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LIMITS OF FIRST PASSAGE TIMES TO RARE SETS
IN REGENERATIVE PROCESSES

By PAauL GLASSERMANI AND SHING-GANG Kou

Columbia University

We consider limits of first passage times to indexed families of nested
sets in regenerative processes. The sets are exponentially rare, in the sense
that the probability that the process reaches an indexed set in a cycle van-
ishes exponentially fast in the indexing parameter. Under appropriate for-
mulations of this hypothesis, we prove strong laws, iterated logarithm laws
and limits in distribution, both for the index of the rarest set reached in a
cycle and for the time to reach a set. An interesting feature of the iterated
logarithm laws is an asymmetry in the normalizations for the upper and
lower limits. Our results apply to (possibly delayed) wide-sense regenera-
tive processes, as well as those with independent cycles. We illustrate our
results with queueing examples.

1. Introduction and main results. We study first passage times to rare
sets for discrete-time regenerative processes. A process X = {X,, n > 0} is
(wide-sense) regenerative if there exists a renewal process {7,, n > 0} such
that, for each n > 0, {7,42 — 7s, £ > 1;X,,.;, j > 0} is independent of
{70,...,7,} and has law not depending on n. The cycles

(1) {Xn, 1-j§n'<’rj+l}’ j=0’19-"a

of such a process have a common distribution; they may not be indepen-
dent, but are at most one-dependent, meaning that nonconsecutive cycles
are independent. We do not exclude the delayed case in which the law of
{X,, 0 <n < 79} may differ from that of the cycles. This class of processes is
sufficiently general to include, for example, Harris recurrent Markov chains;
see Section V.1 of [4] for background.

Throughout, we restrict attention to the positive recurrent case in which
the mean cycle length is finite. Unless otherwise indicated, regenerative is
meant in the wide sense.

We consider first passage times to sets that are exponentially rare. More
precisely, we consider a decreasing family {A,, x € R, } of subsets of the state
space of X, with the property that the probability that X reaches A, in a cycle
vanishes exponentially fast in x. We use three versions of this hypothesis. The
weakest requires the existence of a strictly positive constant y such that

2 li_{lolo(—x“l)logP{X,, € A,, forsome o <n<7}=1.
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A stronger requirement is
3) bie™”* < P{X, € A,, for some 7o <n < 71} < bye "%,

for all sufficiently large x, for some strictly positive b, < by and y. The
strongest condition we use is the existence of b, y > 0 for which

4) P{X, € A,, for some 7o <n <71} ~be "%,

where ~ indicates that the ratio of the two quantities converges to unity as
x — oo. We show that under (2), the first passage times

T.2inf{n>0: X, c A}

obey a strong law of large numbers (SLLN) and under (3) they obey a law of
the iterated logarithm (LIL). Under (4) and the additional assumption that
the cycles are independent, they have a limit distribution when properly nor-
malized.

Some remarks are in order regarding these hypotheses and their connection
to specific examples. The strongest property (4) is shown by Iglehart [13] to
hold for the waiting times in a GI/G/1 queue, with A, = {y € R: y > x}, under
a nonlattice assumption. This extends to heterogeneous multiserver queues
with batch arrivals through recent results of Sadowsky and Szpankowski [23].
Bounds of the type in (3) are established for queues by Kingman [15] and
Ross [22], for all x > 0. Asmussen and Perry [6] study (4) in some generality
and establish it, in particular, for certain Markov-modulated queues. Abate,
Choudhry and Whitt [1] give an example (their Example 5) of an M/G/1 queue
for which (2) holds, but (3) fails. Anantharam [3] and Glasserman and Kou
[10] establish instances of (2) for Jackson networks, the former based on large
queues at individual nodes, the latter based on the total network population.
Chang, Heidelberger, Juneja and Shahabuddin [8] prove a version of (2) for
buffer overflows in ATM switches with rather general arrival processes. Some
results close to (2) are established for the ALOHA protocol in Cottrell, Fort
and Malgouyres [9]. Shahabuddin [25] proves a result like (4) for a general
class of reliability models in which rarity arises from changes in the law of
the process, rather than in the set to be reached.

