(t) VteD, VgeG.

The kernel K is the sum of the kernels corresponding to G and G-.
For two covariance kernels K and L on D? we write K « L if cL — K is
nonnegative definite for some positive constant c. Then

2.1 K<L ¢ H(K)cH(L).

Moreover, H(K) c H(L) implies that the embedding H(K) < H(L) is con-
tinuous.

Assume that K is a continuous covariance kernel. Let A1(K) > A2(K) >
... > 0 denote the nonzero eigenvalues, repeated according to their multiplic-
ity, of the integral operator

(TF)(E) = /D K(s,t)f(s)ds

on Lo(D). In what follows, we extend finite sequences A;(K) by zeros. The
minimax principle [see Weidmann (1980), Theorem 7.3] yields

2.2) K<L = MNK)=0(L))

for any two continuous covariance kernels K and L on D?. [Here and else-
where we use big O, ® and Q) notations to describe asymptotic properties of
sequences. Let {a;}; and {b;}; be two sequences of nonnegative reals. Then
a; = O(b;) means that there is a positive constant ¢ such that a; < cb; holds
for all sufficiently large i. Moreover, a; = Q(b;) means that b; = O(a;), and
a; = O(b;) means that a; = O(b;) and a; = Q(b;) hold.]
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Let K;, j=1,...,d, be covariance kernels on [0, 1]2. By the tensor product
kernel K = ®?=1 K ; we mean the covariance kernel on D? given by

d
K(s,t)=[] Kj(sj,t)),
j=1

where s = (s1,...,84) and ¢ = (¢1,...,%7). The operation ® preserves the
relation « as shown in the following lemma.

LEMMA 1. Let K; and L; be covariance kernels on [0,1]2. If K; « L; for
j=1,...,d, then

d d
® Kj < ®Lj.

PROOF. Letd = 2. It is enough to show that K1® Ko « K1®Le <« L1®Lso.
Let ar € R, tp = (up,vr) € [0,17%, and let (f;)ic; be an orthonormal base in
H(K,). Then

Ki(up,uj) = (Ki(-, ur), K1, uj)) g, = D Filur) - fi(u)).
iel
Because K3 « Lg, there exists a positive constant ¢ such that 0 « ¢Lg — K.
We have

Y araj(c- K1 ® La(ts,tj) — K1 ® Ka(te,t;))
kj=1

= Y ara;- Ki(up, uj)(cLa(vy, vj) — Ko(vg, v;))
k=1

=3 > arfi(ur)-a;fi(u;)(cLa(vk,v;) — Ka(vg,v;)) > 0.
iel kj=1
Hence, K1 ® K2 « K1 ® L. The second relation K; ® Ly <« L1 ® Lo can be
shown analogously.
Ford >2,let K = ®?_} K; and L = ®%_{ L;. By induction we can assume
that K « L. Then we sflow KQKs;<«<LQ®Ljasford=2. O

3. Sacks-Ylvisaker conditions in the univariate case. In this sec-
tion we cite the Sacks—Ylvisaker conditions for covariance kernels K in the
univariate case d = 1. We show that these conditions determine the reproduc-
ing kernel Hilbert space uniquely up to a subspace of polynomials. We also
conclude that the order of convergence of the eigenvalues A;(K) to zero is
uniquely determined. These consequences of the Sacks—Ylvisaker conditions
will be used for the multivariate case in Section 4.

We denote one-sided limits at the diagonal in [0,1]? in the following way.
Let

Q. ={(s,t) €]0,1[%: s > t}, Q- ={(s,t)€]0,1[% s <t}
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and let cl A denote the closure of a set A. Suppose that L is a continuous
function on Q; U Q_ such that L|q, is continuously extendable to clQ; for
J € {+,—}. By L; we denote the extension of L to [0, 1], which is continuous
on clQ; and on [0,1]%\ ¢l Q;. Furthermore, by M*! (s, t) we denote a partial
derivative of order & with respect to s and of order / with respect to ¢. That
is, MWD (s, t) = (9% /(askatt))M(s, t).

We say that a covariance kernel K on [0, 1]? satisfies the Sacks—Ylvisaker
conditions of order r € Ny if the following three conditions hold:

(A) K € C™"([0,1]?), the partial derivatives of L = K" up to order 2 are
continuous on O, U _ and they are continuously extendable to cl Q. as
well as to cl (_.

(B) The function

a(s) = L89(s,s) - L8, s),
which belongs to C1([0,1]) due to (A), satisfies

min a(s) > 0.
0<s<1

(C) L®%(s,.)e H(L) for any 0 < s < 1 and

2,0
sup |L'29(s, )L < oo.
O<s<1

Observe that, due to (A) and (B), any process Y with covariance kernel K
has exactly r derivatives in the mean square sense; they are denoted by Y (%),
Furthermore, (A) implies

E(YO)(t+ k) — Y (1))2
= L(t+ h,t+ h) — 2L(¢t + h, t) + L(¢,t) < 2c| |,

3.1)

where ¢ = sup,;.q,u0_ |IL" (s, t)|. Hence Y'") is Lipschitz in the mean square
sense. If Y is a Gaussian process, then its realizations are r-fold continuously
differentiable with probability 1. This follows from (3.1) and Adler [(1981),
Theorem 3.4.1].

