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DIFFERENTIAL EQUATIONS FOR RANDOM
PROCESSES AND RANDOM GRAPHS!

By NicHoLAS C. WORMALD
University of Melbourne

General criteria are given to ensure that in a family of discrete random
processes, given parameters exhibit convergence to the solution of a system
of differential equations. As one application we consider random graph
processes in which the maximum degree is bounded and show that the
numbers of vertices of given degree exhibit this convergence as the total
number of vertices tends to infinity. Two other applications are to random
processes which generate independent sets of vertices in random r-regular
graphs. In these cases, we deduce almost sure lower bounds on the size of
independent sets of vertices in random r-regular graphs.

1. Introduction. It will sometimes happen that given parameters of a
discrete random process are sharply concentrated at almost any given time,
in the sense that the variation in the parameters is small compared with
the total number of steps in the process. This paper considers processes which
generate random graphs and derives conditions under which parameters of the
process concentrate around the values of real variables which come from the
solution of an associated system of differential equations. When this theory
applies, some fundamental features of processes can be deduced merely by
solving the differential equations, which can be done numerically if necessary.

A set of vertices of a graph is independent if no two vertices in the set
are joined by an edge. The technique in this paper formed the foundation
for the analysis done in [10] and [11] of the following random graph process,
called a random d-process, apparently introduced by Paul Erdés. Begin with
n isolated vertices. Repeatedly select two vertices at random and, if they both
have degree at most d — 1 and are not already joined by an edge, add an edge
between them. The process ends when no more edges can be added, by which
time the graph contains at most |dn/2] edges. In [10] it was shown that a
random d-process almost surely ends with |dr/2| edges, as n — oo with d
fixed. A crucial part of the argument involved obtaining an approximate upper
bound on the number of vertices of degree 0 at any given time throughout the
process. In [11] it was necessary to have corresponding lower bounds in the
case of 2-processes, in order to study the distribution of the numbers of short
cycles. The approach in all these cases was to use the method of bounded
differences, applied to Doob martingales constructed from parameters in a
random process, to show that the required parameters almost surely behave
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1218 N. C. WORMALD

in a way which determines their large-scale rate of change fairly precisely.
The small-scale behavior is determined essentially by a stochastic difference
equation.

In the present paper the theory is presented in a general setting in Section
2, where it is simplified by avoiding the construction of a Doob martingale
to bound the probability of large deviations, using supermartingales instead.
These results provide sufficient accuracy for the purposes in [10] and thus
provide a simplification to the argument there. For the analysis of short cy-
cles in random 2-processes in [11], smaller error terms were required: the
results in the present paper would be inadequate as they stand. However,
minor modifications would suffice and would again provide a simplification.

The first application here is in Section 3, where it is shown that the numbers
of vertices of all possible degrees in a random d-process are approximately
determined almost surely as the total number of vertices tends to infinity.
The other applications are to greedy algorithms for finding large independent
sets of vertices in random regular graphs in Sections 4 and 5. These yield
improved lower bounds on the size of independent sets in random regular
graphs.

An interesting innovation relating to this theory is presently under devel-
opment. If the differential equations are attractive in a certain sense, then a
large deviation of the parameter from the corresponding real variable will tend
to be reduced over time, and the parameter can then be tracked closely until
its value gets very small. This was found necessary [15] in order to measure
the probability of events which are influenced by the behavior of the process
near its natural end.

2. General results. The large-scale behavior of the sum of many “al-
most independent” variables can often be demonstrated by use of the following
lemma. This concerns a problem in large deviations. It can be viewed as a re-
sult about random walks similar to the “gambler’s ruin” problem as discussed
by Feller [3], but with the additional complication that the variables are not
necessarily independent. The proof is not given since it follows from exactly
the same proof as Azuma’s inequality (see [8], Lemma 4.1, or [12], Theorem 3).

LEMMA 1. Let YZ), Yi,... be a supermartingale with respect to a sequence
of o-algebras {F ;} with F( empty, and suppose Yo =0and |Y;;1 —Y;| <c
for i > 0 always. Then for all a > 0,

P(Y;>ac) < exp(—a2/2i).

For this paper, all random processes are discrete time random processes.
Such a process is a probability space ) which can be conveniently denoted
by (o, @1,...), where each Q; takes values in some set S. The elements
‘of () are sequences (qo,q1,...), where each q; € S. We use H; to denote
(Qo, &1, ..., Q:), the history of the process up to time ¢. Uppercase letters are
used for the random variables corresponding to the deterministic parameters
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denoted by their lowercase counterparts. For a function y defined on histories,
the random variable y(H;) is denoted by Y, for convenience.

The following theorem is general enough for the purposes in this paper, but
it could be easily extended by weakening the hypotheses on the differences of
the functions y;. Its conclusions can also be sharpened in special cases such
as is done in [10] and [11].

Consider a sequence Q,, n = 1,2,..., of random processes. Thus q; = q:(n)
and S = S,,, but for simplicity the dependence on 7 is usually dropped from the
notation. Asymptotics, denoted by the notations o and O, are for n — oo, but
uniform over all other variables. For a random variable X, we say X = o(f(n))
always if max{x: P(X = x) # 0} = o(f(n)). An event occurs almost surely if
its probability in Q, is 1—0(1). We denote by S; the set of all ~; = (qo,...,q:),
where each ¢; € S,,,¢t=0,1,....

