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SURVIVAL OF DISCRETE TIME GROWTH MODELS, WITH
APPLICATIONS TO ORIENTED PERCOLATION'

By THoMAS M. LIGGETT

University of California, Los Angeles

We prove survival for a class of discrete time Markov processes whose
states are finite sets of integers. As applications, we obtain upper bounds
for the critical values of various two-dimensional oriented percolation
models. The technique of proof is based generally on that used by Holley
and Liggett to prove survival of the one-dimensional basic contact process.
However, the fact that our processes evolve in discrete time requires that
we make substantial changes in the way this technique is used. When
applied to oriented percolation on the two-dimensional square lattice, our
result gives the following bounds: p, < 2/3 for bond percolation and
p. < 3/4 for site percolation.

1. Introduction. The model we will study is a discrete time Markov
chain A, on the collection of finite subsets of the integers. There are two
parameters in the definition of the chain, which we assume throughout
satisfy 0 <p <q < 1. Given A,, the events {x € A,,,} are conditionally
independent, and

q, if|Ayn{x,x+ 1} =2,
P(xGAnHlA,,): b, lflAnn{x’x+1}|=1’
0, if|A,Nn{x,x+1}|=0.

Here is an equivalent description of the chain, which will be somewhat more
convenient in the sequel. To construct A,, ; from A,, write A, as a union of
maximal subintervals

k
(1.1) A, = UL,
i=1

where I, ={m, + 1,m; + 2,...,n;} and m; <n; <m,,,. Then A, is ob-
tained by choosing points in {m; + 1, m; + 2,..., n; — 1} with probability ¢
each, and points m; and n; with probability p each. The choices are made
independently. The assumption that p < g guarantees that the process is
monotone: If A, C B,, then by appropriate coupling one can guarantee that
A,,, € B,,,. We say that the chain survives or dies out according to whether
P(A, # @ VY n) is positive or zero (for nonempty finite initial states). With
these definitions, we can state our result:
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614 T. M. LIGGETT

THEOREM 1. (a) Suppose g < 2(1 — p). Then A,, dies out.
(b) Suppose 3<p <1 and q = 4p(1 — p). Then A, survives.

Note that the extreme case ¢ = 1 is easy to analyze directly, to see that
p = 3 (as given- by the theorem) is the correct cutoff for survival. With
A, ={0}, A, is always an interval, whose length is transient if p > 3 and
recurrent otherwise.

Part (a) of the theorem is elementary and is given only for completeness
and as a point of comparison for part (b). It could easily be improved—we are
not looking for a particularly good bound here, just a simple one. To prove it,
we couple A, with an interval-valued process I, so that A, c I, for all n. In
order to specify the coupling, suppose A, C I, for a fixed n. To define the two
processes at time n + 1, first apply the transition mechanism to both A, and
I,,leading to A, ,; C I,. This can be done by attractiveness (= monotonicity).
Then let I,,; be the smallest interval containing I,,. The length L, of I, is
dominated by a Markov chain Z, on the nonnegative integers with the
following transitions: Z,,, = Z, + 1 with probability p2, Z,,, =(Z, — X)*
with probability 2p(1 — p) and Z,,; =(Z, =X — Y — 1)* with probability
(1 — p)®. Here X and Y are independent geometric random variables with
parameter q. For large values of Z,, this is essentially a random walk with
negative drift, provided that g < 2(1 — p).

Before discussing part (b) of the theorem, which is our main result, we will
mention some results about oriented percolation. Oriented percolation is a
probabilistic model which has been studied in the mathematics and physics
literature for over three decades. The version which has been of greatest
interest is obtained by letting the sites (or bonds) of Z?2 be labeled open or
closed with probability @ and 1 — a, respectively. Percolation is said to occur
if the probability is positive that there is an infinite oriented (in the positive x
and y directions) path starting from the origin which passes only through
open sites (or bonds). The critical value «, is the infimum of all values of «
for which percolation occurs. The following rigorous bounds have been ob-
tained for oriented bond percolation on Z?: a, < 0.84 [Durrett (1984)], «, <
0.6863 [Balister, Bollabas and Stacey (BBS) (1993)] and «, < 0.6735 [Balis-
ter, Bollabas and Stacey (1994)]. For oriented site percolation, the corre-
sponding known bounds are a, < 0.819 [Durrett (1992)], «, < 0.762 [Balister,
Bollabas and Stacey (1993)] and «a, < 0.7491 [Balister, Bollabas and Stacey
(1994)]. (The first BBS paper gives the site bound as 0.726; however, this is a
misprint, as is explained at the end of their second paper.) These bounds were
all obtained via some type of block argument, and the better bounds require
substantial computer calculations in order to evaluate the probability of a
particular event which depends on a large block of sites. Nonrigorous esti-
mates of the critical values are 0.6447 in the bond case [Baxter and Guttmann
" (1988)] and 0.7055 in the site case [Onody and Neves (1992)]. Bollabas and
Stacey (1995) give an upper bound for «, of 0.647 in the bond case with
“confidence” 99.99 + %.
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At this point it may be worthwhile to comment briefly on why it is
important to be able to prove good bounds on critical values for models of this
sort. There is always, of course, the argument based on intellectual curiosity.
The importance goes significantly beyond this, however. There have been a
number of recent examples of results which assert that a particular kind of
behavior occurs, whose proofs have been based on finding good estimates for
critical values. Here are two examples.