The conditions (A), (B) and (C) were, modulo small differences discussed
in Remark 1, introduced and discussed in Sacks and Ylvisaker (1966, 1968,
1970a, 1970b). Various examples of kernels satisfying the Sacks—Ylvisaker
conditions are known. For example, these conditions are satisfied for r = 0
by (i) the Brownian motion kernel K(s,¢) = min(s,t), (ii) the Ornstein—
Uhlenbeck kernel K (s, t) = exp(—|s—¢|) and (iii) the kernel K(s,t) = 1—|s—¢|,
which corresponds to the sum Y;(¢) + Y2(1 —¢) of two independent Brownian
motions Y; and Y.

We now discuss stochastic processes with a covariance kernel K satisfy-
ing the Sacks—Ylvisaker conditions of order r. We show that the reproducing
Hilbert space H(K) is closely related to the Sobolev space W™*+1([0,1]) and
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may differ from W7+1([0, 1]) only by some polynomials. Recall that
W([0,1]) = {f € C"([0,1]): £ abs. cont., f* € Ly([0,1])} = H(R,),

where the kernel R, and the inner product are given by

r o ok 3tk
Ry(s,t) = ;0 %)% 4 Q.(s,t) with
(8.2 -
L(s—u), (t—u),
Qs,t)= [ Tt du
and

(F. £, = 32 FPO) - £9(0) + [ () g7 (w)dus
" k=0 0

see Wahba [(1990), page 8]. Moreover,
H(Q,)={f € H(R,): f®(0)=0for k=0,1,...,r}.

Let P, denote the kernel that corresponds to the closed subspace of all func-
tions from H(R,) vanishing at the boundary, that is,

38.3) H(P,)={f e H(R,): f*(0)=fP(1)=0for k=0,1,...,r}.

A formula for P, is given in Sacks and Ylvisaker [(1970a), page 2060]. For
r=20,

Py(s,t) = min(s, t) — st.

We add that K = P, or K = @, differs from R, only by a polynomial
2(s,t) of degree less than or equal to r + 1 in each variable. Furthermore,
R"(s,t) = 1+ min(s,t). Therefore, P, and @, as well as R, satisfy the
Sacks—Ylvisaker conditions with @ = 1 and Lf‘o) = 0. Note also that

H(P,) c H(Q,)c H(R,), thatis, P, < Q. < R,.

The function @, is the covariance kernel of the r-fold integrated Brownian
motion, and the kernels R, and P, correspond to the following stochastic pro-
cesses. Consider a random Taylor polynomial Y°},_, X-t*/k! with independent
standard normal variables X; and an r-fold integrated Brownian motion Y in-
dependent from (X, ..., X,). Then the sum of the random Taylor polynomial
and Y defines a process with covariance kernel R,. The difference between Y
and its conditional mean, given Y®)(1) for £ = 0,1,...,r, is a process with
covariance kernel P,.

Observe that the spaces H(P,), H(Q,) and H(R,) differ only by some
polynomials. That is,

(34) H(Pr) ®B2r+1 = H(Rr) a-nd H(Qr) & Br = H(Rr),

where B; is the space of polynomials of degree at most i. We now show that
the Hilbert space H(K) with K satisfying the Sacks—Ylvisaker conditions of
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order r is closely related to the spaces H(P,) and H(R,) and may differ from
the space H(R,) also only by some polynomials.

THEOREM 1. If the covariance kernel K satisfies the Sacks—Ylvisaker con-
ditions of order r € N, then

(3.5) H(P,)C H(K)+B,_, c H(R,),

where B,_1 is the space of polynomials of degree at most r — 1 and B_; = {0}.
Moreover, H(K) is a closed subspace of H(R,).

PROOF. Let L = K) and let M denote the kernel that corresponds to
the closed subspace

H(M)={f e H(L): f(0)= f(1) = 0} = span{L(-,0), L(-, 1)}*
of the space H(L). We show that
(3.6) H(M) = H(Py).
Let B(s) =1/a(s)and let f = Y7, a;L(-,¢;) € H(M) with distinct ¢;. Then
(A) implies that f € H(Py), and integration by parts yields

1BY2f13 = " aia;(B(1) L(L)LEO(, 1) — B0) L(O, 6)LI(0, 1)

i,j=1
+ Bt)) Lts, t)(LV (8, 1) = L8O (8, 85)
1
~ [ Lis, t)(B &) L (s, 1) + Bls) LE(5,1,)) ds).

