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ON THE LOCAL TIME OF THE BROWNIAN MOTION

By LaJos TAKACS

Case Western Reserve University

In this paper explicit formulas are given for the distribution function,
the density function and the moments of the local time of the reflecting
Brownian motion process.

1. Introduction. Let {£(¢), 0 < ¢ < 1} be a standard Brownian motion
process. We have P{£(t) < x} = ®(x/+/t), for 0 < ¢t < 1, where

x 2
(1) d(x) = «/%—/ exp(%) du
mT J—c0

is the normal distribution function. Let us define
1
(2) 7(a) = lirr(l) — measure {t: a<é(t) <a+e, 0<t<l1}
e—>0 &

for any real a. The limit (2) exists with probability 1 and 7(«a) is called the
local time at level a. We have

3) P{r(a) < x} =2®(la| +x) - 1
for x > 0. The concept of local time was introduced by Lévy [9, 10]. See also
Trotter [14] and It6 and McKean [6].
By (3) we obtain that
(4) my(a) =E{[7(a)]"} = 2a’+1/ plax)(x —1)"dx
1

for « > 0 and r > 1, where

(5) o(x) =

: T ( 2 )
N 2
is the normal density function, or

6) ‘ m(a) =2r/0°°x'-1[1—<1>(a+x)]dx

for « > 0 and r > 1, where ®(x) is defined by (1). We shall prove later that
m,(a) can also be expressed in the form

. ar! 1 a \(1—1¢)72
) mr(a)_—z,/zr(r/zﬂ)/o “’(%>—t3/2 dt

ifa>0and r > 1.
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742 L. TAKACS

In this paper we consider the reflecting Brownian motion process {|£(¢)|,
0 < t < 1}. Its local time at level @ > 0 is 7(a) + 7(—a). We shall determine
the distribution and the moments of 7(a) + 7(—a). Our approach is based on
a symmetric random walk {{,., r > 0}, where {, =&, +éa+---+ & forr > 1,
o =0and {¢,, r > 1} is a sequence of independent and identically distributed
random variables for which

(€)] P{¢( =1} =P{é, = -1} =1/2.

By a result of Donsker [3], if n — oo, the process {{[n:1/v/n, 0 < t < 1}
converges weakly to the Brownian motion process {£(¢£), 0 < ¢ < 1}. If we
define

(9) 7,(a) = the number of subscripts r = 1,2, ..., n for which ¢, = a,

then by the results of Knight [7] we can draw the conclusion that

(10) lim P{TL([%—ED < x] =P{r(a) < x}

n—oo
for any @ and x > 0, and also

To([ay/n]) + Tn(_[a\/ﬁ]) <x
n =

n—oo

1D lim p{ ] — P{r(a) + 7(—a) < x}

for a > 0 and x > 0.

In this paper we shall determine the distribution and the moments of
Tn(a) + T,(—a) and by a suitable limiting process we shall find the distri-
bution function

(12) P{r(a)+ 7(—a) < x} = L,(x)
and the moments
(13) E{[7(a) + 7(—a)]"} = M,(a)

for o > 0and r > 0.

2. A symmetric random walk. Let us recall some results for the sym-
metric random walk {{,, r > 0} which we need in this paper. See Takacs

[13].
We have
(14) P{zn=2j—n}=("t)i,‘
Jj]2r

+ for j=0,1,...,n, and by the central limit theorem,

‘ . Ln B
(15) lim P{ﬁ < xl = ®(x),

n—oo
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where ®(x) is defined by (1). We have also

(16) 133013{(%)} - /_Z x o(x)dx

for r=0,1,2,..., where ¢(x) is defined by (5).
Let us define p(a) as the first passage time through a, that is,