We say that a function f(u1,...,u;) satisfies a Lipschitz condition on D C
R’ if a constant L > 0 exists with the property that

J
If(ul,'-',uj)_f(vly'~-,vj)| fLZIui_vil
i=1

for all (uy,...,u;) and (vy,...,v;) in D. (For the existence of a solution to a
set of differential equations, a Lipschitz condition is only needed on a subset
of the variables, but here we require it on all of them.)

In the following theorems, note that “uniformly” refers to the convergence
implicit in the o( ) terms. Hypothesis (i) ensures that Yﬁl ) does not change too
quickly throughout the process, (ii) tells us what we expect the rate of change
to be and (iii) ensures that this rate does not change too quickly. For simplicity,
we first state a version with a constant bound on the variation of Ygl). Then
a generalization is proved, showing how this hypothesis can be weakened.

THEOREM 1. Let a be fixed. For 1 < 1l < a, let y¥: U,S; — R and
fi: R%" - R, such that for some constant C and all 1, | yO(hy)| < Cn for
all hy € S; for all n. Suppose also that for some function m = m(n):

(i) there is a constant C' such that, for all t < m and all [,

Yl -y <c
always;

(ii) for all | and uniformly over all t < m,

EYY, - YPIH) = f1/n, Y, ..., Y /n) +o(1)
always;

(iii) for each 1 the function f; is continuous and satisfies a Lipschitz
condition on D, where D is some bounded connected open set containing
the intersection of {(¢,20,...,2(¥): t > 0} with some neighborhood of
{(0,2, ..., 2@): P(Yf)l) =2Wn, 1<l <a)#0 for some n}.
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Then:
(a) For (0,20,...,2@) e D the system of differential equations
.%=fl(s,zl,...,za), l=1,...,a,
has a unique solution in D for z;: R — R passing through
2(0)=29, 1<l<a,

and which extends to points arbitrarily close to the boundary of D.

(b) Almost surely
Ygl) =nz)(t/n)+ o(n)

uniformly for 0 < t < min{on,m} and for each l, where z(t) is the solution in

(a) with 2V = Yf)l) /n, and o = o(n) is the supremum of those s to which the

solution can be extended.

NOTES.

. In applications, we choose m so that the hypotheses of the theorem hold.
Often m is close to on, which may represent some natural boundary.

. Let b(n) — oo as n — oco. It is immediate from the setting that the theorem
remains valid if we replace n by b(n) throughout, except where it is used
as an index, namely, in m(n), S,, w(n), A(n) and o(n). However, this
generality is not required in the applications in this paper.

. If the error term occurring in (ii) can be reduced, at least with high proba-
bility, then it is likely that the error o(n) in (b) can be reduced accordingly
to show so-called sharp concentration. For example, in the application of
this method in [10] it is o(n%) for a particular a < 1. The intention of this
theorem is not so much to give a widely applicable result of fullest possi-
ble strength, as to give a fairly accurate indication of what situations the
method of proof can apply to, besides serving for the present purposes.

. It will be shown in the proof that the theorem remains valid if the references
to “always” in (i) and (ii) are replaced by the restriction to the event that
(t/n,Yﬁl)/n,..., Y‘I(fa)/n) € D, and in conclusion (b), the upper bound on ¢
is replaced by the first ¢ for which this event fails.

. In many applications, the Lipschitz condition on f; in (iii) prevents us from
choosing a domain D which extends to the natural end of the process, which
may occur at some time T, say. To get around this problem, we can often
choose a domain D which the variables will almost surely remain inside
until time Ty — en. Then condition (i) ensures thatAIYgl) - Y(Tl,gl < C’en for
m >t > Ty — en. Taking ¢ — 0 permits us to conclude that the equation
in (b) holds for 0 < ¢ < min{Ty, m} provided on — T, and each z; is
continuous. ’

In the following we can typically assign any slowly growing function such

as logn to A, and w = n® for any 0 < a < 2/3.
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THEOREM 2. Theorem 1 holds if condition (i) is weakened to:

(i) for some functions w = w(n) and A = A(n) with A\logn < w < n2/3/A
and A > oo as n — oo, for all | and uniformly forall t <m,

: ) 3
P(1¥i, - Y- ————A2 — |H) = o)

always on (.

NOTE. The notes to Theorem 1 still apply [although Note 5 must be mod-
ified suitably to take account of the change to condition (i)].

PrROOF. There is a unique solution in (a) by a standard result in the theory
of first order differential equations. (See Hurewicz [7], Chapter 2, Theorem 11.)

To present the proof, we simplify notation by considering ! = 1 and refer to
y1, z; and f; as y, z and £, and so on. The proof for general [ is exactly the
same. We assume at first that D contains all (s,z) € R? such that P(Y, =
zn) # 0 for some sn = 0,1,...,m. Let 0 < ¢ < m — w. Condition (ii) gives
the expected trend in the rate of change of Y; at some stage of the process.
In order to show that this trend is followed almost surely, we demonstrate
concentration of

Yiow—Ye
Assume first that the inequality in (i’) never holds; that is,
Jw
2.1 IYire1 — Yiegrl < W

always for all k. Then by (ii) for 0 < 2 < w,
E(Yiiri1 — YegrlHepr) = F((8+ k) /n, Y p/n) + 0(1)
= f(t/n,Ys/n)+0(1)

by (iii) as £ = o(n) and |Y;; — Y; = o(n)|. Thus there exists a function
g(n) = o(1) such that, conditional on H;,