ExaMPLE 1. The threshold voter model, which clusters in the nearest
neighbor one dimensional case, was proved to coexist in all other
cases—higher dimensions or one dimensional nonnearest neighbor—in
Liggett (1994). The proof relies on the fact that an associated contact process
survives for A = 1. Because of the nature of the comparison between pro-
cesses, knowing this for A = 1.01 would not have helped at all. The
Holley-Liggett technique works at A = 1, and appears to work down to about
A = 0.985. Even techniques as good as those in the BBS papers are unlikely
to do well enough to get the required result.

ExXaMPLE 2. Pemantle (1992) proved that the contact process on the
homogeneous tree in which each site has n + 1 neighbors can survive weakly
(i.e., survive globally but die out locally) if n > 3. (This cannot occur if n = 1.)
He did this by obtaining upper bounds on the critical value for global survival
and lower bounds for the critical value for local survival which were suffi-
ciently good to prove that these critical values are different. Liggett (1995)
obtained better bounds, which allowed him to prove the result for n = 2 as
well.

In order to see the concrete connection between oriented percolation and
the chain A, think of the “time” n as corresponding to the sites (x, y) € Z3
which satisfy x +y = n, and of A, as the set of sites with this property
which can be reached from the origin through open sites (or bonds). Then the
identification is exact provided that we take ¢ = p = « in the site case and
g = a(2 — a), p = « in the bond case. Since (p, q) = (£,%) and (p,q) = &, 2 3)
satlsfy the assumptions of part (b) of Theorem 1, we obtain the upper bounds 2
and 2 for the critical values in these two cases. Note that these are very close
to the bounds obtained by BBS. The advantage we see for our approach is
that it is purely analytic and does not involve computer calculations. We
should mention that the possibility of applying our technique to oriented
percolation was anticipated by D. Williams, who is quoted on page 264 of
Grimmett (1989) as conjecturing that «, < 2 in the bond case could be
proved, presumably in this way.

Our result also applies to mixed bond-site models, for which there do not
-appear to be good critical value bounds in the literature. Take sites in Z 2 to
be open with probability « and bonds open with probability 8. Say a path is
open if all sites and bonds on the path are open. This percolation model
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corresponds to our chain if we let p = a8, ¢ = aB(2 — B). By the theorem,
there is percolation provided that 4aB > 2 + B. Setting a =1 or B =1, we
recover the bond and site results, respectively. Estimates for the boundary of
the percolation region in the mixed case can be found in Tretyakov and Inui
(1995). ’

As pointed out to the author by L. Chayes, one can also apply Theorem 1 to
oriented percolation on graphs other than Z2. For example, consider the
hexagonal lattice in Figure 1. The arrows give the orientation of the bonds. As
before, the sites (or bonds) of this graph are labeled open or closed with
probability v and 1 — vy, respectively. Percolation is said to occur if the
probability is positive that there is an infinite oriented (in the directions of
the arrows) path starting from a prescribed point which passes only through
open sites (or bonds). In order to make the connection with the chain A,
think of the vertical lines in the figure as corresponding to the time steps.
Then A, is the set of sites on the line labeled n which can be reached via an
oriented open path from a given site on the line corresponding to the label 0.
With this identification, we see that ¢ = p = y? in the site case and p = y2,
q = y%(2 — y) in the bond case. So, these models correspond to the mixed
bond-site models on Z? with @ = y2, B = 1 in the site caseand « = 8 = y in
the bond case, and we get

V3 1+ V33

’YCS 5 and ’YCS 8

respectively.

Oriented bond percolation on Z?2 can be regarded as a discrete time version
of the (continuous time) basic one-dimensional contact process. The best
critical value upper bound for this process was obtained by Holley and
Liggett (HL) (1978). Their argument is quite different in nature from block or

()
o)

n-1 n n+1
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renormalization arguments, so it is natural to ask whether some version of
the HL technique can be used in the discrete time context. This is our main
motivation for the present paper—to see how the HL technique can be used
in discrete time.

The outline of the proof of part (b) of Theorem 1 is essentially the same in
the present context as in the case of the contact process:

STEP 1. Let v be the stationary renewal measure on {0, 1}# corresponding
to the density f(n) on the positive integers with finite mean and tail probabil-
ities

F(n) = 5) f(k), n=>1.

Define a function H on the finite subsets A of Z by
(1.2) H(A)=v{n:n(x) =0 VxeA}.

STEP 2. If 3<p < 1and q > 4p(1 — p), show that there exists a choice of
f so that

(1.3) H(A) = EAH(A,)  Vintervals A.

STEP 3. Show that if f is chosen so that (1.3) holds, then
(1.4) H(A) > E4H(A)) V finite sets A.

Part (b) of Theorem 1 follows from these statements, since nonsurvival
implies that
lim EAH(A,) = H(D) =1,

n—wx

while iteration of (1.4) implies that
E*H(A,) <H(A) <1

for nonempty A.

While the outline is similar, the implementation of the HL technique in
discrete time is not a straightforward adaptation of the proof in continuous
time. One reason for this is that only one site can flip at a time in continuous
time, while any number of sites can flip simultaneously in discrete time. This
gives rise to more complicated expressions which have many more terms
when the two sides of (1.4) are computed. A second reason is that the
analogues of (1.3) and (1.4) can be expressed simply in terms of the one
measure v in the contact process case, but require two measures (essentially
corresponding to time zero and time one) in discrete time; see the definition of
v* below. The final reason is that, when written down explicitly, (1.3)
becomes a convolution equation for F which can be solved explicitly in the
contact process case, giving a form from which it is easy to read off properties
which are needed in the proof. In the present context, while an explicit



618 T. M. LIGGETT

solution is possible, it is sufficiently more complicated that the derivation of
needed properties requires more effort.