(17) pla) =inf{r: ¢, =a and r > 0}.
We have

. a a+2j 1
(18) P{P(a)—a+2J}—a+2J-( j )2a+2j

fora>1and j >0, or

(19) P{p(a) <n} =P{{, > a} +P{{, > a}
fora>1andn > 0.
By (18),
& o 1-J1—-w\*
(20) Y P{p(a) =a+2j}w = (__w__>

j=0

fora>1and |w| <1.
We note that

“fa+j-1 a+n
(21) g =

for any a and n > 0, and

> (a+j—1

(22) :
J

)wj =(1-w)®

Jj=0

for any a and |w| < 1. In particular, we have

X [ 2n \ w" © (p-1
23 = = 2 lw"=(1-w)/?
(23) ,;)(n)zh n;(n)w (1-w)
for |w| < 1. Finally, we note that the identity
(24) > P{p(a) = j}P{p(d) =n — j} =P{p(a +b) = n}
Jj=0

is valid foranya>1,b>1and n > 1.
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3. The distribution of 7,(a). The distribution of 7,(a) is determined by
(18) and we have the following asymptotic results.

THEOREM 1. If a > 0 and x > 0, then

(25) ,}LIEOP{TL([%@sz}=2[1—¢(a+x)]
and
(26) lim E {[T—%—”—])H = m,(a)

for r > 1, where m,.(a) is given by (4) or by (6).

PROOF. Let a > 1 and denote by 01,01 + 62,...,01 + 02+ ---+ 6,,... the
successive subscripts r = 1,2,..., for which ¢, = a. Then 04, 0s,...,0,,... are
independent random variables. We have P{0; = a + 2j} = P{p(a) = a + 2}
for j =0,1,2,..., and P{0, = 2j} = P{p(1) = 2j — 1} for j = 1,2,... and
r > 1. By (24) we obtain that

P{r,(a) >k} =P{01+---+0r<n}=P{pla+k—-1)<n+1-k}
=P{{n1-r>a+k-1}+P{{n1r>a+k—-1}
for £ > 1. We note that
(28) P{7,(0) > k} =P{p(k) <n—k}

for £ > 1. If in (27) we put a = [a/n ], where a > 0, and k& = [x./n ], where
x > 0, then by (15) we obtain (25). By (10), (25) proves (3) too. If we calculate
the rth moment of 7,(a) by (27) and replace a by [a+/n ], where a > 0, then
by (16) we obtain (26) for r > 1. O

(27)

Accordingly, if @ > 0, then 7(a) has the same distribution as [|¢]| — a]T,
where ¢ is a random variable whose distribution function is given by (1).
Consequently,

(29) m(a) = E{[7(a)]"} < E{|£I"}
forr>1and a > 0.
The following theorem gives an explicit expression for m,(a).
THEOREM 2. If a > 0, then
(30) my(a) = 2(=1)"{a,(a)[1 - ®(a)] - b, (a)p(a)}
forr=1,2,..., where

[r/2] o 27
31 r =rl! Py e—————
@L arla)=r g 27 j1(r — 2)!
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forr > 1, and

[(r=D/2]  ,r-1-2j J (r—1+v-— !
32 b, = _
(82) (@) J; r—1-2j)l & 2l

forr > 1.

PROOF. We obtain (30) from (6) by repeated integrations by parts. In (30),
aO(a) = 1) al(a) =a, bo(a) = 0) bl(a) =1and

(33) ar(a) =aar_1(a)+ (r— Da,_2(a)

for r > 2, and

(34) br(a) = ab,_1(a) + (r — 1)b,_2(a)
for r > 2. Hence we obtain that
2 ar(a) , x% + 2ax
(35) Z_;) —;'——x = exp<—2—~>
and
< br(a) , _ (x+ a)? x —(u + a)?
(36) ;:6 py x" = exp(——2—>/0 exp(—2———> du.