Observe that f(0) = f(1) = X7 ,a;L(0,t;) = X7 ;a;L(1,t;) = 0 and due to
(B) we have

3" aia; B(t;) L(ti, t) (LI, 8) — LEO(t,¢)) = Y aia;L(ti, t)) = 12

i,j=1 i,j=1
Thus
1BY2 113 — If13 = —y1 — ¥e»

where

n 1
n= 3 @i [ Lis,t) B LEV(s,1))ds

i,j=1

n 1
= Zaj/o f(s) B(s) L9(s, t;) ds
j=1
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and

n 1 1
v2= Y aia; /0 L(s, ;) B'(s) L{9(s, t;)ds = /0 f(s)B/(s) f'(s)ds.

i,j=1

Observe that (C) yields Lf’o)(s, tj) = (L(f’o)(S, -), L(-,¢j))1. Hence

1
i =|[ () B&ETE(s, ), f)rds|
< co 1Bl 1L IF 11 < cx 171 1BY2 £l

. 2,0
with ¢o = supgey<; ILPV(s,-)I < oo [see (O, and ¢; = co[|Blloo €72 ]oo
Moreover,

fyal < 181821 182 o [ (7, LG, ds)™ < ea f12 18V £
with ca = [|8/B8Y?||eo | L|lco. Therefore, we obtain
WBY2 15— 1131 < (er+ ea) IF L 182 £/l
This implies
[1/(ei+ca+ DINFIL < 1BV f'lla < (e1+ ca+ D IIf Iz
and finally
csfli <172 <ealflle

with suitable positive constants c3 and cy.

Becuase H(M)Nspan{L(-,¢): 0 < ¢ < 1} is dense in H(M), we conclude
that H(M) C H(Py) and that the norms | - ||z and | - ||z, are equivalent on
H(M). Hence H(M) is a closed subspace of H(Py).

To prove that H(M) = H(Py), we proceed as follows. Consider the subspace

H(M)" = span{L(-,0), L(-, 1)}

of H(L). Its reproducing kernel is L — M. From Aronszajn [(1950), page 346]
we know that L — M is a linear combination of

L(s,0)L(¢,0), L(s,0)L(¢,1), L(s,1)L(¢,0), L(s, 1)L(¢,1).
Due to (A),

3.7 H(M)* c C%([0,1]) c H(Ry)
and
(3.8) L — M < C%%([0,1)?).

Hence, M satisfies (A) and (B) with r = 0.
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Consider the integral operator T: C([0,1]) > H(M) given by

1
(To)(t) = /; M(s, t)o(s)ds
and let

1
g0 = [ Lis,0yp(s) ds= (To)(®) + [ (L~ M)(s,00(s)ds.

If T = 0, then g € span{L(-,0), L(-,1)}. Theorem 3.1 of Sacks and Ylvisaker
(1966), applied to the kernel L, yields ¢ = 0. Hence the operator T is one-to-
one.

To prove that H(M) = H(P,), it is enough to show that the only / € H(Po)
with (}”,Tgo)Ro = 0 for all ¢ € C([0,1]) is f = 0. Observe that

3.9 (Te)(t) = —al(t)e(t) + [o " N(s, De(s) ds = a(t)(Up)(E) — 9(1))
with N = M® and
1
(Up)(t) = /0 [N(s, t)/a(t)]- ¢(s) ds.

Moreover, (A) and (C) imply L%?(¢,t) = L'%%(¢,¢) for any 0 < ¢ < 1 and,
therefore, Li?’z) € C([0,171%) by (A). See Sacks and Ylvisaker [(1966), page 75]
for these facts. Using (3.8) we obtain N € C([0,1]?) and, therefore, U is a
compact operator on C([0, 1]). Because 7 is injective and T'¢ vanishes at zero
and one, (T¢)” = 0 implies ¢ = 0. Thus, 1 is not an eigenvalue of U.

Assume now that f € H(Po) with (f,T¢), = 0 for all ¢ € C([0,1]). The
Fredholm alternative and (3.9) imply the existence of ¢ such that (T'¢)”" = —f.
Because

! / 4 ! " 2
0= [ raxTey®dt=— [ f()(Te)(Dde=IfI},

we have f = 0, which completes the proof of (3.6).
From (3.6) and (3.7) we conclude that

H(Py) Cc H(L) C H(Ry).

The sum H(L) = H(M)® H(M)* is closed in H(R,) because H(M)" is of
finite dimension and H(M) is closed in H(Ry). This completes the proof of the
Theorem for r = 0. We remark that the norms ||- || and | - ||z, are equivalent
on H(L) due to the open mapping theorem.