Yior —Y:—kf(t/n,Y¢/n) — kg(n)

is a supermartingale in %k with respect to the sequence of o-fields generated
by H;,..., H;.,. The differences in this supermartingale are, by (2.1), at most

w tY V2w
___“/___+f< t)+g()_+.
A% /logn n’ n AZ/logn
So by Lemma 1,
2wa

Y,
. P(Y,, - Y e _Lwe
2.2) ( tw = Ve —wf ( ) wg(n) + A2 flog n

< exp(—a?) +o(n71)

)
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for all ¢ > 0. To avoid assuming (2.1) we can condition on the event that it
holds for all relevant k. By (i) this event has probability 1 —o(n~2). Moreover,
in the conditional space, (ii) still holds as |Y| < Cn, so (2.2) follows without
assuming (2.1). '

Exactly the same argument, but using a submartingale, bounds the lower
tail of Y4y — Y — wf(¢/n,Y/n). Hence with a = (log n)Y/2A, we have

2.3) P(Ypw =Y —wf(t/n,Y/n)| > w(g(n) +1/A)|H;) = o(nh).

Now define %k; = iw, i = 0,1,...,ip, where iy = min{|m/w], |lon/w]|}. For
some function A; = A1(n) - oo as n — oo, we show by induction that, for
each such i,

(2.9 P(|Y, — z(ki/n)n| = B;) = o(i/n),
where B; = (w/A; + Bw?/n)((1 + Bw/n)* — 1)n/Bw for some B > 0.
The induction begins by the fact that z(0) = Y¢/n. Write
Ay =Yy, —2(ki/n)n,
Ay =Yg, — Y,
As = z(ki/n)n — z(kiy1/n)n.

The inductive hypothesis (2.4) gives that |A;| < B; with probability 1—o(i/n).
When this inequality holds, by (2.3) we can choose A; so that

Ag — wf(ﬁ, Y_’“)' ¥
n n Al

with probability 1 —o(n~1). Since z is the solution given in (a) and f satisfies

the Lipschitz condition in (iii), we also have

|As + wz'(ki/n)| = O(w?/n)

)

for n sufficiently large. (This is where B is determined.) Hence
1Yk, — 2(kiy1/n)n| = A1+ Az + As| < Bia

with probability 1—o0((i+1)/n), and so we have (2.4) by induction. This shows
that the equation in (b) is satisfied almost surely at ¢ = k; for each i up to ig.
Since k;.1 — k; = w and since by (i) the variation in y when ¢ changes by at
most w is o(n) with high probability, we have (b).

Finally we note the required modification of the proof if the assumption
about D at the start of this proof is false. For £ > 0, define D’ = D’(¢) to be
the set of points (s, z) in D of distance at least & in the z direction from the
boundary of D. Now work with D’ in place of D (with the corresponding redefi-
nition of o). Thus we may take (¢/n,Y;/n) € D’ during the inductive step. The
assumption that (2.1) holds for all relevant & implies that ((¢ + &)/n,Y:i/n)

and so
Bw? + BwB;
= n
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does not leave D and so the analysis assuming (2.1) still stands. The probabil-
ity that (2.1) fails at least once is the same as before (since, provided it has not
failed, we are still in D) and so we again have (2.3). The proof goes through as
before, since by taking &' arbitrarily small we can approach arbitrarily close
to on because D, is open. This also shows why the claim in Note 4 is valid. O

3. Random graph processes with restricted degrees. Here we show
that the numbers of vertices of all possible degrees in a random d-process
are approximately determined almost surely, as the total number of vertices
increases.

Let Q; denote the tth edge added in a random d-process, as defined in the
Introduction, and let G; denote the graph induced by the edges Q1,..., @:. If
the process has already stopped at time £—1, define G; = G;_; for convenience.

For0<i<dlet Yﬁi) denote the number of vertices of degree i in G;. Then
3.1) Y- Y =2

always. This establishes Theorem 1(i). Furthermore the number of sites avail-

able for Q; is
n—y@d
a=("7y" )~ Fu

where n — Yﬁd) is the number of vertices of degree less than d and F; denotes
the number of edges already present between these vertices. Note that Y(@) <
2t/d and F; < dn/2. Thus,

(3.2) A= -Y?)?2+ 0(n).

Each of the A; available sites is equally likely to be used. So, given G; and
i < d, the expected number of vertices of degree i which are changed to degree
i + 1 by the addition of the edge @1 is

YP(n-v{” - 1)+ 0(n)

A; ’
provided A; # 0. Here the correction term O(n) is due to those sites already
occupied by edges. If we now choose m = d(n — n®)/2, where a > 1/2, then
n— Ygd) > n%* and so, from (3.2), n = 0(A;) and A; ~ (n — Ygd))2/2. As (3.3)
contributes negatively to the expected increase of Y for i < d and positively
to that of YtD, we now obtain

EYY, -~ YO\ Hy) = fi(t/n, YV n,. ., Y /) +0(1),

3.3)

1
where
28i202i-1 — 28;242i
' 1—24
where 8,4 is 0 for i = j and 1 otherwise. This establishes Theorem 1(ii) for
these functions f;. For &£ > 0, Theorem 1(iii) is valid for the domain D defined

» (3.4) fi(S,Z(),...,'Zd)=

2
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by —& <s <1,—& < 2z; < 14+¢eforalli and 24 < 1—&. Thus Theorem 1 applies.
Since Yid) < 2t/d, the solution does not leave D until after ¢t = (1 — &) dn/2.
By (3.1) the value of Y) cannot change by more than £dn after this time.
Thus by taking ¢ arbitrarily small, we obtain the following from Theorem 1(b).