Next, we will derive the convolution equation for F' which is equivalent to
the set of equations (1.3). (Already in this computation, we will see that the
discrete time analysis is significantly harder than the continuous time proof.
The corresponding derivation in the case of the contact process takes one
line.) First introduce v*, the measure obtained by thinning the renewal
measure v by 1 — g, that is, v* is the distribution of {n(i) A (i), i € Z},
where 7 is distributed according to v and the {(i)’s are i.i.d. (and indepen-
dent of n) with P({(i) = 1) =q and P({(i) = 0) =1 — q. Then v* is also a
renewal measure. Note that v*(1) = qv(1). Here, we have used the natural
shorthand notation v(1) for the cylinder probability »{n: n(x) = 1}, which is
independent of x by translation invariance. Let f* and F* be the spacing
density and tail probabilities corresponding to »*. Given A in the form (1.1),
let A* be the random set which contains the points in {m, + 1, m; + 2,..., n,
— 1} with probability 1 each, and points m; and n, with probability r = p/q
each.

Now take a fixed finite set A C Z, n distributed according to v, { and A*
as in the last paragraph and {7, {, A*} independent. We can construct the
state of the Markov chain at time 1 by

A ={keA*: {(k)=1}.

With this construction,

E4H(A,)) =E%{n:n(i)=0 VieA,)
=P[n(i) =0 VieA*> (i) =1]
=P[n(i) A {(i) =0 VieA¥
=Ev¥{n:n(i) =0 VieA*}.

(1.5)

Note that this is quite analogous to (1.2). When A ={1,2,...,n} is an
interval with n points, A* is a random interval which has n — 1, norn + 1
points. Applying (1.3) with n = 1 gives
v(0) = (1 —r)* + 2r(1 — r)v*(0) + r2*(00),
where we have again used our shorthand notation for cylinder probabilities.
Subtracting both sides of this identity from 1 leads to
v(1) = 2r(1 — r)v*(1) + r2[v*(11) + »*(10) + »*(01)].

Using »*(11) = »*()f*(1), F*@) = 1 — *(1), v*(10) = v*(DF*(2) and v*(1)
" = qu(1), this implies that

1-2qr+qr?
1. s9) = 127 .
(16) P -
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Taking differences of (1.3) for two consecutive values of » and arguing in a
similar manner gives
) F(n) =q[r2F*(n+1) +2r(1 —r)F*(n)
(1.7 .
+(1-r)’F(n-1)], n=2
On the other hand, for n > 1,
v*(1)F*(n) = P[n(0) = £(0) = 1, (k) A {(k) =0V 1<k <n]
=qP[n(0) =1,m(k) =0V1<k<n]

n—1
+q(1- Q)kZ P[n(0) = n(k) =1,7(j) =0V 0 <j<k,
=1
(i) AL(i) =0V Ek<i<n],
so that
n-1
(1.8) . F*(n) =F(n)+(1—q)kZ=ll.f(k)F*(n—k)~

Next note that the right side of (1.7) is a linear combination of F*(n — 1),
F*(n) and F*(n + 1). Taking the same linear combination of (1.8) for n — 1,
. n and n + 1 and using (1.7) yields

F(n) =qr®[F(n+1) + (1 - q)ki:lf(k)F*(n +1- k)]

n—-1
+2qr(1=r)|F(n) +(1 - q)kZ_llf(k)F*(n - k)]

n
k=1

-2
+q(1 - r)Z[F(n “1D)+(1-9q) Y f(F)F*(n—1- k)].

The F* terms in the sums on the right of this expression appear in the right
linear combination, so that (1.7) can be used again to write

F(n) =qr*F(n + 1) + 2qr(1 —r)F(n) + q(1 — r)?F(n - 1)
n—2
+(1 - Q)kglf(k)F(n —k) +qr*(1 - q)f(n)

+qri(1—q)f(n — 1)F*(2) + 2qr(1 —r)(1 - q)f(n —1).
Using (1.6), gr = p and the relation between f and F, this simplifies to

n-1
(1-q) X f(k)F(n — k)
k=1

=(1-2p+2p*)F(n)
—lg —p(2 -p)|F(n —1) —p*F(n + 1),

(1.9)
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for n > 1. Writing f(n) = F(n) — F(n + 1) again, (1.9) can be rewritten as

n—1

(1- Q)EIF(k)F(n —k) +[q-p(2~-p)|F(n~-1) - p*F(n)

=(1- q)ki:lF(k)F(n +1-%k)

+[g —p(2 - p)IF(n) - p*F(n + 1),
so the right side of this expression is independent of n. The right side is zero
for n = 1 by (1.6), since

_ v(10) v(11) v*(11)

B TC T TR €1}

L - Fe) - [122]
1- -l - | =2

and hence it is zero for all n > 1. The conclusion is that
p?F(n + 1)

.(1-10) =(1_q):i:lF(k)F(n+1—k) + (1= p)*F(n),
=1

for n > 1. This is the explicit form of (1.3).

In the oriented bond percolation case on Z%, 1 — g = (1 — p)?, so the right
side of (1.10) can be written as a single sum up to n. In fact, in this case,
(1.10) is exactly the system of equations which must be solved in the contact
process context. [See (1.20) on page 270 of Liggett (1985).] The solution of
(1.10) is much simpler in this case than it is in general.