Consider now the case r > 0. Because K € C™"([0,1]?), we know that
H(K) c C7([0,1]) and f®) () = (f,KOW(., 1)), for any f e H(K), k =
0,1,...,r,and 0 < ¢ < 1. See Sacks and Ylvisaker [(1970b), page 123]. For
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[ € H(K), define the kernel V(s,t) = f")(s)f")(¢). Then

2 n
<|IfI% > aia;L(t;, t;)
K i=1

Y wia; Vit b)) = <f,2n:aiK(°”)(-, t,->>
i=1

i,j=1

forany a; e R and 0 < #; < 1. Hence V « L and H(V) c H(L). Because
H(V) =span{f"}, we have f") ¢ H(L) and

Uf=ro

defines a linear operator from H(K) to H(L). The continuity of this mapping
follows from the closed graph theorem. Hence, f € H(K) implies that f ¢
Cr([0,1]) and f” € H(L) c H(Ry). Therefore,

H(K) c H(R,),

which is, of course, equivalent to H(K)+B,_, ¢ H(R,).
Let U*: H(L) - H(K) denote the adjoint of U. We show that

uuf)y=r
for any f € H(L). It is enough to verify that
U(U*L(-,t))= L(-,¢t)
forany 0 <t < 1. For f ¢ H(K), we have
(F UL )k = (7, LG, ) = ) = (f, KO7(, t)k.

Hence, U*L(-,¢t) = K©"(.,t) and U(U*L(-,t)) = K©r(.,t) = L(-,t), as
claimed. This yields that U is surjective and, therefore,

(3.10) H(Py)=H(M)c H(L)y=ranU = {f": f ¢ H(K)}.

From this it is easy to prove the first inclusion of (3.5). Indeed, take f € H(P,).
Then f(" € H(Py) and (3.10) yields that there exists g ¢ H(K) such that

3.11) =g,

which implies f/ = g + p for some polynomial p of degree at most r — 1.
Therefore,

H(P,)c H(K)+B,_;.
Clearly, ker U c B,_{, and
ranU* = {f € H(K): [ = U*(Uf)}
is easy to verify. Hence, ran U* is closed in H(K) and
H(K)=ranU*®kerU.

To conclude that H(K) is closed in H(R,) it remains to show that ran U*
is also closed in H(R,). Let f, € ranU* and f € H(R,) with lim, .« ||/ —
fllz, = 0. Then f\ ¢ H(L) and lim, o || — f®|lg, = 0. Because H(L) is
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closed in H(Ry), we get f") ¢ H(L), and the equivalence of the norms || - ||z,
and || - g, on H(L) yields lim, . |[|fY’ — £ = 0. The continuity of U*
and of the embedding H(K) < H(R,) together with U*f ) fr» imply that
lim, o0 || fn — U*f 7|, = 0. Therefore, f = U*f") c ranU*. O

Theorem 1 states that for r = 0 the Hilbert space H(K) lies between H(Py)
and H(Ry). For r > 1, we have the similar inclusions for the sum of the space
H(K) and the class B,_; of polynomials of degree at most r — 1. We now show
an example that demonstrates that the class B,_; is essential and H(P,) does
not have to be a subset of H(K) alone.

EXAMPLE 1. Let X be an arbitrary stochastic process whose kernel M sat-
isfies the Sacks—Ylvisaker condition with regularity r > 1. Define the pro-
cess Y:

1
Y () = X(t)—f X(u)du.
0
Obviously, the kernel K of Y equals
1 1 1 p1
K(s,t):M(s,t)—/ M(s,u)duf/ M(t,u)du+// M(u, v)dudv
0 0 0 JO

and hence K"")(s,t) = M™")(s,t). Thus, K satisfies the Sacks—Ylvisaker
conditions with regularity r.

Observe that fol K(s,t)dt = 0 for all 0 < s < 1. Hence, H(K) consists of
functions with zero integral. Because this is not true for H(P,), we have

H(P;) ¢ H(K).

This illustrates that, in general, the presence of B,_; in (3.5) of Theorem 1 is
crucial.

To guarantee that H(P,) is a subset of H(K ), we need to strengthen the
Sacks—Ylvisaker conditions in the case r > 1. Assume that any f € H(K)
satisfies f*)(0) = 0 for £ = 0,1,...,r — 1. Obviously, this is equivalent to
K©&)(. 0) = 0. Then, in the proof of Theorem 1, U* is given by r-fold integra-
tion and ker U = {0}. From (3.11) we easily conclude that H(P,) c H(K).
We summarize this in the following corollary.

COROLLARY 1. Ifthe covariance kernel K satisfies the Sacks—Ylvisaker con-
ditions of order r > 1 and

(3.12) KO®(. 0)=0 fork=0,1,...,r -1,
then

H(P,)Cc H(K)C H(R,).
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In the next corollary we study the eigenvalues A;(K) of the integral operator
on Lo([0, 1]) with kernel K. Their order is determined by the Sacks—Ylvisaker
conditions.

COROLLARY 2. Ifthe covariance kernel K satisfies the Sacks-Ylvisaker con-
ditions of order r € Ny, then

M(K) = O>i2-2),

PrROOF. From Theorem 1 and (3.4) we know that H(K) is a closed subspace
of H(R,) with H(R,) = H(P,)+Bo,1 ¢ H(K)+ Bs.,1 ¢ H(R,). Therefore,
H(K) is of codimension & < 2r + 2 in H(R,). Let K’ denote the reproducing
kernel of H(K) as a subspace of H(R,), K'(-,t) € H(K). Then

(3.13) Ai(K)= O(A(R;)) and Xi(K')=0O(ri(K))

due to (2.1) and (2.2).