Close counterparts of conditions (2)—(4) are obtained by replacing the proba-
bility in each case with 7(A.), where 7 is the stationary distribution of X. (A
positive recurrent regenerative process has precisely one such distribution.)
Let Py denote the probability on sample paths of X corresponding to the non-
delayed case 7o = 0 and let v,(-) = Po{X7, € -}. The cycle representation of
the stationary distribution of regenerative processes implies that

T1—1
m(A;) = (Eo[T1]) 1 Po{X, € A, for some 0 < n < Tl}E,,x[ > l{X,,eAx}].
n=0
Thus, if the expected sojourn of X in A, during a cycle given that it reaches
A, in that cycle is bounded in x, then (3) is equivalent to the counterpart
condition for 7. If the expected sojourn is bounded by a polynomial in x,
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then (2) is equivalent to its counterpart for 7. Indeed, properties (2)—(4) are
sometimes established as a step in proving a corresponding property for the
stationary distribution. (For other aspects of the link between regeneration
and exponentiality of first-passage times, see [2] and [14]; for a recent survey
with particular emphasis on the Russian literature, see [17].)

The analysis of T', can be reduced to the analysis of level-crossing times in
real-valued processes by defining

¢(y)=sup{x >0: y e A.}.

If X is regenerative, so is ¢(X) = {¢(X,), n > 0}. Letting T? be the first
passage time for ¢(X)to A? = {y € R: y > x}, we see that T¢ . <T,<T?for
all £ > 0, for all x. In this way, limit theorems for T? extend to corresponding
results for T'.. Henceforth, we take X to be a real-valued regenerative process
and take A, = A?.

Define

5) M, =max{X;: 1,1 <k <T.}, n=12,....

Then M, records the index of the rarest of the sets {A,} visited during the
nth cycle. Also define

Mo =sup{X: 0 <k < 7o},

taking My = —oo in the nondelayed case 79 = 0. For ease of reference we
reformulate (2)—(4), specializing to the real-valued case:

(A1) lim, ., oo(—x 1) log P{M; > x} = .
(A2) For all sufficiently large x, b1e™"* < P{M; > x} < bye 7*.
(A3) P{M, > x} ~ be "*, as x — oo.

Some indication of the limiting behavior of T, is obtained from the repre-
sentation ([11], page 38)
EO[Tx AT1]
P O{Tx < Tl} ’

available when the cycles (1) are independent and 7o = 0. Under (Al), we see
immediately that

EO[Tx] =

logEol 2] |
Yx

Our main result gives a corresponding strong law and a law of the iterated
logarithm, without requiring independence of cycles. To give a more complete
picture of the limiting behavior, we include as well a limit in distribution which
follows fairly readily from existing results. We write log, for loglog and logs
for log log,.
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THEOREM 1.1. As x — oo, the following hold:
(1) Under (Al),

(6) log T'x —>1 a.s.
YX

(i1) Under (A2),

) lim sup 81~ Y% 4 46
logy x

and

(8) lim inf 98T ZYE _ 4 4
log x

(iii) If the cycles (1) are independent and (A3) holds, then for all y > 0,

9) P{be T, <y} > 1—e%°,
where 1/c is the mean cycle length.

Perhaps the most interesting aspect of this result is the asymmetry in (7)
and (8).

To prove Theorem 1.1, we first establish (in Section 2) some preliminary
results on general level-crossing probabilities for regenerative processes, ex-
tending a result of Robbins and Siegmund [19] for i.i.d. sequences. We use
this result to establish counterparts of (6) and (7)—(8) for the maximum of a
real-valued regenerative process; the counterpart of (9) is known. These re-
sults are in Section 3. In Section 4, we prove Theorem 1.1 and in Section 5 we
give examples.

2. A level-crossing theorem. We begin with the following version of
Theorem 1 of [19]:

LEMMA 2.1. Let {V,, n > 1} be a one-dependent sequence of random vari-
ables with common distribution H and let Vi = maxi<j<, V;. If u, is an
ultimately increasing sequence of real numbers, then

(10) P{V}>u, io}=0o0rl

according as

i(l — H(uy,)) < oo or = oo.

n=1
If, in addition, n(1 — H(u,)) is ultimately increasing, then
11) P{V:<u, io}=0o0rl
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according as

i(l — H(u,))exp(—n(1 — H(u,))) < co or = oo.
n=1

PrOOF. The case of i.i.d. uniform random variables is proved in [19]. Re-
mark 2.5 of [19] extends the result to i.i.d. random variables with continuous
distribution H. However, even without continuity, we may set V; = H-}(U;),
where {U,, n > 1} are independent uniform random variables and H (u) =
inf{y: H(y) > u}. Under this construction, the events {V; <u,, i=1,...,n}
and {U; < H(u,), i = 1,...,n} coincide for all n, as do the correspond-
ing events with inequalities reversed. This suffices to extend the i.i.d. result
to general H. For the one-dependent case, let e, = 2n and o0, = 2n — 1,
n=12,.... Let V¢ = max{Vs, Vy4,..., V. } and V) =max{V,Vs3,...,V,},
and notice that

P{V¢ >u, 1io0}vP{VS>u, io}
12) < P{V} >u, io}
< P{V¢ > u,, io0}+ P{Y)>u, io.l}.