It is easy to see that the hypothesis of part (b) of Theorem 1 is a necessary
condition for the existence of tail probabilities F(n) which satisfy (1.10).
First, note that (1.10) implies that p?F(n + 1) > (1 — p)?F(n), so p > 3 if
F(n)] 0. Second, let,

M= fF(n)<oo

n=1
and sum (1.10) for n > 1, obtaining
p’(M—-1)=(1-q)M*+ (¢ —2p +p*)M.

This is a quadratic in M with discriminant q[q — 4p(1 — p)], which must be
nonnegative if (1.10) is to have a summable solution.

In the next section, we will show that the (trivially unique and positive)
solution F of (1.10) is decreasing and summable if < p < 1 and q > 4p(1 —
p). The final part of the proof of Theorem 1 is to show that (1.4) holds. This is
done in Section 3. The proof is considerably easier in the case ¢ = p, and the
reader might want to follow the proof in this case at first. When q = p, A* is
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deterministic rather than random, and (1.7) simplifies to
(1.11) F(n) =qF*(n + 1), n>2,

which simplifies matters significantly. The remark following (3.15) indicates
another place where the argument simplifies if ¢ = p.

This paper is devoted exclusively to the issue of survival of the “finite
system,” since it is this which is normally of interest in the percolation
context. One could also ask about conditions for survival of the infinite
system, in the sense that there is a nontrivial invariant measure for the
Markov process A, on the space of all (infinite) subsets of Z!. One way to
relate these two types of survival is via duality. To explain, suppose that B,
is another discrete time Markov process on this space, which evolves in the
following way: Conditional on B,,

'Bn+1 = LJ J;’

x€B,

where {J,, x € Z'} are independent, and

a, with probability 1 — g,
s {x}, with probability ¢ — p,
= )\ {x+ 1}, with probability ¢ — p,

{x,x + 1}, with probability 2p — g,

where we assume p < q < 2p (which is the interesting case). It is easy to
check that PA(A, 2 x) = P(J, N A = @), for every x, A, and hence P4(A,
N B = ) = PB(A n B, = Q). Iterating this gives the duality relation

(1.12) PA(A,NB=Q)=P5(ANnB,=0),

for all A, B and n > 1. In particular, one of these processes survives in the
finite sense if and only if the other survives in the infinite sense. [Take
A = {0} and B = Z!, or vice versa in (1.12).] In general, B, is a different type
of process than A,. However, if 1 — g = (1 — p)* (which corresponds to
oriented bond percolation), then they are the same process, so the finite
system survives if and only if the infinite system survives. To prove survival
of the infinite version of A, in other cases, one would have to carry out the
analysis of this paper for the corresponding (finite) B, process. While we
have not attempted to do so, we did the initial computations which suggest
the values of (p, q) for which one can expect the argument to work. The
analogue of (1.10) for the process B, is

2 PR L p*(1-q)
P’F(n+1)=(1-p) LF(j)F(n+1-j)+ ———F(n),
i 2p—q
Jj=1
for n > 1. The analogue of the condition g > 4p(1 — p) in Theorem 1 is
—2p + 9p? — 8p?

1= T pyGp-1)
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This is more stringent than the assumption in Theorem 1 if p > 2, and less
stringent otherwise.

2. The identities. This section is devoted to the analysis of the solution
of (1.10).

PROPOSITION 2.1.  Suppose
3<p<1 and q=4p(1l-p).
Let F(n) be the unique solution of (1.10) with F(1) = 1. Then
F(n +1) <F(n),
forn>1,and ¥ F(n) < o,

ProoF. In order to solve (1.10), let
o(u) = X F(n)u"
n=1

be the generating function of F. Multiplying (1.10) by z"*! and summing
from n = 1 to » yields [recall F(1) = 1]

plé(u) —ul = (1~ q)[d(x) —uld(u) + (1 - p) ud(u),
-which simplifies to
(1-q)¢*(w) — ¢(u)(p® — [¢ — p(2 = p)]u) + up® = 0.
In order to simplify the expression resulting from solving this quadratic,
make the change of variables

1-p+yl—gq b 1-p—-vy1-g
p ’ p '
Note that the assumptions on p,q imply that || < a < 1. [The latter in-
equality comes from 1 — g < (2p — 1)?, which is equivalent to ¢ > 4p(1 — p).]
Inverting the relation in (2.2), we get

2
2+a+b
Substituting, the quadratic becomes

(a —b)*¢p2(u) — 4(1 — abu) d(u) + 4u = 0.
Solving this quadratic for ¢(u) gives

2
(2.3) ¢(u) = ———[1 - abu — (1 = a®u)(1 - b%u) |,
(a—b)

. where the negative sign in front of the square root is used because ¢(0) = 0.
Putting z = 1 in (2.3), we see that F' is summable. Note also that b = 0 in
the oriented bond percolation/contact process case, which means that the
polynomial inside the square root in (2.3) is linear, rather than quadratic. It
is that simplification which makes more explicit computations possible in
that case.