By expanding (35) and (36) into Taylor series, we get (31) and (32). O

We note that a,(a) = H,(ia)/i", for n > 0, where H, (x) is the nth Hermite
polynomial defined by

[n/2] (—l)jx”_zj
(37) H,(x) =n! T ST
n(%) Jg() 27 jl(n — 2j)!
for n=0,1,2,.... We have
(38) 4 H,(x)=xH, 1(x) — (n — 1)H,_2(x)

for n > 2, where Ho(x) =1 and H (x) = x.
The moments of 7,(a) can be determined explicitly by the following theo-
rem.

THEOREM 3. If a > 1and r > 1, we have

E To(a) _ Z r/i2+[(n—a—-2r—-2j+2)/2]
(39) r Bl 0<j<(n—a—2r+2)/2 [(n —a—2r— 2~] + 2)/2]

xP{pla+r—1)=a+r—-1+2j},
where P{p(a+r —1)=a+r — 1+ 2} is determined by (18).
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PRrROOF. If A, denotes the event that ¢, = a, then the rth binomial moment
of 7,(a) can be expressed in the following way:

Tn(a
(40) E M ) P{Agi2i, Aaroiy - Aayai, }-
r 0<iy<ig<-<ir<(n—a)/2
It is easy to see that
(27-2i 1
(41) P{A,H_gj}=0<Zil:jP{p(a)=a+2L}( j— . )22727
for j > 0. Hence by (20) and (23),
> ; 1-JV1-w\* 1
42 P{A 2w’ =
(42) J=Zo { a+21}w ( w ) 1—
for |w| < 1. Clearly,
2j\ 1
(43) P{Ayi2i12jlAgi2i} = ( ] )2—2;
for j > 1, and by (23),
Sl o 1-JV1-w
(44) ZP{Aa+2i+2j|Aa+2L‘}wJ = ﬁ

J=1

for |w| < 1.
Since the random walk {{,, r > 0} possesses the Markov property, we can
determine (40) by (41) and (43). If in the generating function

(=) (A=) &

(45) w vi-w —w
~ (l—m atr=1 et
- w ) (1—-w)7?

we form the coefficient of w* and sum these coefficients for every k < (n—a)/2,
then we obtain (40). Accordingly,

#|(7)

(46)
2+s5-1 .
= Z (r/— s )P{p(a+r—1)=a+r—1+2J},
J+s<(n—a—2r+2)/2 s

w'here J > 0and s > 0. If in (46) we form the sum with respect to s for
0<s<(n—a—-2r+2-2j)/2, then by (21) we obtain (39). O
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Let us put @ = [a+/n ], where a > 0, and j = [nt/2], where 0 < ¢ < 1, in
(89), and let n — oo. Then we obtain that

. m(lavn]) ]| _ ar! 1 /o \(1-1¢)/2
“ '}L%E” vn ] }_ 2r/2r(r/2+1)/0 “’(ﬁ)_‘—ts/z dt

for r > 1. This proves (7). It is not obvious that formula (7) yields the same
result as (4) or (6). A referee of this paper provided a simple probabilistic proof
for formula (7). He pointed out that if in the process {£(¢), 0 < ¢ < 1} the first
passage through a > 0 occurs at time ¢ € (0, 1), then under this condition 7(«)
has the same distribution as (1 — ¢)/2|¢|, where P{¢ < x} = ®(x) defined by
(1). This observation implies (7).

4. The distribution of 7(a) + 7(—a). The distribution of 7,(a) + 7,(—a)
is determined by its binomial moments. We have

A g k[ T Tn(a) + Tn(—a)
(48) P{Tn(a)+7n(_a)—k}—’§k( 1) (k)E{( . )}

for k=0,1,2,....

THEOREM 4. If r=1,2,...and a=1,2,..., we have

E{(rn<a)+rn<—a>)}
r
oy (r—l)E{<'rn+5_1((2£—1)a—£+1))],
—m\f-1 r

where the right-hand side is determined by (39).