If Y,,(1 — H(u,)) converges, then so do }",(1 — H(u.,)) and X_,(1 — H(u,,)),
and the first case of (10) follows from the second inequality in (12) and the
result for i.i.d. sequences. If 3",(1— H(u,)) diverges, then so does at least one
of ¥,(1 - H(u,,)) and ¥,(1 — H(u,,)), and the second case of (10) follows
from the first inequality in (12). The same step leads to (11). O

The extension above to discontinuous distributions is important in mod-
eling integer-valued processes, such as queue lengths. Also, it is easy to see
that Lemma 2.1 extends to m-dependent sequences for arbitrary, finite m.
Theorem 2 of [16] weakens the assumption that n(1 — H(u,)) be ultimately
increasing in the Robbins—Siegmund result.

We will need the following auxiliary result on level crossings through sub-
sequences:

LEMMA 2.2. Let {V,, n > 1} be a sequence of i.i.d. random variables
with common distribution H and let V) = max,<j<, V;. Suppose that u, is
ultimately increasing. Then for any integer sequence {a,} ultimately strictly
increasing to oo,

13) P{V% >u, i.o}=0o0rl,
according as Y00 1(ani1 — @ )(1 — H(up41)) < 00 Or = 00.

PRrROOF. First, we claim that

S (st — @)1 — H(tns1)) <00 —>  an(l— H(up)) —> 0 asn - oo.

n=1
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In fact, V ¢ > 0, there must be an ng, such that vV & > no + 1,

k-1 e
Z (@nt1 —ap)(1— H(upt1)) < 2

n=nop

Also, since (1 — H(u,)) must goes to zero, we can find another n,, such that
VEk>n,

ano(1 — H(up)) < £/2.
Hence for all £ > max(n;,no+ 1),

k-1
(ar — @n)(1 = H(up)) < 3~ (ant1 — @n)(1— H(uns1)) < /2,

n=nop

which further implies
ar(1— H(ur)) < £/2+ an(1— H(uz)) < &.

Now by interchanging the unions, we get

Cht1+i

U{V* > u} = U{v > ) = U{v ~udulJ) U Vs> wial.
n= n=~k j= j=1 i=0 j=apii+1
So if % (@ny1 — @n)(1 — H(un41)) < 0o, then for all large &,
P{U{V;n > u,,}}
Ap+1+i

<ZP{V >uk}+z Z P{V; > upyit1}

Jj= i=0 j=ap+1
= ap(1— H(up)) + Z(am —a;)(1— H(uiy1))
i=k

— 0 as k— oo
Hence
P{V; >u,io0}=0.
If 30° 1(@nt1 — a@n)(1 — H(up41)) = oo, then for all large &,

P{Qk{VZn - un}}
>P{U aUH {v; >uk+z+1}}

i=0 j=ap4i+1

CRtit+l

=1- P{ﬂ N {Vvi< uk+i+1}}

i=0 j=apy;+1
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00 CGhii+l
=1—n 1—[ P{V| < Upyit1}
i=0 j=ap4i+1
00 Qpyr41
>1-J] JI exp(—(1— H(uriiv1))) (usinge ®>1-x)
i=0 j=api+1

~1-expf - 3@ - @)1 - Hwn))| =1

ik
Thus, P{V} > u, i.o.} =1, completing the proof. O

REMARK. An interesting open problem is to find general conditions on {a, }
under which

P{V; <u, io}=1

A nontrivial special case is treated in the Appendix as part of our analysis of
the lim sup in the law of the iterated logarithm for X*.

The following result will prove useful in accommodating delayed regenera-
tive processes:

LEMMA 2.3. Suppose u, is an ultimately increasing sequence of real num-
bers and the integer sequence a, is ultimately increasing to oco. For any sequence
of random variables {Z,, n > 0}, P{Z¢ > u,} — 0, as n — oo, implies

(14) P{Og}gn Z; < u, i.o.} = P[g_gn Z; <u, i.o.}
and
(15) P{Olsr;gn Zi>u, i.o.} = P[llsr;gn Z;>u, i.o.}.

PrOOF. Notice that P{Zy > u,} —> 0 as n — oo implies

P{Zy>u, io}= }_%P{ U {Zo > u,,}} = nlgglo P{Zy>u,}=0.