(2.2) a

2

a-—-b

and 1-g=|57——"F

p=
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Next, use
i 2k)!
(2.4) Vi—x = — ) c,xF, cp = (2 )
ot #(kD(2k — 1)
to expand (2.3). After equating coefficients, the conclusion is that
(2.5) F(n) = Z cjc,_;a¥b** D, n>1.
(a - b) Jj=0

This is an identity in a and b (with F depending on a and b also), which is
valid for @ # b (ie., g < 1). Note from (1.3) that F(n) is continuous in p,q
away from p = 0 and that when g = 1,

1-p 2

F(n+1) =|——| =a%, n = 0.
p

Multiply both sides of (2.5) by (a — b)? and take the limit as b 1 a to conclude
that the coefficients ¢, satisfy

n
chc_ =

Jj=0
Writing this as
“zere, = T en,

0<j<n
we see that
(2.6) F(n)= Y cjen_la¥ — b2 ][a¥n ) — A,

( - b) 0<j<n

for n > 1. Define

a% — b2

dj=¢;———3 >

for j > 0, d; = 0 for j <0, so that (2.6) can be written as F(n) = L d;d,_;,
for n > 1. We will need to know that d, satisfies a property which is shghtly
stronger than monotonicity:

(2.7) 2nd,., < (2n - 1)d,.
This is equivalent to the statement that the following sequence is bounded
above by 1:

2n dn+1 2n Cni1 a2n+2 _ b2n+2 n a2n+2 _ b2n+2

2n-1 d, C2n-—-1 c, a?n — p2n T n+1 g’ —p2n

This, in turn, is equivalent to-
n[a2n+2 _ b2n+2] < (n + 1)[a2n _ b2n]’
which is an exercise in calculus: 1 + nt"*! — (n + 1)¢" is decreasing on [0, 1]

and is 0 at ¢ = 1, and hence is greater than or equal to 0 on [0, 1]. Now set
t =(b/a)? and use b% <a® < 1.
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We now use (2.7) to complete the proof of the proposition:
J

j—1[2j-3 n—j [2n-2j-1
) 4 . )
= g{n—l[Zj—Zd’_l]d”“_J n—ldJ[ o2y %n-i

Z 2n —2j -1 N 2j-1
2n — 2 2n — 2

d;d,_; = F(n),

J
so that F is decreasmg. |

In the next section, we will need to use a relation between the density f
and the renewal sequence u corresponding to it, which is defined by «(0) = 1,
and

(2.8) u(n) = kéf(k)u(n — k),

for n > 1. To obtain the desired relation, first take the difference of (1.9) for
two successive values of n to obtain

n—-1
(1-q) X f()f(n—-J)
Jj=1

(2.9)
=(2-qg-2p+2p*f(n)

~[g —p(2-p)If(n-1) - p*f(n +1),

for n > 1. Next, take n > 2 and use (2.8) twice and (2.9) once to write

(1= a)u(n) = (1 =) & fkyun ~ #)

n—-1 n—k

=(1-9) T (k) T f(D)u(r —k =) + (1= ) f(m)
= j=

=(1-9) X f(R)f(Hu(n—k—j)+(1-q)f(n)

J k=1
k+j<n

=(1-q9) Y fG-)fNHu(n-i)+ (1 -q)f(n)

l<j<i<n

(1-4q) Z u(n — i) Z fHFGE—=J) + (1 -q)f(n)

i‘,zu(n —-i){(2-q—2p +2p*)f(i)

—[g - p(2 - p)If(i — 1) — p2f(i + 1)]
+(1-q)f(n).
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Now apply (2.8) to each of the three convolutions of © and f which appear on
the right, obtaining

(1-q)u(n) =[2~-g—-2p+2p°][u(n) - f(Du(n - 1)]
—[lg - p2-p)lu(n-1)
—p*u(n +1) - f(Du(n) - f(2)u(n — 1)]
+(1-q)f(n).
Using the values

2p —1 1-p)2p+q-2
f1) = 3= and f(2) = d-p) (p’f -2
which come from (1.10), the above identity becomes
p*lu(n +1) = 2u(n) +u(n - 1)] = (1 - q)f(n).
Rewrite this as
pilu(n) —u(n+1)] - (1 -q)F(n+1)

=p*lu(n - 1) —u(n)] - (1 - q)F(n).
This implies that the right side is independent of n for n > 2, and direct
computation shows that it is zero for n = 2. It follows that it is zero for all
- n > 2, and hence that

(2.10) pilu(n—1) —u(n)] = (1-q)F(n), n=2.
In particular, we see that u is decreasing.

3. The inequalities. This section is devoted to the proof of (1.4). We
assume throughout that p and g satisfy the assumptions of part (b) of
Theorem 1 and that F is the solution to (1.10). Define functions L, R, L* and
R* by the conditional probabilities

L(i) =v{n(j) =0 VjeAn (—x,i)ln(i) =1},

R(i) = v{n(j) =0 VYjeAn(i,»)|n(i) =1},

L*(i) = Ev*{n(j) = 0 ¥jeA* n (=,i) | n(i) = 1)
and

R*(i) =Ev*{n(j) =0 VjeA*n (i,») | n(i)=1}.
Then using (1.2), (1.5), the renewal property and a decomposition according to
the locations of the first 1’s to the left and right of n + 0.5, we may write, for
any n,

H(A)

v{n =0on A}

Y, v{n=00n AU (j,1),n(j) =n(l) =1}
(3.1) el
V(1) T L)AL -)R()

Jj<n<l
JlEA
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and
EAH(A,) = Ev*{n = 0 on A*)
'=E ). v¥{n=00nA*U(j,1),n()) = () =1}
(3.2) I5ear
=v(DE Y L*() (U -J)R*(D).
g

In order to prove that H(A) > E4AH(A,), we will do an interpolation between
the right sides of (3.1) and (3.2). Write A in the form (1.1). For 1 <i < %,
define

S;=cE Y L(j)g(l-Jj)R*(1),
j<m,, jEA
Izn,, [€A*

where ¢ is a constant and g is a probability density on the positive integers
which will be determined shortly. Let G be the tail probabilities correspond-
ing to g. Putting n =m, in (3.1) and noting that R(l) = R*({) =1, for
1 > n,, we see that