THEOREM 3. Almost surely
Ygi) =z;(t/n)n+o(n)

uniformly for 0 < t < nd/2 and for each i, where the z;(t) form the solution to

dz
ds
fi given in (3.4), with initial conditions z;(0) = 0 for i > 0 and 2y = 1.

= fi(S,ZO,-n,Zt),

Theorem 3 can be used to determine various quantities asymptotically al-
most surely, for instance, the maximum number of vertices of degree i occur-
ring during the course of the process.

4. Greedy algorithm for independent vertex sets in random regular
graphs. We use the following standard model £ (r,n) for random r-regular
graphs on n vertices (where rn is restricted to the even integers), with the uni-
form probability distribution. Take rn points in n buckets labelled 1,2,...,n,
with r in each bucket, and choose a random pairing P = p;,..., Prnj2 of the
points such that | p;| = 2 for all i, each point is in precisely one pair p;, no pair
contains two points in the same bucket and no two pairs contain four points
from just two buckets. To get a random graph in £ (r,n), join two distinct
vertices i and j if some pair has a point in bucket i and one in bucket j. The
conditions on the pairing prevent the formation of loops and multiple edges.
Asymptotics in this section will be for n — oo with r > 3 fixed.

The independence ratio # (G) of a graph G with n vertices is the maximum
¢ for which G has an independent set of vertices of cardinality cn. For G €
Z(r,n) let

B(r) = sup{c: P(F(G) = c)=1-0(1)}.
As Bollobas ([2], Chapter XI, Corollary 28) shows,

7

18’

rlogr—r+1
(r—12 ~°

(see Table 1). These numbers come from lower bounds on the independence

ratios of graphs with maximum degree r and large girth, due to Hopkins and

Staton [6] and Shearer [13]. The bounds carry over to random regular graphs

since the number of cycles of length less than C is almost surely O(logn) for
all C by the results in [16] or Bollobés [1], so such cycles can be destroyed by

r=23,

B(r) = Bi(r) =

r>4
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TABLE 1
Lower bounds on B(r) and, in the last column, upper bounds on y(r)

r B1(r) Ba(@) Theorem4 Theorem5 v,(r)

3 0.3889 0.4139 0.3750 0.4328 0.4554
4 0.2828 0.3510 0.3333 0.3901 0.4163
5 0.2529 0.3085 0.3016 0.3566 0.3844
6 0.2300 0.2771 0.2764 0.3296 0.3580
7 02117 0.2528 0.2558 0.3071 0.3357
8 0.1966 0.2332 0.2386 0.2880 0.3165
9 0.1840 0.2169 0.2240 0.2716 0.2999
10 0.1732  0.2032 0.2113 0.2573 0.2852
11 0.1638 0.1914. 0.2003 0.2447
12 0.1555 0.1811 0.1905 0.2335
13 0.1482 0.1721 0.1818 0.2234
14 0.1417 0.1641 0.1739 0.2143
15 0.1358 0.1569 0.1668 0.2061
16 0.1305 0.1504 0.1604 0.1985
17 0.1256 0.1445 0.1545 0.1916
18 0.1212 0.1391 0.1491 0.1852
19 0.1171 0.1342 0.1441 0.1793
20 0.1133 0.1297 0.1395 0.1738 0.1973
50 0.0611 0.0682 0.0748 0.0951 0.1108
100 0.0369 0.0406 0.0447 0.0572 0.0679

deleting a small number of edges. Shearer ([14], Theorem 4) improved these
results on graphs with bounded degree and large girth by an iterative formula
for a function depending on the degrees of the vertices. For r-regular graphs
we call this function Bs(r), which is shown in Table 1. We have similarly
that B(r) > Ba(r). McKay [9] also claimed without proof the lower bound
B(3) > V2 —1=0.4142.... These results are improved in Theorem 4 for all
but a few small values of r, by an analysis of a greedy algorithm for finding
independent sets of vertices. Then in the next section a more sophisticated
algorithm is used in Theorem 5 to improve all these results for small r; the
method almost certainly gives sharper results for all fixed r > 3. These data
are included in Table 1. On the other hand, Frieze and Luczak [4] proved
results for 7 fixed but arbitrarily large, which say nothing about small r.

Very recently, and independently of the work of the present author, Frieze
and Suen [5] obtained B(3) > 6log(3/2) — 2 = 0.43279... by analyzing the
same algorithm as Theorem 5. Presumably the system of two simultaneous
differential equations defining x; in Theorem 5 can be solved explicitly in the
case r = 3 to yield this constant precisely.

Bollobas [2] gave corresponding upper bounds on

y(r)=inf{c: P(#(G) <c)=1-0(1)}.

‘These were subsequently improved by McKay [9], who gave an upper bound
y1(r) on y(r) with a rather complicated definition (see the last column in
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Table 1; the missing values were not given in [9]). Note that the lower bounds
in Theorem 5 are almost without exception closer to the upper bounds y1(r)
than to the lower bounds B3(r) or that given in Theorem 4.