=n

So, using “f.0.” for “finitely often,”

P[ max Z; <u, i.o.}

0<j<an

> P{{ max Z;j <u, i.o.} N{Zo > u, fo. }}

1<j<an

= P[ max Z; <u, i.o.},

1<j<an

as P{Zy > u, fo0.} = 1. This proves (14); a similar argument leads to (15). O
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As in Theorem 1.1, let X be a positive recurrent, real-valued regenerative
process with associated regeneration epochs {7,, n > 0}. Define

I(n)=sup{j>0: 7; <n}.
By the strong law of large numbers for renewal processes we have

) e as
n

as n — oo, where 1/c is the mean cycle length. As in (5), let M, be the nth
cycle maximum and set G(x) = P{M; < x}. Define X} = maxo<j<, X;. We
now have the following theorem.

THEOREM 2.4. Suppose that u, is an ultimately increasing sequence of real
numbers, that a, is a positive integer sequence ultimately strictly increasing to
oo and that P(Mo > u,) — 0 as n — oo. Then

(i) P{X; >u, io}=0o0rl

according as

i(anﬂ —a,)(1 - G(u,)) < oo or = oo.

n=1
(i) If n(1 — G(u,)) is ultimately increasing, then
P{X! <u, io}=00rl

according as

i(l — G(uy,)) exp(—n(l — G(u,))) < oo or = oco.
n=1

To lighten the notational burden, throughout the rest of the paper we distin-
guish between x and its integer part [x] only where necessary. Furthermore,
for real ¢ > 0, x; is to be understood to be x[;;.

PrOOF. It suffices to consider delayed regenerative processes with i.i.d.
cycles, since the one-dependent case then follows by taking even and odd sub-
sequences, as in Lemma 2.1. Furthermore, we can assume ¢ < 1 because ¢ = 1
implies P{7;11 —7; = 1, i > 0} = 1, and in this case the process degenerates
to a delayed i.i.d. sequence as treated in the preceding lemmas.

Fix 0 < 8 < csothat c— 8§ =1/m, m > 2 an integer. Then, for any & > 1,

P <o

o0

< P{U4x: <uss 1) = e - o)} + Pl < nee- o)}

n=~k
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{X Taosy = un}} +0(1) (since @ —c a.s.)
n

IA
N

IA
~

S S
Q,C8 g,C8

{M}, 5 < un}} +0o(1)

<P

{
{
L hrd 6) un/(c—a)}} + o(1),

=P O 03 <und} o),

n=k(c—8)

where M3, 2 maxi<j<m Mj.
On the other hand, choosing & > 0 so that ¢ + § = 1, we get

[nUk{X* < un}} > P{ U{X3 <un; Un) <n(c+ 8’)}}
{Dk{x,,,w) <unl

—p{J o <ui
n=k
By Lemmas 2.1 and 2.3, if
2(1 — G(unm)) exp(—n(1 — G(unn))) < 0o,
then )

P{ U {M;gunm}} — 0 as k— oo.
n=~k(c—8)

In particular, if

(1 - G(un)) exp(~n(1 — G(un))) < oo,

n=1

then
P{X} <u, io}=0.

Similarly, if

(o]

> (1 - G(un)) exp(—n(1 — G(u,))) = 0o

n=1
then

P{U{M;sun}}—al, as k — oo.
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Therefore,
P{X} <u, io}=1.

This completes the proof of (ii).
For (i), notice that

POz, > it} < PLOOM o) > wad o)
(16) n==k n°=°k
= P{ UM, > un}} +0(1)
n==k
and
P{U {x; > u,,}} > P{ {M}, . 5 > un}
(17) n==k n=~k

= P{ U {Mfan/m] = u,,}}
n=~k

So our conclusion follows from Lemmas 2.2 and 2.3, if we can show that

&

3 (ani1 —an) (1 Glu)) =00 = g([“::]—[%])<1_a(un>>=oo.

n=1

Without loss of gernerality, we can assume that a, is strictly increasing and
(1 — G(uy)) is decreasing. If 3° ,(1 — G(u,)) < oo, then

& aﬂ+1 ap
55 [2])o 0w
d Ap+1 - Qp ‘ S
Z E:I(_m _H)(I_G(u”))_;(l_G(u”))=°°-

So we only need to consider the case Y_;> ;(1 — G(u,)) = co. Notice that, for
each & > 0, there must be one n in the set {km + 1,km + 2,---,(k+ 1)m},
such that [a,,1/m] - [a,/m] > 1. So

i([am] - [%DU ~ Glu)) > 31— Gluan)) = o0,
n=1

n=1 m

using the elementary fact that if a, > 0 is ultimately monotone, then )", a, =
00 == Y., @um = 0o. This completes the proof. O
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COROLLARY 2.5. Under (A2),
P{X}n,«>ni.o0}=0o0r1l

according as a > lora < 1.