(49)

PrROOF. Let C; = A; U B;, where A; = {{; = a} and B; = {{; = —a}. Then
Th(a) + mh(—a
(50) E{( " (=) )} = > P{Co2i,Car2i, - Cav2i, }-
r 0<iy<iz<-<ir<(n—a)/2
If i > 0 and j > 0, we have by symmetry
(51) P{Asu+2i+2)|Bar2i} = P{Bsgi2i12j1Aat2i}
and
2j—2s 1
(52) P{Bsgi2i12jlAay2i} = OZ ~P{p(2a) =2a + 23}( i—s )m
<s<j

By (20) and (23),

2a
. i ; 1-JV1-w 1
(563) D P{Bsuiais2jlAaraitw’ = ( )
= w 1-w
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for |w| < 1. If in (50) we express each C; as A;U B;, then the right-hand side of
(50) can be expressed as a sum of 2" probabilities. Each term is the probability
of the occurrence of r events in succession. Among these 2" probabilities there
are 2( Zj) in which among the r events either an event A; is followed by an
event B; or an event B; is followed by an event A; exactly £ — 1 times, where
£ =1,2,...,r. If we use (42), (44) and (53), then (50) can be obtained in the
following way: We form the generating function

(o) BT ) D)

2
; -1 w V1—-w 1-w
4
(54) _2i r_1 l_m)(ze—naw—e -
R =ANAS! w (1—w)’?’

In the ¢th term of this sum we form the coefficient of w' and add these
coefficients for every i < n — (2¢ — 1)a and also for every £ = 1,2,...,r. Then
we obtain (50). Accordingly,

E{( (@) + 1n(—a) )]
r

(55) 2’ (r—l) (r/2+s—1)
T\ =1/ o icn-@dTa-2r+20)2 s

xP{p((2¢ -1)a+r—£)=(2—-1)a+r—£+2j},

where s > 0 and j > 0. If in (55) we form the summation with respect to s for
0<s<(n—(2¢—1)a—2r+2¢—2j)/2, we obtain that

Ta(@) + 1(—a) r r—1
=) -5 ()

(56) r/2+[(n—(22—1)a—2r+2£—2j)/2])

X [(n—(2¢—1)a—2r+2¢—2j)/2]

0<j<(n—(2¢-1)a—2r+2¢)/2 (
xP{p((2t—1Da+r—0)=(2¢—Da+r—£+2j}
for r > 1 and a > 1. A comparison of (39) and (56) proves (49). O

THEOREM 5. If a > 0 and r > 1, then the limit

57) }L%E{{T"([aﬁ]) %n(—[aﬁ])]’} — M (a)
exists and
. (58) Mo(a)=23 (;:i)m,«ze - Da),
=1

where m,(a) is given by (4) or by (6).
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PROOF. Ifin (49) we put a = [a/n ], where a > 0, and let n — oo, we get
b7). O

THEOREM 6. If a > 0, then there exists a distribution function L.(x) of a
nonnegative random variable such that

in every continuity point of L(x). The distribution function L(x) is uniquely
determined by its moments

n—oo

} — La(%)

(60) /Oo " dL(x) = M,(a)

for r > 0, where My(a) =1 and M, (a) for r > 1 is given by (58).

PROOF. Since
(61) M. (a) <2"E{|¢|"}

for r > 1, where P{¢ < x} = ®(x), the sequence of moments { M ,(a)} uniquely
determines L,(x), and L,(x) = 0 for x < 0. By the moment convergence
theorem of Fréchet and Shohat [5] we can conclude that (60) implies (59). O

Theorems 5 and 6 imply (12) and (13). Formula (58) is a surprisingly simple
expression for the rth moment of 7(a) + 7(—a). If we know the rth moment of
7(a) for a > 0, then by (58) the rth moment of 7(a) + 7(—a) can immediately
be determined for a > 0. Moreover, formula (58) makes it possible to determine
L,(x) explicitly.