The buckets will be called vertices. The pairing referred to must be chosen
uniformly at random subject to the constraints given. This can be done by
repeatedly choosing an unpaired point (using any rule whatever) and then
choosing a partner for this point, to create a new pair. As long as the partner
is chosen uniformly at random from the remaining unpaired points, and as
long as the process is restarted if a loop or multiple edge is created, the result
is a random pairing of the required type. As shown in [17], for instance, the
probability of the process having to be restarted is asymptotically a constant.
Thus, this possibility can be ignored when proving that statements about the
pairing hold with probability 1 — o(1), and we henceforth permit the graph
formed to contain loops and multiple edges by leaving the pairing unrestricted.

Along with an algorithm for finding an independent set in G € #(r,n),
we will consider an associated algorithm (called a generation algorithm) for
simultaneously generating the random graph G while running the algorithm
which finds the independent set. At any stage the degree of a vertex is the
number of points in it which are already in pairs. The rule used for choosing
the next unpaired point will in this paper be restricted in the following way.
Let u denote the vertex containing the last point selected as unpaired. The
next unpaired point is selected randomly from the remaining unpaired points
in some vertex v, where v = u if the degree of u is strictly less than r, and
otherwise we are free to choose v to be any vertex with degree less than r.
We denote the ith vertex chosen as u in this way by v;. We also leave open
the possibility of choosing a vertex of degree r as v;, in which case of course
no unpaired point is selected at this time, but we move on to choosing v;,;
immediately. We can postpone the choice of v; until all the points in v;_; have
been paired, and thus the rule for choosing v; can depend on the shape of G
as determined so far at this time.

We first consider the following greedy algorithm for constructing an inde-
pendent set of vertices in G € #(r,n). Choose the vertices in the set one at a
time, each vertex chosen randomly from those not adjacent to any already in
the set. This is equivalent to the following generation algorithm for generating
the random graph while finding the independent set I. Initially, put I = &.
In generating the random graph, choose the vertices vy, ve, ... as before using
the rule that the next vertex v; is randomly chosen from those currently of
degree 0. At this time, add this vertex v; into I. When no vertices of degree 0
remain, the current set I is outputted, and the rest of the graph generation
can go ahead by selecting v; in any manner.

THEOREM 4. For r > 3, the greedy algorithm applied to a random r-regular
graph almost surely produces an independent set of vertices of cardinality

g(l - (%)2/“_2)) +o(n).
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PrOOF. Define gy = &, for ¢ > 0, define g; to be the set of edges incident
with the ¢th vertex chosen in the independent set selected by the greedy al-
gorithm and define g; to be the graph with vertices 1,2,...,n and edge set
\Ut_; ¢i. For completeness, define q; = & for all ¢ > |I|. Let y(g) denote the
number of vertices of degree 0 in any graph g. It will become evident that the
choice of m is immaterial provided it is at least, say, (% — ¢&)n.

We apply Theorem 1 with / = 1 and YV = Y and so forth. Part (i) is
immediate as |Y;1 — Y| < r + 1 always. For (ii), define

—rz
1-2s

f(S,Z)= -1

and
D={(s,2): —e<s<1/2,e <z<1-2s}

for some small ¢ > 0. We can assume by Note 4 to Theorem 1 that the param-
eters of the random process are located in D at time ¢. Thus, we may assume
that Y; > en. At time ¢, r¢ pairs have been chosen and so rn — 2rt¢ points
remain. Of these, rY; are in vertices of degree 0. So of the r partners of the
points in the next vertex chosen, the expected number in vertices of degree 0 is
rY:/(n—2¢)+ O(n=1). The next vertex chosen also reduces y by 1, and so this
yields Theorem 1(ii), where the negative sign arises because these numbers
represent reductions in the number of vertices of degree 0. Theorem 1(iii) is
immediate. Thus the hypotheses of Theorem 1 are satisfied. Note that

dz
% = f(s,Z), Z(O) = 1’
has the solution
(r—1)(1-2s)72 —(1-2s)
2= .
r—2

This meets the boundary of D when z = &, which for small enough ¢ is arbi-
trarily close to
1 1/ 1 \¥?
=373 (r - 1) ’

(The “other” boundary z = 1 — 2s is physically impossible to meet since we
always have y < n/2 — ¢, corresponding to z < % — s.) The theorem follows,
since if y; < en, then y;., =0. O

Theorem 4 apparently improves the result in [2] for r > 3 and that in [14]
for r > 7 (see Table 1). This claim is not established rigorously since Shearer’s
result [14] is defined iteratively and hence is difficult to analyze, and in any
case all these results are seemingly improved in the next section.
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5. Better algorithm for independent vertex sets in random regular
graphs. For a further improvement in the lower bound on the independence
ratio of random regular graphs, consider the following neighborly algorithm.
Choose vertices in an independent set I one by one, with the condition that
the next vertex is chosen randomly from those with the maximum number of
neighbors adjacent to vertices already in I. Equivalently, modify the genera-
tion algorithm in the previous section along the following lines. If v;_; € I,
choose v;, v;41 and so on from the vertices neighboring v;_;. Then, when all
such neighbors have been used, choose next any vertex of those currently with
the largest degree and place it into I. Thus there are two possibilities when
selecting the next vertex v;:

CASE 1. Some neighbor of an element of I has degree less than r. In this
case, choose such a vertex at random for v;. Such vertices v; are not placed
into 1.

CASE 2. All neighbors of elements of I have degree r. Then v; is randomly
chosen from the vertices of largest degree of those not neighbors of elements
of I and is included in 1.

When I contains a neighbor of every vertex not in I, it is outputted as an
independent set.

Suppose that v; has just been selected in Case 2. Let d denote the number
of pairs selected so far and let R denote the number of points remaining, so
that

R=rn-2d.