Let f1,..., [ be an orthonormal base of H(R, — K'). Moreover, let T' and
U denote the integral operators on Lo([0,1]) with kernels K’ and R,, re-
spectively, and let g1, g2,... be an orthonormal sequence in Ly([0,1]) with
Tg; = A;(K')- g;. Finally let F and G; denote the sets of normalized functions
in Ly([0, 1]) that are orthogonal to f1,..., fz or g1,..., gi—1, respectively. The
minimax principle [see Weidmann (1980), Theorem 7.3], implies

3.14) )‘i+k(Rr) < sup (Ufa f)2 = 8u (Tf’f)g < suP(Tf7 f)2 = A1(1(/)
feFNG; feFNG feG;

i

Consider the covariance kernel @,; see (3.2). From Micchelli and Wahba
[(1981), page 338] we know that A;(Q,) = ® (i~2"~2). Observe that (3.13) and
(3.14) hold for K = K' = @, with 2 = r + 1. This yields that A;(R,) =
O (i27-2). Applying (3.13) and (3.14) again for the original K, we obtain the
same order for A;(K). O

REMARK 1. We now discuss the conditions (A), (B) and (C) and the original
conditions introduced by Sacks and Ylvisaker (1966, 1968, 1970a). Conditions
(A), (B) and (C) are the same as those of Sacks and Ylvisaker for r = 0.
For r > 1, (A), (B) and (C) are slightly more general. More precisely, it is
assumed in Sacks and Ylvisaker (1970a) that the stochastic process Y is the
r-fold integral of a process Z whose kernel satisfies the conditions (A), (B)
and (C) with regularity zero, r = 0. It can be easily verified that such a class
of processes is identical to the class of processes whose kernels satisfy (A),
(B) and (C) with regularity r and also satisfy the boundary conditions (3.12).
Thus, the conditions (A), (B) and (C) together with (3.12) are equivalent to the
conditions assumed in Sacks and Ylvisaker (1970a).

We add that Miiller-Gronbach (1993) studied Lq-approximation for r = 0
with generalized conditions (A) and (B) together with (C). Su and Cambanis
(1993) studied weighted Ls-approximation for r = 0 requiring (A) and (C)
together with (B) for a nonzero and nonnegative «. Benhenni and Cambanis
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(1992) studied weighted integration under regularity conditions (A), (B) and
a modified condition (C). They find the asymptotic performance of optimal
linear estimators that use designs generated by positive continuous density
functions.

REMARK 2. Wahba (1971), Hdjek and Kimeldorf (1974) and Speckman
(1979) study weighted integration and L,-approximation for autoregressive
processes Y of order r + 1 € N. From H4jek and Kimeldorf [(1974), page 522]
it follows that H(K) = H(Q),) for the covariance kernel K of Y. Hence the
conclusions of the preceding corollaries are valid for these processes as well.

4. Multivariate designs under Sacks-Ylvisaker conditions. In this
section we derive the main result of the paper. We consider zero mean random
fields Y (¢), t € D = [0,1]¢, with covariance kernels K in a tensor product
form. More precisely, we assume:

(D) K =®%, K; and K; is a covariance kernel on [0,1]* that satisfies the
Sacks—Ylvisaker conditions (A), (B) and (C) with regularity r; € Ny, j =
1,2,...,d.

Due to (D), the kernel K is at least continuous and, therefore, we may
assume that Y is a measurable random field whose realizations are in Lo(D)
with probability 1. As stated in the Introduction, we want to estimate the
integral f;, Y(¢) dt or the values Y (¢) for all ¢t € D simultaneously, assuming
that Y may be observed at a finite number of points ¢; € D. We consider linear
estimators 1,(Y), A,(Y) and their errors e(I,, K), e(A,, K) defined as in the
Introduction.

We are interested in the minimal errors inf;, e(I,, K) and inf4, e(A,, K)
in the class of all linear estimators that use n observations. The order of these
quantities is known for folded Wiener sheets Y. The folded Wiener sheets
are obtained from the classical Wiener sheet by r; iterated integrations with
respect to the jth variable. The covariance kernels of these random fields are
given by @ = ®‘f:1 Q:,;, where @, is given by (3.2) with r = r;. Clearly, @
satisfies condition (D). We denote
4.1) y=1mjndrj and v=4#{j: rj=v}

<j<
as the minimal regularity and the number of factors with the minimal regu-
larity.

For the integration problem

42) inf (I, @) = O(n"7"! (logn)* )

as shown by Wozniakowski (1991) for r; = 0 and Paskov (1993) for arbitrary
ri, j=1,2,...,d. For the Ly-approximation problem

(4.3) i?f e(An, @) = O(n""1/2 (log n)*~Dir+D))

as shown by Wozniakowski (1992).
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Due to the following theorem, this behavior is valid for a broad class of
random fields.