THEOREM 7. If x> 0and a > 0, we have

o0

Lo(x)=1-4) (-1)"1-®((2¢ - Ve + x)]
=1
(62) o £—1 —1,.j
+4y (e_. l)ﬂi—xj(p(j_l)((%—l)a+x),
=2 j=1 J J:

and if x > 0 and a > 0, we have

oo -1 _1ye-1,7
(63) L’a(x)=42 ( .Z )(1?]—.'3‘:]¢(1)((2£—1)a+x),

where
(64) oV (x) = (=1) p(x)H;(x),
¢(x) is defined by (5) and H;(x) is an Hermite polynomial defined by (37).
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PROOF. For a > 0 the Laplace—Stieltjes transform

(65) W, (s) = / e dLa(x)

can be expressed as

(66) Vols) = S(=1) M (a)s"/r!
r=0

and the series is convergent on the whole complex plane. Here M, (a) is given
by (58). If we put (58) into (66), express m,(«) by (6) and interchange sum-
mations with respect to » and £, we obtain that

B 00 1 o0 dle—sx -1
‘I’a(s)_1+4e=zl (e—l)!./o ( )[1—@((22—1)a+x)]x dx

dx?t
67) =1+ 4i(—1)e[1 —®((2¢ - 1a)]
=1
(-1)¢ [ (di1-D((2¢—1)a+ x)]xt1

+4Z(€—1)’/ e ( axt )dx.
Hence we can conclude that

, (=1t /d1—-DP((2¢ — 1o+ x)]xt1
© L =23 g = )
for x > 0, and
(69) L,(0)= 1+4i(—1)‘[1—¢>((2£— Da)]

=1

for a > 0. This proves (63) and (62) for x = 0. From (67) it follows also that

(=1)¢ /d*H1—®((2¢ — 1)a+ x)]xtt
£ — 1)'( dxt-1 )

(70)  La(x) = 1+4z(
for x > 0. This proves (62). O

Obviously,
(71) Lo(0) = P{ sup [£(1)| < o]

0<t<1
for a > 0. By the results of Erdés and Kac [4] we have
4 & (1)1 (—(2j—1)2772>
exp| ——————

(72) P{Os<1t1£>1 [€(2)] < a} Z 2j—1 8a?

* for a > 0. This formula provides an alternative expression for L,(0).
The functions M(a) = Mi(a), D(a) = My(a) — [M1(a)]? and L,(0) are
given in Tables 1, 2 and 3 and are depicted in Figures 1, 2 and 3.
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TABLE 1

The expectation M(a)

a M(a) « M(a) a M(a)
000 1595769 0.85 0.439887 1.70 0.073151
0.05 1.497763 0.90 0.401725 1.75 0.064695
0.10 1403741 0.95 0.366223 1.80 0.057102
0.15 1313688 1.00 0.333262 1.85 0.050299
0.20 1.227579 1.05 0.302721 1.90 0.044217
0.25 1145379 1.10 0.274478 1.95 0.038792
0.30 1.067045 1.15 0.248414 2.00 0.033963
0.35 0.992524 1.20 0.224410 2.05 0.029674
0.40 0921755 1.25 0.202347 2.10 0.025873
0.45 0.854668 1.30 0.182112 2.15 0.022513
0.50 0.791186 1.35 0.163590 2.20 0.019548
0.55 0.731224 140 0.146673 2.25 0.016938
0.60 0.674691 145 0.131253 2.30 0.014646
0.65 0.621490 150 0.117227 2.35 0.012638
0.70 0.571518 1.55 0.104497 2.40 0.010882
0.75 0.524668 1.60 0.092968 2.45 0.009350
0.80 0.480829 1.65 0.082548 2.50 0.008017

TABLE 2
The variance D(a)