Let y) = y(/)(g) denote the number of vertices of degree j in the current
graph g, j=0,1,...,r — 1, so that

R= ,.y(O) +(r— l)y(l) R y(r—l)'

For each point p being selected at random to be paired with a given point in
v, the probability that p is in a vertex v of degree k is P = (r—k)y*)/R. Then
when v is subsequently chosen under Case 1, all r — 1 — & unpaired points in
v will get paired. So each unpaired point in v; contributes (r — j)y'/)/R to the
expected decrease in y(/), due to the possibility of being paired with a vertex
of degree j, as well as contributing approximately

S (r=R)yP ((r=1=k)(r = j)y
Y (R )

k=0

both to the expected decrease in ¥/ and the expected increase in y/+1), for
each j, 0 < j < r—1. “Approximately” becomes “asymptotically” if we assume
(for the moment) that, for some a > 0, y(/) > n* for each j, and also R > n2e.
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The effects of these points are all asymptotically equal (as all quantities
have values at least n* and only change by constant amounts while these
points are being processed). In addition, if v; has degree /, then y) decreases
by 1.

All of this will lead to a condition like Theorem 1(ii). To be precise, if v; has
degree [ in the current graph g, then for 0 < j < r — 1, the expected increase
in ¥(g) during the selection of v; and its neighbors is

(5.1) -8+ (r—Duj+o(1),

where & is the Kronecker delta and u; = u;(g) is defined by

(r— )y
W=l
L2 1= R = B+ 1= )y 0y — (= )y Py ®)
R2 )
k=0

If any of the y(/) are less than n?, the error can be absorbed into the o(1)
term in (5.1). So it is valid for all j provided R > n?®.

For r in general, the neighborly algorithm will be expected to proceed
through several stages. At first, the number of vertices of degree greater than
1 remains extremely small, ug < 1, and so v; is almost surely of degree 1
or 2. Any vertices of degree 2 created momentarily are chosen continuously
until none remains. At some time (r — 2) ug reaches 1, stage 1 ends and stage
2 begins: The newly generated vertices of degree 2 regenerate themselves as
fast as they are consumed. It seems plausible that later (r — 2)ug will again
dip below 1, so that the process reverts to a phase like stage 1, or (r — 3)us
exceeds 1 and vertices of degree 4 begin appearing in quantity, when we may
say that stage 3 has been reached.

For any fixed r, the results in Section 2 are applicable and the size of
the independent set of vertices produced can be determined approximately,
with probability close to 1. The results are applied separately to each stage to
show that all the y*) are determined approximately. The main complicating
factor is the uncertainty of the degree of v; at the transition between two
stages. As it turns out, the results obtained here support the hypothesis that
the process almost surely proceeds consecutively through stages 1 to r — 2,
without any significant reversions to previous stages, at the end of which R
is approximately 0, and the algorithm terminates soon thereafter.

For the following theorem put

X0 = 0,
200=1,

20,,':0, i=1,...,r—2.
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For j=1,...,r —2, x; is determined recursively as follows. First define func-
tions z;(x),i =0,...,r—2, for x > x;_1, by the system of differential equations

dzi 8;i((r—Jj—-Drjp1—1)+(r—j)r;

dxl=fi(x’207-..,2r—2)= ﬂ(( J 1_‘|]_+71_ 1 ) ( J) L’

i+
5.2 . . .
-2) zi(xj_1) = 2j_1,, 1=0,...,J,
zi(x) =0, i>J,
where
S Gl )7
! 3

2 (r—1-k)r—k)((r+1- j)zj_12r — (r — j)zjzz)

+2

k=0 £
§=rzo+(r—1z1+--+222

and z_; is identically 0. Next, if j < r —3, define x; to be the smallest nonneg-
ative solution of (r — j—1)7,;1 = 1 and define 2;; = z;(x;) fori =0,...,r—2.
Also define x,_9 to be the smallest value of x > x,_3 for which ¢ = 0 or
7r_1 = 1. (From numerical results for r < 20, the former would seem to be the
case for all r > 3.)

The conditions in the following theorem are designed to enable numerical
verification for fixed r.

THEOREM 5. Let r > 8 be fixed. Suppose that:

(i) For j=1,...,r —2, xj exists, z; is strictly positive on the open interval
(xj-1,%5) and
drt;

lim —= > 0.
x>t dx

(i) For j=1,...,r -3, zj(x;) # 0 and

dr:
lim S+ 5 0.
x—>x; dx
Then the cardinality of the independent set of vertices produced by the neigh-
borly algorithm applied to a random r-regular graph is almost surely at least

Xr_on +o(n).

PrROOF. We now formally define stage j of the algorithm inductively for
j=1,...,r—2 as the period from the end of stage j — 1 (or at the start of the

, algorithm, in the case that j = 1) until the first time that either |I| = |x;n]
or the algorithm has terminated. It will be shown by induction on ;j that
almost surely for j = 1,...,r — 2, when the algorithm begins stage j we have
| = x;_1n+o(n), Y& = 2;_1;n+o(n) for i = 0,..., j, and Y& = O(1) for
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i=j+1,...,r—2. Note that x;_; < x}, since z; = zj.; = 0 and hence 7;,; =0
at x j—1.