THEOREM 2. Assume that the covariance kernel K satisfies condition (D)
and the boundary conditions

(4.4) EP(,00=0 fork=0,1,...,r; -1,

forany j=1,2,...,d with r; > 0. Then we have:
for integration:

inf e(1,, K) = O(n""(log n)»~1r2);

for Lo-approximation:

i}llf e(A,, K) = O(n~""Y2(log n)*~Dr+1)y,

Here y and v are given by (4.1) and the infima are with respect to all linear
estimators I,, and A, that use n observations.

PrOOF. Consider the covariance kernels R = ®}i:1 R, and P = ®?:1 P,
on D?. Here the factors R,, and P,; are given by (3.2) and (3.3) with r = r;.
Theorem 1 and Corollary 1 yield that P,, « K; < R;; due to (2.1). From
Lemma 1 we get P « K « R. This is equivalent to

H(P) c H(K) c H(R).

Furthermore, the respective embeddings are continuous and, therefore, there
exist positive constants ¢; and ¢y such that

allfle <Iflp V[ e HP) and
17lr < c2liflix V[ e H(K).

It is well known and used in many papers that the error e(I,, K) coincides
with the maximal error of I, in the unit ball of the reproducing kernel Hilbert
space H(K), see (1.1). A similar relation holds for Ls-approximation; see (1.2).
Together with (4.5) this implies

(4.5)

(4.6) ci-e(I,,Py<e(l,,K)<cy-e(l,,R)
and
4.7 c1-e(Ay, P)<e(A,,K) <cz2-e(A,, R).

We now relate the errors in the spaces H(P) and H(R) by using a
well known periodization technique; see, for example, Bykovskij (1985) and
Temlyakov (1990). Let Z be a zero mean random field with covariance kernel
R and let (2); denote the jth component of ¢ € D.
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For integration, we define the random field Z by Z(t) = V'(t) - Z(¥(t)),
where

d
V() = Wra1((D1), -, Pran1 (D), Y@ =[] ¥,,.1(@®))
j=1
and
fo(u(l—u))™du
Ji(u(1 —u))m du
for m € N and ¢ € [0, 1]. The polynomials ¢, are strictly increasing on [O 1]

with ¢,,(0) = 0, ¥,,(1) = 1 and ¢*’ vanishing att=0,1for k=1,
Clearly, the covariance kernel of Z is R = ® Rr], where

R.(s,t) = ¥, ()W, 11 () - Rp($r11(8), ¥ria(2)).
Observe that the integrals of Z and Z over D coincide. Because

(4.8) fDZ(t)dt—;Z(«v(ti)).a,«lﬂ(ti)=/I)Z(t)dt-gz(ti)-ai,

‘/fm(t) =

we conclude that
4.9) i?f e(I,,R) < i?f e(I,, R).

We now show that R, < P,. Indeed, for f € H(R,), let f(t) = ¢, ,(¢)-
f(r11(8)). Tt is easy to verify that f € H(P,). Moreover [ I3 defines an
isomorphism between H(R,) and H (R,). We thus conclude that H (R,) C
H(P,), which implies R, < P, due to (2.1).

As before we thus conclude that

e(I,, R) < cs-e(I,, P)
with a positive constant cs, which neither depends on n nor I,. Combining
(4.6), (4.9) and the above inequality, we obtain
c1 i?f e(I,,P) < i?f e(I,,K) <cacs i?f e(I,, P).

The foregoing inequalities hold for all K satisfying (D) and (4.4). Thus, in
particular, they hold for K = Q. This means that (4.2) also holds for P and,
consequently, (4.2) holds for the original K. This completes the proof for inte-
gration.

For L,-approximation we proceed very similarly. The random field Z is now
given by Z(t) = (W/(¢))'/2. Z(¥(t)), where {2 instead of ., is used to
define ¥ and ¥'. Then

n 2
[ (20 -3 20w (v v @) e ) dr
(4.10) =

n 2
=1 (Z®)-"Z)- g dt.
[D( ®-3 (t)g(t)) ‘
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The covariance kernel of Z is now R = ®f:1 R, ,» where

Rr(s’ t) = (¢I2r+2(s)‘//2r+2(t))l/2 : Rr(‘/’2r+2(3), ¢2r+2(t))-
As before, we can show that R, <« P,. Using (4.7) we obtain
c1 if‘lf e(An, P) < if\lf e(A,,K)<cacq in e(A,, P)

with a suitable constant cs > 0. As before, we can set K = @ to conclude that
(4.3) holds for P and consequently for the original K. The proof is complete. O

REMARK 3. Assume that the covariance kernel K is a tensor product of
kernels, each corresponding to an autoregressive processes of order r; + 1.
From Remark 2, we conclude that the error bounds given in Theorem 2 are
also valid for such K.