PrROOF. This follows directly from Theorem 2.4 and the fact that
o > 1 1 \°
¥(n+1) —a _ p¥ny—ay,—yn _ 1y - _
nzz:l(e (n+1) e"n %e Z —a (e (1 . 1) 1)

n=1

converges or diverges accordingasa > lora<1. O

It will become evident in the proof of Theorem 1.1 that the exponential
rarity assumptions (A1)—(A3) are used exclusively to verify the series tests in
Theorem 2.4. To the extent that these tests can be checked under alternative
tail assumptions, versions of Theorem 1.1 can be established without (A1)-
(A3).

3. Limit theorems for the maximum. In this section, we use Theorem
2.4 to get an SLLN and LIL for the maximum of a regenerative process.

PropoOSITION 3.1 (SLLN). Suppose (Al) holds. Then

as n — oQ.

PrROOF. Let F(x)= P{yM; < x}. Forall x > 1,

o0 o0

Y (1-F(xlogn)) = exp(—xlogn + o(logn))

n=1 n=1
1
=" — exp(o(logn)) < oco.
n=1 n®

So, by Theorem 2.4,
P{yX; > xlogn i.o.} =0;
that is,
*

(18) lim sup i}:) X5

— M

almost surely.

On the other hand, for all x <1,

(1- F(xlogn))exp(—n(1l— F(xlogn)))
-1

n=

= i % exp(o(logn)) exp{—n'~* exp(o(logn))} < oo
n=1
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and
n(1 — F(xlogn)) = n'"*exp(o(logn))
is ultimately increasing. Thus, again by Theorem 2.4,
P{yX; <xlogn io.}=0;
that is,

(19) lim inf 255 > 1,
logn

almost surely. Combining (18) and (19) concludes the proof. O

PROPOSITION 3.2 (LIL). If (A2) holds, then

* *
YXn 187 _ 0 nd Tim inf YXn 1087 _

-1
logy, n logz n ’

lim sup
almost surely.

REMARK. The triple logarithm in the lower limit (and the asymmetry in
the normalization for the two cases) is rather peculiar. It is explained, in part,
by the fact that the maximum tends to have a thin left tail and a relatively
heavy right tail.

PrOOF. First we treat the limsup. As in the proof of Proposition 3.1, let
F be the distribution of yM;. Let the symbol ~ between two series indicate
that the series converge under the same conditions. Then

D (1- F(logn +xlogyn)) ~ ) exp(—logn — xlog, n)
n=1 n=1

=E—n(logn)x < 00 0r =00

n=1
according as x > 1 or x < 1. Thus, by Theorem 2.4,
*
P{Z—)fl-—k)Eﬁ >x i.o.} =0orl
10g2 n

according as x > 1 or x < 1. Hence

lim sup 2£E£;212§13 =1,
logyn
almost surely.
At the same time,
Y (1 - F(logn — xlogz n)) exp(—n(1 — F(logn — xlogzn)))
n=1

o0 I x
~y (O—gfz’i exp(—b1(logy n)*).

n=1
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The convergence of this series is equivalent to that of the integral

® (logg £)*
10 t

exp(—bi(logy £)*) dt

o0 x
_ y . )
= Jogs10 sxp(ery RO ) exp(e) exp(y) dy (v =logy?)
o0

= y*exp(—b1(y* — y)) dy,
log, 10

which is finite or infinite according as x > 1 or x < 1. Finally, by noting that
n(1 — F(log —xlogs n)) is ultimately increasing, we conclude that the lim inf
is as claimed. O

The possibility of a limit in distribution to supplement Propositions 3.1
and 3.2 is complicated by the need to distinguish lattice and nonlattice cases.
In the lattice case, it may happen that no limiting distribution exists; see
[18], Theorem 1.7.13, for the i.i.d. case, and the discussion in Serfozo [24] in
a regenerative setting. In the nonlattice case, Iglehart’s result [13] for the
waiting times in a queue extends immediately to regenerative processes with
independent cycles. For completeness, we include the proof. Asmussen and
Perry [6] state essentially the same result; see [7], Theorem 3.2, and Rootzén
[21] for related work. Notice that under (A3), M; is necessarily nonlattice.

PROPOSITION 3.3.  If the cycles are independent and (A3) holds, then
P{yX; —log(ncb) < x} —> exp(—e*).

PrROOF. Fix 0 < 8 < c. Then, using the independence of the cycles, we get

P{yX; —log(ncb) < x}
< (P{yM; <log(ncb) + x})"*"® + P{l(n) < n(c - 8)}
— exp{—(1 — 6/c) exp(—x)}.