(3.3a) H(A)=v(1) Y L(j)F(n,—Jj+1).
Jjsmy
JEA

Putting i = £ in the definition of S; gives

Sy=c X L(j) X g(l-j)P(l & AY)

Jj<my, l>n,
JEA
(3.3b) . . .
=c X L()[G(n, —J) —rg(n, —J)]-
TS

We have used here the fact that P(n, € A) =r and P(l € A) =0 for [ > n,.
Similarly, using (3.2) instead of (3.1) (with n = m,) and i = 1 in the defini-
tion of S,

(34a) E4H(A;) = v(1)E ¥, R*(1)[F*(I — my) — rf*(I — my)]

l>n,
leA*
) apd ‘
(3.4b) S, =cE ¥ R*(1)G(l — m,).
l>n,

lgA*
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The expressions on the right of (3.3a) and (3.3b) agree if
(3.5) v(1)F(i +1) =c[G(i) —rg(i)], i=1,
while the expressions on the right of (3.4a) and (3.4b) agree if
(3.6) v¥*(1)[F*(i) — rf*(i)] = cG(i), i=1.

We want to solve (3.5) and (3.6) for ¢ and G(-). Recall that G(1) = 1, so ¢ is
determined by (3.6) with ¢ = 1:

- v(1l
e = v(D)[1 - rpe(1)] = LEZPVAD)

Then (3.6) for the other i’s can be solved to give
g(i)=G() -G(E+1)
(3.7) *( ) :
[(A=r)f* () +rf*(i+1)], i=1.

By (1.7) and (3.7) [recalling v*(1) = qv(1)],
v(DF(i+ 1) —c[G(i) - rg(i)]
= v(1)qr2F*(i + 2) + 2v(1)qr(1 — r)F*(i + 1)
+v(1)q(1 — r)’F*(i) — v*(1)(1 — r)F*(i)
- v*(V)rF*(i + 1) + v*(1)r(1 — r)f*(7)
+ v*(1)r2f*(i + 1)
=0,

so that (3.5) is automatically satisfied. It follows from (3.3) and (3.4) that,
with this choice,

H(A) =S, and EAH(A,) =S8,

so (1.4) will follow from the appropriate monotonicity of S;’s in i: S;,; > S,,
1 <i <k.So, take 1 < i <k and use the definition of the S;’s to write

Siv1—8;
c
=E Y L()e(l-j)R*)
Jsmipq, JEA
l>n,,.,, leA*
—E ) L(jg(-j)R*)
Jsm JEA
l>n;, l¢A*
=E Y L()s(-j)R*(1)
Jj<m;, jEA

l>n, ., l€A*
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+E Y L())g(l-j)R*()
(38) n;<jsm,i,
I>n,,, [£A*

-E Y L()e(l-))ER*)

j<m;, JEA
I5n,,,, 1€A*

- E r L(j)g(l-J)R*(1)

jsmn JeA
n,<l<m;,,, l€A*

=E Y L(Hs(-j)R*1)

n,<jsm,,,

I>n; ., lEA*
—E )y L(j)g(l -Jj)R*(1).
j<m;, jEA

n,<l<m, ., l€A*

We need to show that the right side of (3.8) is nonnegative. In order to do so,
we exploit some relations which the functions L and R* satisfy, as a
consequence of the renewal properties of v and v*:

(3.92) L(j)= LL(OYf(i-1),
I
(3.9b) R*(1) = le(j & A) (7~ 1)R*(J),
j>
(3.9¢) L(j) = 1= L ui = OLO),
le}]l
(3.9d) R*(1) =1-q X u(j— )R*(j)P(j € A¥).
Jj>1

To prove (3.9¢), for example, use a decomposition according to the location of
the leftmost 1 to write

1 - L(J)

v{n(l) = 1forsomel € A N (—x,j) | n(Jj) =1}
Y v{n(l)=1,n(i) =0foralli e AN (—»,l)|n(j) =1}

I<j
leA

= T u(j - DL(D).

I<j
leA

., For (3.9d), the argument is similar, but uses also the fact that u*(n) = qu(n)
for n > 1. For (3.9a), use a decomposition according to location of the right-
most 1.

Using (3.7) to write g in terms of f* in the first and last steps below, and
using (3.9b) in the middle step, we see that the first term on the right of (3.8)
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is
v*(1)

c

D L(j)[(l—r) T P(l&A%) (1 - j)R*(1)

n,<Jsm, lan+1

+r Y. P(leAf*(l—-j+ l)R*(l)]

lznz+l

= X L)

ni<Jjsm;i,

(I-r)R*(j)-(1-r)

X Y fr-j)R*(1)P(l&A*) +rR*(j— 1)

(3.10) j<tsm,
- ¥ f*(l—j+1)R*(l)P(leEA*)]
Jj<l<m,
v*(1)

= Y L)HIA-r)R*) +rR*(j - 1)

n,<j<m;,,
—rf*(L)R*(j)P(Jj & A*)]
- X L(He(l-j)R*(H)P(l ¢ A*).

n;<j<l<sm,,,

Therefore, the right side of (3.8) becomes

v*(1
ST 1)l - nrG) + R -1
(3.11) —rf*(1)R*(j)P(Jj & A")]
- IZ ) L(j)g(l —j)R*(L)P(l & A¥).
<l j#

n;<l<m,

We now need to write g in terms of f, so that we can use (3.9a) to rewrite
the last part of this expression. Taking differences in (3.5), we see that

v(Df(i+1)=c[(1-r)g(i) +rg(i +1)], 1>1.
Rewrite this as

(z+1)—£f(z+1)+

(l)
and iterate (i.e., show by induction on k) to get

g(n) = Q Z f(n —J)[

J

r— k+1
+g(n—k—1)[T] , 0<k<n-2
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Use this for 2 = n — 2 to conclude that