REMARK 4. Upper bounds on the minimal errors can be obtained for co-
variance kernels K = ®f=1 K ;, which satisfy only condition (A) with regu-
larity r; € No. Indeed, from Ritter, Wasilkowski and Wozniakowski [(1993),
Theorem 2] and (3.1), we obtain for integration

i}]f e(In, K) = O(n‘Y—l(logn)(v-l)(y+3/2)),

and for Ly-approximation,

ij}f e(An, K) = O(n~"""2(log n)»~Dr+3/2)y,
Observe that these upper bounds differ from the bounds given in Theorem 2
only by logarithmic factors.

Obviously, if only (A) holds, then the r; are not uniquely defined and the
foregoing upper bounds need not be sharp. We now show that even if we add
condition (B) and the boundary conditions (4.4), then still the upper bounds
need not be sharp.

We provide a univariate example for integration. Let X(¢), ¢t € [0,1], be a
process with covariance kernel @, [see (3.2)], and define

Y(8) = X(¢) — a(t) /0 ' X(u)du,
where
a(t)=[1/c]f01 Q.(s,t)ds and c=/01/01 Q. (s, ) dsdt.
Because
Q0= [ (s~ wyrid,

we have a € C*®([0,1]). Moreover, a(0) = --- = a(”(0) = 0. Recall that @,
satisfies the Sacks—Ylvisaker condition of order r and, therefore, the kernel

K(s,t) = @:(s,t) — c- a(s) a(t)
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of Y satisfies (A) and (B) together with the boundary conditions (4.4). However,
folY(t) dt = 0 because fola(t) dt = 1 and, therefore, e(I;, K) = 0 for I, (Y) = 0.

This shows that we cannot eliminate condition (C) if we want to have sharp
bounds on the minimal errors.

We now discuss covariance kernels K that satisfy (D) but violate the bound-
ary conditions (4.4). The proof of Theorem 2 shows that the error bounds are
sharp also for the kernel R = ®f=1 R,,;. Because K « R, the bounds of Theo-
rem 2 now become upper bounds for K. As follows from Example 1, they need
not be sharp for the integration problem. However, they are sharp for the in-
tegration problem with r; =0 for j=1,2...,d, and for the Lz-approximation
problem for arbitrary r;’s. More precisely we have the following theorem.

THEOREM 3. Assume that the covariance kernel K satisfies condition (D).

Then we have
for integration:

i?f e(I,,K)= O(n""'(logn)®~V/2),

for Lay-approximation:
if‘]f e(A,, K)= O(n""2(log n)»Dir+D),

The bound for integration is sharp if ri=---=rq=0.

PROOF. It remains to show that

(4.11) igf e(A,, K)= Q(n " "2(ogn)»~Dr+D),
From Micchelli and Wahba [(1981), Theorem 1], we know that
(4.12) i};]fe(An,K)z > > Mi(K).

» i=n+1

Here A;(K) denote the ordered eigenvalues of the integral operator on Lo(D)
with kernel K. Because K = ®f=1 K, the set {1;(K): i € N} is equal to the
set of all products [1_; A;;(K;) with i1,...,ig € N. Due to Corollary 2, we
have A;(K;) = ©(i~%r-2), and, as shown by Papageorgiou and Wasilkowski
[(1990), Theorem 2.1], this implies

(4.13) 3> M(K) = O(n~21(log n)20-DirD),

i=n+1

Hence, (4.11) follows from (4.12) and (4.13). O

We add that for d = 1 and r = 0, Miiller-Gronbach (1993) studied the
question whether the lower bound (4.12) is sharp in the class of all linear
estimators using samples Y (¢;).
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Let L2(Y) denote the space of square integrable random variables that is
generated by the random field Y (%), t € D. It is known that the bound (4.12)
is attained on the larger class of linear estimators that may use samples of ar-
bitrary elements from Lo(Y). More precisely, let g1, g2, ... be an orthonormal
sequence in Lo(D) such that

/D K(s,t)gi(s)ds = A:(K) - gi(t).

Then an optimal linear estimator B, is given by

n 00 1/2
B.(¥)= [ Y(0gi0)dt- g and e(Bn,K>=< > Ai(Io)
i=1

i=n+1

From the proof of Theorem 3 we immediately conclude the following corollary.

COROLLARY 3. Assume that the covariance kernel K satisfies condition (D).
Then for Ls-approximation, optimal sampling of Y (t) is, modulo a constant,
as powerful as sampling of elements from Lgo(Y).

REMARK 5. We now briefly discuss optimal designs. These designs yield
optimal estimators I, and A,, that is, estimators with minimal error
infy, e(I,, K) and inf,, e(A,, K), respectively. Unfortunately, optimal de-
signs are not known in many cases and, therefore, the notion of optimality
is relaxed. Recall that sequences {a,}, and {b,}, of positive real numbers
are called strongly asymptotically equivalent if lim,,_, @, /b, = 1 and weakly
asymptotically equivalent if ¢; < a,/b, < c3,V n, with positive constants
c1, ce. By strongly (weakly) asymptotically optimal designs, we mean designs
whose errors are strongly (weakly) asymptotically equivalent to the minimal
errors.