We first examine the dynamics of the algorithm at a point when the vari-
ables have values typical for a point early (but not too early) in stage j. Choose
¢ > 0 arbitrarily small and assume at the point of choosing v; in Case 2 we
have that YY) > en, (r — j— 1)ujy1 < 1— ¢ and YUY = ¢, where ¢ > 1 is
bounded, that there are no vertices of degree greater than j+1 and, moreover,
to simplify the discussion, that no such vertices are created. Then one vertex
of degree j + 1 will be chosen for v, and by (5.1) the expected value of Y (/+D
at the time of selecting the next vertex in Case 2, conditional on past history,
is (r— j—1)p;r1+0(1). If at this time Y+1 > 0, then a vertex of degree j+1
is chosen again. Thus, Yt is determined by a discrete branching process
in which the expected number of births (new vertices of degree j + 1) due to
each individual, conditional on past history, is (r — j — 1)uj1 + o(1), where
Wjt+1 is evaluated at the time of the individual giving birth. At this time the
individual itself promptly dies.

Let Z denote the number of vertices in Case 2 of degree j + 1, beginning
with v, before the next vertex in Case 2 of degree j, restricted to the next n*
vertices. Then Z is equal to ¢ plus the total number of births throughout the
branching process. Let ¢; be the time that the ith vertex is chosen during this
period. Throughout this period the value of u;;1 can only change by a factor
of (14 O(n71)) in one step and so (r — j — 1)uji1 < 1 — & + o(1). Hence for
large n the random variable Yﬁl’ et ig/2 is a supermartingale in { with

respect to the history until Yﬁ’ *1) becomes 0. Thus from Lemma 1,
(5.3) P(Z > Clogn) =o(n~3%)

for C a sufficiently large constant.

In the branching process, call the ¢ original vertices of degree j + 1 “first
generation,” their children “second generation” and so on. Then the expected
number of second generation individuals is c¢((r — j — 1)uj+1 + 0(1)) and, in
general, of kth generation is c((r — j — 1)pj+1 + o(1))*1, where, since w1
only changes slowly as mentioned above, we can take for its value that at the
point of choosing v;. It follows that

E(Z)=c/(1—(r—j—1Dpjs1)+o(1).

In this discussion the creation of vertices of degree greater than j+ 1 in Case
2 has been ignored, but this possibility is so unlikely and has such a minor
effect that it clearly does not affect the assertion.

Now assume that at some point

64) YV >en, (r—j—-Dujpi<l-e, YP=0 foralli>j.

‘We conclude by arguing as for the derivation of the above equation for E(Z)
and using (5.1) that, after processing a vertex of degree j in Case 2, the
expected number of vertices of degree j + 1 in Case 2 before the next one of
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degree j is

(r—J)mjr
- +o(1),
1—(r—Jj—1Dpjn
where the slowly changing value of u ;.1 can be taken at the beginning of this

sequence. Hence, again using (5.1), the expected increase in Y®) from adding
one vertex of degree j to I up until just before adding the next of degree j is

(r— pjra(r—j—1Du;
1-(r—Jj—Dujn +ol)

=8+ (r— jmi +

(5.5) ™
(r = J)ii + o(1).

1-(r—Jj—Dujn

The rest of the proof involves:

=-—0j +

(a) showing that the assumptions (5.4) for j = 1 become true at some point
early in stage 1;

(b) establishing a similar statement for 1 < j < r — 2 in stage j using the
inductive hypothesis;

(¢) applying Theorem 2 throughout the bulk of stage j for each j,;

(d) examining the very end of stage j to validate the inductive hypothesis.

(a) For the first part, note that (r—1)u; — 1 = (r—1)2—1 > 3 initially. This
value can change only a little for the first ¢'n vertices added to I, provided
& > 0 is arbitrarily small. Hence for large n the random variable 2i — Y(),
evaluated when the ith vertex is added during this period, determines a su-
permartingale. Thus at the end of this time, Y) > ¢n for some & > 0 almost
surely. Also, similar to the derivation of (5.3) we have for some constant C that
Y@ < Clogn and Y < C for all i > 1 with probability 1 — o(n~3) (noting
n; < € here for i > 1). With probability 1 — o(1) it follows that at some point
within C’log n steps thereafter, we have the assumptions (5.4) for j = 1.

(b) Second, the early section of stage j is handled by much the same argu-
ment. Quantities need only to be computed approximately here. Let 0 < i <
r — 2. Per vertex in Case 2 of degree j, the expected increase in Y¥) is given
by (5.1) with j replaced by i and [ by j. During the first steps in stage j, this
is a.s. close to —8j; + (r — j)7;, since by the inductive hypothesis, the value of
w; at the start of stage j is a.s. equal to 7; + 0(1) at x;_1. This value in turn is
approximately equal to f;(s, 2o,...,2;) since 7,1 is very close to 0. This again
is equal to dz;/dx evaluated close to x;_;. By the argument in (a), this implies
that the approximate average change in u; per vertex in Case 2 of degree j is
almost surely close to d7;/dx evaluated at x = x}'_l. This is strictly positive
by hypothesis (i). A similar argument applies to vertices of degree j —1 added
to I in Case 2: again u; is a.s. expected to increase by (ii). To be precise, we
conclude that, for & sufficiently small, after the first ¢'n steps in stage j, the
increase in u; is almost surely at least c for some ¢ = c(¢&’) > 0. In this discus-
sion, vertices in Case 2 of degree greater than j have been ignored; they do
not affect the result since they are relatively rare as u; ~ 0 for { > j. Again
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the argument in (a) allows us to conclude that at some point in the first &'n
steps of stage j, the assumptions (5.4) hold for & sufficiently small.