Thus,
lim sup P{yX} —log(ncb) < x} < exp(—(1 — 8/c) exp(—x)).
Similarly, using the fact that P{M, > x +logn} — 0 as n — oo, we have
lim inf P{yX} —log(ncb) < x} > exp(—(1+ 8/c) exp(—x)).

Since 6 > 0 may be arbitrarily small, the result follows. O
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4. Proof of Theorem 1.1. We begin with the proof of part (i).
PROOF OF THEOREM 1.1(3i).

Because T, is almost surely increasing in x, it
suffices to establish the limit through integer values of x, denoted by n. From
Proposition 3.1 we know that

X,
logn

— 1 a.s.

In particular, we can take the limit through the subsequence {exp(ayn)}, for
any a > 0, and obtain

X exparm)

— 1 a.s.
an

In other words,

P{X piayny <n i0}=1o0r0
according as a > 1 or a < 1. So

P{T, > &*™

i0.}=1or0
as a > 1or a < 1. Hence,

lim inf 1°gf” -1

almost surely. By essentially the same argument, lim sup(logT,)/(yn) = 1
almost surely, from which the conclusion follows. O

For the proof of part (ii), we need to be able to take limits through certain
subsequences. As remarked after Theorem 2.4, general conditions for this are
not available. The particular result we need is contained in the next lemma. Its
proof is rather long and technical, and is therefore relegated to the Appendix.
LEMMA 4.1. Under (A2),
P{X:’/"(logn)“ S n i.O.} = 1

for all a < 1. The conclusion holds for a = 1 if, in addition, be < 1.

PROOF OF THEOREM 1.1(i1).

As in the proof of part (i), it suffices to prove
the limit through integer values. From Proposition 3.2 we get, for any subse-
quence {e""(log n)*},

X*, .—n—vylalogyn
lim inf —<"00gn) 4 2
v~1lloge(yn + alogy n)
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So,

*
lim inf e logne "

>a—1
ytlogon o

and therefore

P{X nognye <n 10}=0 ifa>1
Combining this with Lemma 4.1, we get

P{X:’/"(logn)“ S n i.O.} = 1 or 0
according as ¢ < 1 or @ > 1. In other words,
P{T, > e"™(logn)* io0.}=1lor0

according as @ < 1 or a > 1. This is equivalent to

P{log T, — yn > alogon i.0.}=1or0

according as ¢ < 1 or @ > 1. Hence, we have

lim sup l_o.gu =1,
10g2 n
almost surely.
For the lower limit, namely,
lim inf log Ty —yn _ -1,
logn

Jjust take the subsequence {¢””n~2} and apply Corollary 2.5. The rest of the
argument is standard and very similar to that for the upper limit, so we omit
the details. O

PrROOF OF THEOREM 1.1(iii). Fix a y > 0 and set
v, = exp{yx + log y — log(bc)}.
Then
P{bce T, > y} = P{X} <zx}
= P{X; <y '(logv, —logy+log(bc))}
= P{yX;, —loguv, —log(bc) < —log y}
—e Y asx— oo,

as a consequence of Proposition 3.3. O
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5. Examples and discussion.

5.1. The first long wait in a queue. We begin with the case of waiting times
in a single-server queue, applying our main results in the stable case and
noting supplementary results otherwise.

The input to the model is a sequence {(U,, V,), n > 1} in which U, is the
time between the arrivals of the (n — 1)st and nth customers, and V, is the
service time of the nth customer. LetY, = V,_;-U,andletS, =Y+ - -+Y,,
So = 0. Then assuming the queue is initially empty, the nth waiting time W,
admits the representation

W, = sup {S, — S;}.
0<j<n
We are interested in 7', the index of the first customer whose waiting time
exceeds x. Suppose {Y,, n > 1} are i.i.d. with E[Y 1] < 0. Then {W,, n > 0}
is a positive recurrent regenerative process (with independent cycles). In this
case, we have the following corollary.

COROLLARY 5.1. Suppose that E[Y:] < 0 and that y > 0 solves
Elexp(yY1)] = 1. Then (6)—(8) hold with this y for T, the index of the
first customer with a waiting time greater than x. If Y is nonlattice, then (9)
holds as well.

PrOOF. Iglehart’s [13] Lemma 1 implies that (A3) holds when Y is non-
lattice; a similar argument shows that (A2) holds in the general case. So, the
result follows directly from Theorem 1.1. O

REMARKS. (i) For the maximum wait among the first n customers, Proposi-
tion 3.1 strengthens the convergence in probability in Iglehart’s [13] Corollary
2 to almost sure convergence.