[ D(a) a D(a) [ D(a)
0.00 1453521 0.85 0.227301 1.70 0.048554
0.05 1.166538 0.90 0.215725 1.75 0.042835
0.10 0.938066 0.95 0.203610 1.80 0.037676
0.15 0.759520 1.00 0.191109 1.85 0.033043
0.20 0.622694 1.05 0.178399 190 0.028898
0.25 0.519946 1.10 0.165654 1.95 0.025203
0.30 0.444344 1.15 0.153039 2.00 0.021921
0.35 0.389769 1.20 0.140700 2.05 0.019017
0.40 ° 0.350965 1.25 0.128758 2.10 0.016454
0.45 0.323547 1.30 0.117311 2.15 0.014201
0.50 0.303969 1.35 0.106433 2.20 0.012226
0.55 0.289458 1.40 0.096177 2.25 0.010500
0.60 0.277927 145 0.086576 2.30 0.008995
0.65 0.267875 1.50 0.077647 2.35 0.007688
0.70 0.258284 1.55 0.069393 2.40 0.006555
0.75 0.248519 1.60 0.061806 2.45 0.005577
0.80 0.238236 1.65 0.054868 2.50 0.004733

751
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TABLE 3
The probability L,(0)

o L.(0) a L,(0) o L.(0)

0.00 0.000000 0.85 0.230852 1.70 0.821739
0.05 0.000000 0.90 0.277614 1.75 0.839764
0.10 0.000000 0.95 0.324515 1.80 0.856279
0.15 0.000000 1.00 0.370777 1.85 0.871373
0.20 0.000000 1.05 0.415829 1.90 0.885134
0.25 0.000000 1.10 0.459269 1.95 0.897648
0.30 0.000001 1.15 0.500833 2.00 0.908999
0.35 0.000054 1.20 0.540358 2.05 0.919271
0.40 0.000570 1.25 0.577755 2.10 0.928542
045 0.002878 1.30 0.612990 2.15 0.936890
0.50 0.009157 1.35 0.646070 2.20 0.944386
0.55 0.021562 1.40 0.677027 225 0.951102
0.60 0.041362 145 0.705910 2.30 0.957104
0.65 0.068670 1.50 0.732785 2.35 0.962453
0.70 0.102674 1.55 0.757724 2.40 0.967210
0.75 0.142035 1.60 0.780806 2.45 0.971429
0.80 0.185242 1.65 0.802116 2.50 0.975161

For various values of a the functions L,(x) and L/ (x) can easily be cal-
culated by utilizing the Wolfram Research program Mathematica [15]. In this
program ®(x) and H,(x) are built-in functions. Actually,

(73) ®(x) = (1 + Erf[x/Sqrt[2]])/2,

(74) 1 — ®(x) = Erfc[x/Sqrt[2]]/2

and

(75) H,(x) = HermiteH [n, x/Sqrt[2]]/2" (r/2).

We note that if in formula (62) we form the summation only for 1 < ¢ <m,
the error R,,(x) satisfies the inequality

4o((2m +1)a + x) (2m—1)a+x)
@2m+ a+x J2

for (2m — 1)a® > 1+ x and x > 0. If in formula (63) we form the summation
only for 1 < £ < m, the error r,(x) satisfies the ingquality

@2m - 1)a+ x)
V2
 for (2m —1)a? > 1+ x and x > 0. The inequalities (76) and (77) can be proved
simply by using the following inequality of Cramér:

(78) |H,(x)] < k«/ﬁexp(xz/4),

(76) |Rm(x)] <

+ ke

(77) Irm ()] < 4kmemx¢(
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M(a)

1.25

-

0.75

0.25

0.5 1 1.5 2 2.5
FiG. 1. The expectation M(a).

D(a)

0.5 1 1.5 2 2.5 3

FI1G. 8. The probability L,(0).
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where & = 1.08643481121331... or

(79) p2o 2 / e du .
T J1-(1/2)sin?u

See Charlier ([2], pages 49-52).
Finally, we note that in the same way as we found M,(a), we can prove
that if @ < B, then

ry - r_l _ _ r
80) E{[7(a) +7(B)] }—;(8_1>{E{[T(Ial+(€ D(B—a))]"}

+E{[7(IBl + (¢ - 1)(B—a))]"}}

for r > 1. The distribution of 7(a) + 7(B) can be determined in the same way
as the distribution of 7(a) + 7(—a).