-1
g(n )——Zf(n—J)[ ]
(3.12)

q-p—-pg|r—1
r

p(1-p) ] o on=l

In the last step of this computation, we have used the following values, which
come from (1.10), (1.6), (1.7) and (3.6):

2p
f(1) = PR pc =qv(1)(1 —p) and

(3.13) ~
g(1) = !ﬂ_l,

Put A =(r-1)/r € (-1,0] (since 2p > q > p) and, for the moment, fix
l €[n;,m;.,]. Then using (3.12) in the first step and (3.9a) in the second
gives

Y L(j)e(l-j) = T XAt Y L()f(l-j—-m)
J<i P uso j<l-m-1
JEA JjEA
q-p-pq i
" p(1—-p) E;LU)A
JEA
_ 1 ; _4-p-pq -
19 o LU - et Lton
JEA
- ; Pq I=j
ST (¢ -p)(1 - E;L(J)A
qa-p-pq -
@-ma-p) &M
JEA

Using this in (3.11) and the fact that

*(1 1) 2p -1
) @) P g ey = 2P
c c 1-p pr

by (3.13) and (1.6), respectively, we see that, except for a common factor of
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1 — p in the denominator, the right side of (3.8) becomes
p(1-r) X L()HR*(j)-2p XL L(HR*J)P(j <A

n,<jsm,., nz<jsmi+l

+pr Y L(H)R*(Jj-1)
n;<j<m;iq

315 ——— ¥ R)P(I£A)LG)NT

97D n<i<m,,q,j<l

_1-p7p Z R*(1)P(l éA*)L(j)/\l_j
q-p n;<l<m;,
j<i, jeA
—(1 =r)L(n;)R*(n;).

It is this expression which we must show is nonnegative.

We pause at this point to note that in case p = q (i.e., »r = 1 and hence
A = 0), (3.15) simplifies to

-2p Y L)HR*()+p L LHR*G-1
nz<j<mi+l n,<jsm,+1
+p X L(j-1R*J).
n,+1<j<m,

[The q¢ — p in the denominators of the fourth and fifth terms of (3.15) cancel
witha g — p in A = (p — q)/p before taking p = q.] This expression can be
rewritten as

p L [L(kE+1) = L(k)1ys ] [R*(R) = R*(k + D)1jcpm,, 1]

n,<k<m,,,

This is seen to be nonnegative, once one has some monotonicity for the
functions L and R*. [See (3.21) below for the required fact about R*. The
monotonicity of L is similar.] For general p,q, (3.15) involves many more
terms, including L(j) for j’s which are in different subintervals of A°. (The
monotonicity of L and R* does not extend across points in A.) Handling

them requires more analysis, which is given next.
Use (3.9¢) to rewrite the first four terms in (3.15) in terms of the values of
L on A. The terms in the resulting expression which do not contain a factor of

L are
p(l-r) X R*j)-2p X R*J)P(jeA")

n;<jsm;., nz<jsmt+l

i Y R(G-1)-2 % RA(1)P(L & A*) ¥ A,

n,<j<m,,q q n,<l<m, J<i

Summing the geometric series in the last term explicitly [the sum is A/(1 —
A) =r — 1] and using the fact that P(j ¢ A*) =1 for n;, <j<m,,, and
P(j¢A*) =1 —r for j = n;, m;,,, it follows that all the above terms cancel
except pR*(n;).
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Next, collect all the terms that do involve a factor of L, noting that
l<j<m;,,, | €A implies | <n,;. It is easy to see what the contributions
from the first three sums of (3.15) are. The contributions from the last three
terms give the following multiple of L()R*(j)P(j & A*), for [ <n;<j <
m;,q, L €A:

PL s yim -yt - LP P4

N, a—1
q=P 1 q-p ¢

{j=l=n}>
which can be rewritten as
pq . .
—— Y u(m-pNE= AL
q—-p l<m>j

The result of these observations is that (3.15) can be expressed as

Y pu(J—DRR (P> &AY)

nz<j5mz+1

pR*(n) + X L)

l<n,,l€A

—(1 = r)R*(j) - rR*(j - 1))
(3.16) + T RU)P(EA)

n<j<m, i,

o i u(m —HN™™ = ML
[ % w0 )]

q—-p lsm<j

Use (3.9¢) again (with j = n;; recall that n; € A) to write the first term in
(3.16) in terms of the values of L on A, so that (3.16) becomes

Y L(1)| pR*(n;)u(n; — 1)
i
+ X pu(j—1)(2R*(J)P(j ¢ A¥)
n,<j<m,,.,
(3.17) —(1 - r)R*(j) —rR*(j — 1))

+ X R()PeAY

n;<Jsm, g

%

e Y ou(m-HN " - AJ‘-’)].

q9-p l<m<j

~ Recall that we are trying to.show that (3.8) is nonnegative. We now see

that it is sufficient to show that the coefficients of the L’s in (3.17) are
nonnegative. Rewriting these coefficients to put together those terms for
which R* has a given argument, we see that it is enough to show that the
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following is nonnegative for [ < n;:

R*(ni)[p Y u(m =A™ —rpu(n; +1-1) — (1 - r)/\”l_l]

lsm<n;
+ L R T ou(m-ny
ni<j<m,i 97 P <mxj
(3.18) p’
: —mpu(j+1-1)— ——u(j—-1) - A"!
( ) 2(a =p) (J-10)

+R*(mi+1)[p Y u(m - A

lsm<m;

—rpu(m,,, — 1) - (1 - )A]

In this computation, we have used P(j € A*) =1 —r for j=n;,m; , and
the relation (1 — r)qg = q — p.
To simplify (3.18), define

a(n)=p Y, u(j)A —pru(n + 1) +rarti,
J+l=n
J 120

for n > 0. Recalling that rA + (1 — r) = 0, we see that (3.18) becomes

q

R*(n;)o(n; —1) + Y R*(j)

n;<j<m, ., qa-p

o(j—1)

2

q_rp[u(j—Z)—u(j—Hl)]

+R*(my ) [o(miy — 1) —prlu(m;,, = 1) —u(m;, +1=1)]].
A further simplification occurs if we use the following relation:
(1-r)o(n) +ro(n+1)

=p[l—-r+ri] i w(j)N"7 + rpu(n + 1)
(3.19) j=o]
—pr(l —r)u(n + 1) —priu(n +2) + r[1 —r + rA]A**!

=prilu(n + 1) —u(n + 2)].
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Replacing the differences of u’s by o’s, the result is that (3.18) equals
R*(n)o(n,~1)+ Y R*NDe(j-1)-a(i-1-1)]
ni<j<mz+1
q-p
- R*(m)o(m, —1 = 1)

= ¥ [RG-1)-RNDe(i-1-1)

n;<j<m;i1

(3.20)

#RE iy = 1) = T E R (mi ) o (miy s~ L= 1),

The equality in (3.20) comes from summing by parts.
To complete the proof that (3.20) is nonnegative, it now suffices to show
that

R*(1—1) > R*(l) forn,<l<m,,,,

3.21 -
( ) R*(m; 1 —1) 2 77

R*(m;,,)

and

(3.22) o(n) >0 forn >0.

Inequalities (3.21) follow from (3.9d) and (2.10), which implies that u is
decreasing. Here are the details. Use (3.9d) to write

R*(l)=1-q Y u(j-1)R*(j)P(j<A*),

Jzm,

for n; <l <m;,,, which immediately gives the first part of (3.21) by the
monotonicity of u. For the second part, write

R*(m;,)=1-q Y u(j—m;)R*(J)P(j € A¥)

J>m;iq
and

R¥(m;y— 1) =1-q Y u(j—my,+1)R*j)P(j €AY

J>mg
—qu(l)R*(m;,1)(p/q)

and use u(1) = 2p — 1)/(p?) [see (3.13)] and the monotonicity of u again to
conclude that

2p -1

R*(m;,,) <R*(m;; — 1) + R*(m; 1),
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and hence that

1-— _
pR*(mi+1) Z 17

R*(m; ;- 1) = R*(m;.q).

To prove (3.22), use (3.19), (2.10), (3.5) and (3.13) successively to show that
(1-r)o(n) +ro(n+1)
=pr?lu(n + 1) —u(n + 2)]

= MF(n +2)

= rzijlv—(_l)q)c[(l —r)G(n + 1) + rG(n + 2)]

_a _qz(l “P) 11— 1YG(n + 1) + rG(n + 2)],
for n = 0. Since

o (0) = p — pru(l) + ra = & _Q)q(l P
it follows that
o(n) = L2 q)q(l “P) G+ 1) 0,
for n > 0 as required.
REFERENCES

BALISTER, P., BOLLABAS, B. and STACEY, A. (1993). Upper bounds for the critical probability of
oriented percolation in two dimensions. Proc. Roy. Soc. London Ser. A 440 201-220.

BALISTER, P., BoLLABAS, B. and STACEY, A. (1994). Improved upper bounds for the critical
probability of oriented percolation in two dimensions. Random Structures Algorithms
5 573-589.

BAXTER, R. J. and GUTTMANN, A. J. (1988). Series expansion of the percolation probability for the
directed square lattice. J. Phys. A 21 3193-3204.

BoLLABAS, B. and STACEY, A. (1995). Approximate upper bounds for the critical probability of
oriented percolation in two dimensions based on rapidly mixing Markov chains. Adv.
in Appl. Probab. To appear.

DHAR, D. (1982). Percolation in two and three dimensions I. J. Phys. A 15 1849-1858.

DURRETT, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040.

DURRETT, R. (1992). Stochastic growth models: bounds on critical values. J. Appl. Probab. 29
11-20.

GRIMMETT, G. (1989). Percolation. Springer, Berlin.

HorLEY, R. A. and LiGGETT, T. M. (1978). The survival of contact processes. Ann. Probab. 6
198-206.

LicGeTT, T. M. (1985). Interacting Particle Systems. Springer, Berlin.

LIGGETT, T. M. (1994). Coexistence in threshold voter models. Ann. Probab. 22 764-802.

Liceert, T. M. (1995). Multiple transition points for the contact process on the binary tree.
Preprint.



636 T. M. LIGGETT

Onoby, R. N. and NEVES, U. P. C. (1992). Series expansion of the directed percolation probabil-
ity. J. Phys. A 25 6609-6615.

PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.

STACEY, A. (1994). Bounds on the critical probability in oriented percolation models. Thesis,
Univ. Cambridge.

TRETYAKOV, A. Y. and INuI, N. (1995). Critical behavior for mixed site-bond directed percolation.
Preprint.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
Los ANGELES,, CALIFORNIA 90024