The concept of relaxed optimality dates back to Sacks and Ylvisaker (1966),
and strongly asymptotically optimal designs are known for many stochastic
processes in the univariate case. In the multivariate case, d > 1, only weakly
asymptotically optimal designs are known.

In particular, for the Wiener sheet Y, the design problem for integra-
tion is equivalent to minimizing the Ls-discrepancy of n-point sets. See
Wozniakowski (1991). For the latter problem, only weak asymptotic optimal-
ity results are known.

Assume now that the covariance kernel K satisfies condition (D) together
with the boundary conditions

(4.14) K®P(,t)=0 for k=0,1,...,r; and for t=0,1

for any j=1,2,...,d. In this case, we have H(K) = ®?:1 H(P,,).

For integration, Frolov (1976) has constructed weakly asymptotically
optimal designs; see also Bykovskij (1985) and Temlyakov (1990). For Ls-
approximation, hyperbolic cross points are weakly asymptotically optimal
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designs; see Temlyakov (1987) and Wozniakowski (1992), and see also the
end of this remark. An application of the respective mapping ¥ [see (4.8) and
(4.10)], to these designs yields weakly asymptotically optimal designs for any
kernel which satisfies (D) but not necessarily (4.14). Paskov (1993) discussed
practical implementation of these designs.

We add that grid points are a very poor design for the covariance kernels
K satisfying the condition (D) in the multivariate case; see Papageorgiou and
Wasilkowski (1990).

Finally, we briefly recall the construction of the hyperbolic cross points.
Without loss of generality, we can assume that y = r; =--- = r, < r; for
J=v+1. Letk=(ky,...,kq) be such that k; =y, for j <v,and ry < k; <rj,
for j > v + 1. Then, given parameter g, the hyperbolic cross points design
consists of the points

L lq : .
('271,...,27‘1), lj=1,2,...,2s"_].alld_]=1,...,d,

where s;’s are positive integers with Zj-;l sjk; < yq. Note that the sample
size n = n(q,v,k,d) depends on g, v, k and d. It decreases with &;’s. If k; = y
for all j, which corresponds to v = d, we have

g—d .
_ i J+d-1 g—d+1 g-1
n_jng( b )52 1),

Detailed analysis of hyperbolic cross points may be found in Wasilkowski and
Wozniakowski (1994).

5. Extensions for Gaussian random fields. In this section, we briefly
indicate how the results of the previous section can be extended in a num-
ber of directions. We will do this under the additional assumption that the
corresponding random fields are Gaussian.

Consider a design ¢1,...,t, € [0,1]¢. In general, it may be reasonable
to study arbitrary (measurable) estimators that are based on the samples
Y(t1),...,Y(¢,). For Gaussian random fields and for linear problems like in-
tegration and Lg-approximation, it is well known that it is sufficient to study
linear estimators. The minimal error in the class of all estimators that use
the given design is attained by a linear estimator.

In this paper, we also restricted our attention to nonsequential designs.
Again, for Gaussian random fields this is essentially without loss of generality.

More precisely, consider first designs where the total number n of sam-
ples is fixed but the sampling points are chosen adaptively. That is, ¢;;1 =
ti1(Y(t1),...,Y(¢;)) depends on the previously observed values. We stress
that there is no restriction on how ¢;; may depend on Y (¢;); actually we can
also allow nondeterministic (randomized) dependence. Let V,, be an arbitrary
estimator (either for integration or Lg-approximation) that is based on the
sequential design. Then [see Wasilkowski and WozZniakowski (1984)], there
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exists a linear estimator V7, based on a design with a priori fixed n sampling
points such that the errors in the mean square sense satisfy

e(V,,K)<e(Vy,K).

Hence, a sequential design can be better than nonsequential designs only
through an adaptive choice of the sample size. However, the gain is bounded
by a multiplicative constant. To be more specific, consider an arbitrary design
with, as before, adaptively chosen sample points and with the sample size
n = n(Y) varying according to some stopping rule. There is no restriction
on the stopping rule; it can be arbitrary and even randomized. Let E(n(Y))
be the expected number of samples and let V be an estimator that is based
on the sequential design. From Wasilkowski (1986) and Theorem 2 it follows
that there exists a positive constant a that only depends on K such that, for
any sequential design with E(n(Y')) < co and any estimator V, there exists a
nonsequential design with fixed n* sample points and a linear estimator V*,
such that

e(Vi.,K)<ae(V,K) and n* < E(n(Y))+1.

Hence, the minimal error of sequential designs is of the same order as the
minimal error of nonsequential designs, and Theorem 2 holds for sequential
designs as well.

These results can be generalized even further by extending the definition of
the error to include L,-norms (instead of the Lg-norm), probabilistic setting,
where instead of the expected error, one wants to minimize the probability
that the error is large, and so forth. For more on this subject, the reader is
referred to Traub, Wasilkowski and Wozniakowski (1988) as well as Section 4
of Ritter, Wasilkowski and Wozniakowski (1993).
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