(ii) The equation E[exp(yY1)] = 1 typically has a solution in (0, c0) if the
service-time distribution has an exponential tail.

The stable case E[Y ;] < O is the most important one in queueing theory.
The critical case E[Y;] = 0 arises in the study of cusum control charts, where
T, becomes the run length. In the unstable case E[Y1] > 0, T, gives the
replication length of an importance-sampling procedure that estimates rare-
event probabilities associated with a stable queue by simulating an unstable
queue (see, e.g., [4], pages 276-278). To give a complete picture, we briefly
describe the behavior of T, in these cases.

In the critical case, {W,, n > 1} is regenerative but null recurrent, so our
results do not apply. The behavior of T, is characterized by Robbins [20], who
shows that x 27, has a proper limiting distribution, and x~2E[7T;] — 1. In
the unstable case, {W,, n > 1} is not even regenerative. However, writing
W, =8, —ming< <, S; and noting that (mino<;j<, S;)/n — 0, a.s., we find
that W is a perturbed random walk, in the sense of Gut [12]. A strong law,
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a central limit theorem and an iterated logarithm law now follow from Gut’s
Theorems 2.1, 2.3 and 2.5.

5.2. Cell loss in an ATM switch. We consider, next, a buffered switch oper-
ating in discrete (“slotted”) time. This model is a typical building block in the
analysis of ATM networks (see [8] for background). The switch can transmit
up to c cells in a time slot, with ¢ a constant. The number of cells arriving in
the nth slot is A,. If we let @,, denote the number of cells in the buffer at
time slot n, then

Qn+l = max{o’ Qn + An+1 - C}, n> O,

with Q¢ = 0. If the buffer holds up to x cells and if T, is the smallest n for
which @, > x, then T, is the time of the first cell loss due to buffer overflow.

To model arrival burstiness, the A, are often taken to be increments of
a Markov additive process. In particular, we suppose that there is a Markov
chain {X,, n > 0} with finite state space {1,..., N} such that

P(An+l <a, Xn+1 = jl(Xk, Ak)’ k < n) = Pan(a))

where ( P,-j(oo))ff’j:1 is the transition matrix of X and each P;;(-) is a prob-
ability distribution function on the nonnegative integers. The process X rep-
resents the user environment. We take it to be irreducible and denote by =

its stationary distribution. Let E; denote the expectation operator associated
with Xo =i. If E;[|A1|] < oo for all states i =1,..., N and if

(20) Z mE[A1 —c] <0,

then {Q,,n > 0} is a positive-recurrent regenerative process. (See [5] for
details in a closely related continuous-time model.)
For any real 6, define the nonnegative matrix ®(0) by setting

®;;(0) = E;[exp(8A4:); X1 =j], i,j=1,...,N.

Let ¢(0) be the spectral radius of ®(8). Then log ¢(-) is convex. Suppose there
is a solution in (0, c0), necessarily unique, to the equation log ¢(v) — ye = 0.
Then the stationary probability of the set {g: ¢ > x} satisfies (Al) and the
upper bound in (A2); it satisfies the lower bound if, for example, the {A,, n >
1} are bounded (again see [5] for closely related results). The same is true
(see [8]) for the probability that the buffer content reaches x in a busy cycle,
where a busy cycle begins with (Qo, X¢) having the stationary distribution of
the Markov chain {(@,, X,), n > 0} conditioned on @ = 0, and ends upon
the first return of @ to the origin. In general, busy cycles are not regenerative
cycles; but because X has a finite state space, there exists a state j* such that
the Markov chain {(Q,, X,), n > 0} is regenerative with respect to visits to
(0, j*). The bounds in [8] extend immediately to these cycles, so we have the
following corollary.
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COROLLARY 5.2. If (20) holds, if v > 0 satisfies log ¢(y) = yc and if the
{A,, n > 1} are bounded, then (A2) holds and consequently (6)—(8) hold for
T., the time to overflow.

Because the A, are integer-valued, we cannot expect (A3) to hold except
possibly through integer subsequences.

Part of the interest in this type of model stems from the tractability of the
key parameter v. If the total number of arrivals A, is the sum Al +...+ A% of
arrivals from independent sources modulated by independent Markov chains
X' ..., X* then y is determined as the positive solution to the equation
Y ;log ¢i(y) — yc = 0, where ¢; is constructed as above from the ith chain.
Thus, the individual sources may in effect be analyzed separately, greatly re-
ducing the dimensionality of the problem.