5. The local time of the Brownian bridge. Let {n(¢), 0 < ¢ < 1} be
a standard Brownian bridge. We have P{n(¢) < x} = ®(x//t(1—1¢)) for 0 <
t < 1, where ®(x) is defined by (1). Let

(81) ™(a) = lirr(l)l measure {t{: a<n(t) <a+e 0<t<1}
e—>0 &

for any real a. The limit (81) exists with probability 1 and 7*(a) is called the
local time at level a. Each theorem proved in this paper for the local time
of the Brownian motion has a corresponding version for the Brownian bridge
and can be proved in the same way. In particular, we have

_ 2
(82) P{r*(a) <x}=1— exp(w)

for x > 0.
For the local time of the reflecting Brownian bridge {|n(¢)|, 0 < ¢ < 1} we
have the following results: If @ > 0 and r > 1, then

(83) E{[t*(a) + T*(-a)] }—2Z(e_ 1)E{[T*(ea)] }
and, by (82),
84) E{[r(a)]"} = r/O°° 2 Lexp(—(2a + 2)2/2) dx.

By (83) we can determine the distribution function
(85) P{r*(a) + m"(—a) < x} = Ta(x)
for a > 0. If x > 0 and a > 0, then
(86)  Ta(x)=1-2V27 Y Z( ; )L W (2ta + x),

=1 j=0
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and if x > 0 and a > 0, then

(87) T(x) = 2273 3 D7 )
@ = WZ Z —1) (2€a+x),
=1 j

where ¢/)(x) is given by (64). If a > 0, then T',(0) = K(a), where

(88) K(a) =1- zi(_l)l—l exp(_ze2a2) — ? iexp<_(2.] - 1)2772)

2
=1 j=1 8a

is the Kolmogorov distribution function. See Kolmogorov [8].

The distribution function T',(x) was determined by Smirnov [12] in 1939
in the context of order statistics. His results can be stated as follows: Let
&1, €2,...,&, be mutually independent random variables having a common
continuous distribution function F'(x). Let G,(x) be the empirical distribution
function of the sample (¢1, &s,..., &), that is, G,(x) is defined as the number
of variables less than or equal to x divided by n. Let v,(a) be the number of
jumps of G, (x) over F(x) + a/n, that is, the number of values of x for which

(89) Gn(x —0) < F(x) + % < Gn(x).

Smirnov [12] proved that

o ’}L%P[%n«/ﬁ) = x} =1- exp(ch;ix_E)
and
(91) }l"E}oP[ va(ay/n) jﬁvn(—aﬁ) . x} e

if x > 0 and a > 0, where T,(x) is given by (86). The limit theorems (90) and
(91) imply (82) and (85).

In 1973, in the context of random mappings, Proskurin [11] also found
the distribution function 7',(x). He considered a random mapping-of the set
{1,2,...,n} into itself. There are n" possible mappings and they are consid-
ered equally probable. The graph of a mapping contains n vertices labeled
1,2,...,n, and in the graph two vertices { and j are joined by an edge (i, j) if
and only if i is mapped into j. Each component of the graph contains only one
cycle. Let us choose a mapping at random and denote by w,(m) the number
of vertices of the graph at distance m from the nearest vertex in a cycle of the
graph. Proskurin [11] proved that if « > 0 and x > 0, then

{M<x}={p(x)

(92) lim P T

n—oo
- where T,(x) is given by (86).
The referee who proved (7) also called my attention to a forthcoming paper
of Aldous and Pitman [1] in which the above result of Proskurin [11] is proved
by using a Brownian bridge approach.
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