APPENDIX

ProOOF OF LEMMA 4.1. Clearly we only need to prove for 0 < a < 1. We
first consider the case X} = maxi<;<, Y, where the Y; are ii.d. random
variables for which

bie " < P{Y1 > x} < be %,
for all sufficiently large x. By Kolmogorov’s 0-1 law, we need only show that
P{X}mognys < i0.}>0.

In particular, the conclusion follows if we can show that there is an mg such
that for all m > mg there is an m’ > m for which

m . 5\1
@ PLU Ko =mf = (1- )36
Observe that for any events B;,
m' m' m'—1 m'
P[ U Bjt =2 P{Bj}- ) P[Bjﬂ U Bt}.
n=m Jj=m j=m t=j+1
Thus, (21) follows if we prove
(22) i P{X* <n}> i
= e™(logn)s — =16’
andforallmo<m<n<m' -1,

m' 5
@3 P{X:"‘(logn)“ <nand U {Xot(ogeye < t}} = EP{X:’"(logn)" <n}.

t=n+1
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First we establish (22). Pick &, > b and make b}, < 1 if a = 1. For sufficiently
small x > 0 we have log(1 — bsx) > —b,x. So for sufficiently large no,

o 0
Z P{Yl < n}eyn(logn)a > Z (1 . b2 exp(—'yn))em(bg")a

n=ng n=ng

> ) exp{—b; exp(—yn)exp(yn)(log n)*}

= ) exp{—by(logn)*}
= OQ.
Since
P{Y; < t}<"180" < (1 — b exp(—yt))*" (%" < exp{—b;(log?)?} — 0,

as ¢ — oo, we can find an mq > 3 such that for all m > mg, thereisanm’ > m
for which

’

3

1 1
e (logt)® -
(24) 6 < t P{Y; <t} <3

[
3

and

(25) Vn>m, exp{—ba(1 — exp(—y))(logn)*}a, exp(bz) < %,

where a, 2 [ay~'loglogn + v 1log(2bs/log2)] + 1. In particular, (22) holds.
Now we prove (23):YVm' —1>n>m,

ml
P[Xz"‘(logn)a <nand [J { X gogeye < t}}

t=n+1
m/
% *
< Z P{Xe‘Y"(logn)“ =n, Xeyt(k’gt)a = t}
t=n+1

’

m [e”*(log£)®]

= Z (P{X:yn(logn)a < n} l—[ P{YJ < t})

t=n+1 Jj=[e™(logn)s]+1

m’ [e”*(log £)*]

= P{X:V"(logn)“ = n}< Z 1—[ P{Y, < t})’

t=n+1 j=[e"(log n)*]+1
where the last two equalities follow from the i.i.d. property. Now

m' [e” (log#)?]
P{Y, <t}

t=n+1 j=[em(logn)s]+1

= i P{Y; < t}ler"logt)*]-[e7(logn)"]

t=n+1
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+an
< nza: P{Y; < t}le"(logt)*]-[e (logn)?]
t=n+1

m'

+ Y P{Y; < ¢}l (st (logn)?]

t=n+a,

=I1+1I (say),

where we use the notation Zij =0fori > j. Then
n+a,.
I< Z (1 — bge7t)lem(log )]~ [e (logn)*]
t=n+1

n+an

> exp{—bs exp(—yt)(exp(yt)(logt)* — exp(yn)(logn)* — 1}

t=n+1

IA

n+an

Y exp{—ba(logt)* + by exp(—y)(log n)*} exp(b2)

t=n+1

IA

n+an

>~ exp{—b2(1— exp(—y))(log n)*} exp(bs)

t=n+1

= exp{—b2(1 — exp(—7y))(logn)*}a, exp(bz)

1
T [by (25)].

Furthermore, V ¢t > n + a,,
P{Y; < ¢} e"(een)*~1 < exp{—by exp(—yt)(— exp(yn)(logn)® — 1)}
< exp{2bs exp(—ya,)(logn)*} < 2,

IA

where the last inequality follows from the definition of a,. Therefore, we have

m'

<2 Z P{Yl < t}e“/‘(logt)a

t=n+a,
m' .

< 2 Z P{Yl < t}e’/ (log t)
t=m

1 1
The conclusion for i.i.d. sequences follows upon adding I and II.
Now consider nondelayed regenerative processes with i.i.d. cycles and ¢ < 1.

Choose 0 < &', such that ¢ + 8 = 1. Then

PlUxs, <ml > PlOaes oy <t = P Jt0r, <3l
n=~k n==k n=k

So, this special regenerative case follows from the i.i.d. case.
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Finally, the one-dependent case follows by taking odd and even sub-
sequences as in Lemma 2.1, and the delayed case follows in view of
Lemma 2.3. O
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