(¢) Third, to apply Theorem 2, consider any time when the assumptions
(5.4) hold, and denote by ¢;_; the time that the ith vertex of degree j in Case
2 after this time is selected. Define a random process (Qo, @1, ...) by letting
Qo contain all edges already present at time %y, and in general letting Q;
be the set of edges added by the algorithm after #;,_; up to time #; (where
Qr = D if ¢t} is undefined). Define G}, to be the graph with edge set Uf=0 Q;,
and let Y\ = Y(Gy) for i =0,...,r — 2. Let Y}, denote the cardinality of I
at time #;.

We apply Theorem 2 to the variables Y(®,...,Y () and Y. Define D to be the

set of all (s, 29,...,2j,p) for which (r — j—1)7j;1<1—¢, > 6, —e<s <1,
—e<zi<lforalli,—e <p<1landz >e Putw=n", m=n and
A =logn.

First observe that Y*) and Y are bounded above by Cr. For part (i’) of
Theorem 2 and (ii) of Theorem 1, by the note after Theorem 2 we can assume
that (¢/n,Y®/n,..., Y /n,Y/n) lies inside D. Here (r — j — Dpjri<l-—e.
As in the argument leading to (5.3), the creation of vertices of degree at least
J + 2 has negligible effect, and (5.3) holds. Thus the number of vertices added
to G, to get Gpy1 is at most Clog n with probability 1 — o(n~2), so Theorem 2
(i) is satisfied. Similarly, we have Theorem 1(ii) for the variables Y?), where
the appropriate f; is determined from (5.5) (this happens to be independent
of s):

(r— i
1—(r—j_1)7j+1.

(5.6) fi(s,20,...,2;) = —8j; +

Here and in the following equation for f, any references to z; in 7 for i > j
should be taken as 0. Between time ¢;_; and #; the expected increase in |I| is
given by the expected number of vertices of degree j + 1, from (5.3), together
with the one of degree j. Thus

E(Y - YIH) = ft/n,YOn,...,YP 1n) + 0(1),

where

(r=Dmjr1  _ 1+ pwjn1
1-(r—j—Dpjn 1-(r—j—Dpjsr

B.7) f(s,Z(),...,Zj)=1+

Hence Theorem 1(3i) holds. Theorem 1(iii) is immediate, and we conclude
that Theorem 2 applies. The derivatives in the differential equations in
Theorem 1(a) are given for dz;/ds, i = 0,...,j, by (5.6) and for dx/ds,
where x is the real variable corresponding to Y, by (5.7). Replacing dz;/ds
» by (dz;/dx)(dx/ds) allows us to eliminate s from this system and gives the
system defined in (5.2).

We conclude from Theorem 1(b) that for all i until the solution leaves D,
Yﬁ’) = Z;(t)n+o(n), where Z; is determined by the solution to the differential
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equations in (5.2) with initial conditions Z;(0) = Y(()’) /n. By choosing & and
&' sufficiently small, these initial values can be made to approach arbitrarily
close to the values at the beginning of stage j, which by the inductive hypoth-
esis are arbitrarily close to 2;_;;. For i < j, since the only negative terms in
the defining relation of 7; are due to z;, it is clear that z; stays positive in the
solution in D. By hypothesis (i), z; also stays positive in D. Hence the solution
to (5.2) leaves D when (r — j — 1)7,41 = 1 — &. By taking ¢ arbitrarily small,
this can be made to be arbitrarily close to x = x;. Thus, in view of the stabil-
ity of the differential equations implied by the Lipschitz condition in D, the
value of Y;/n when there are ¢n steps remaining in stage j is almost surely
arbitrarily close to 2;; for arbitrarily small . Similarly, |I|/n is arbitrarily
close to x;.

(d) The final task to complete the induction is to bridge the gap from when
the parameters leave D in stage j to the end of stage j. In this period the
variables Y¥) can alter in value by at most Cen for some constant C. As £ can
be made arbitrarily small, we conclude that almost surely Y = 2;;n + o(n)
for i < j+ 1. For i > j + 2 the argument for the early part of stage j + 1
shows that Y remains at most Clogn almost surely. The claim that it is
O(1) at the start of stage j + 1 follows from the fact that 2;;_; = 0 and so
Y@= = o(n). Thus the probability that vertices of degree i are created on any
given step is o(1), and the expected number created is o(1). This completes
the induction and therefore the proof. O

To use Theorem 5 numerically in a strictly rigorous way would require anal-
ysis of all errors occurring in the required numerical solution of the differen-
tial equations, both those due to the approximation of the solution method
and those due to the inherent inaccuracy of floating point arithmetic. Such
an analysis is fairly simple but very tedious, since to be correct it depends on
some of the precise details of the implementation, and the system is so well be-
haved that there are no surprises. So we do not give any such analysis in this
paper, but merely report the results which were obtained by a second-order
Runge-Kutta method which was repeated for ever-decreasing step sizes down
to approximately 10~% and gave well-behaved results, clearly to at least four
decimal places. These are in Table 1. In obtaining these results, the hypothe-
ses of Theorem 5 had to be verified numerically, which was done by checking
that quantities required to be positive were greater than the largest possible
error which could have occurred in the calculations. The condition that z; has
to be positive on (x;_1, x;) cannot be checked in this manner near x;_; since
z; approaches 0 there. However, the derivative of z; at that point is positive,
which suffices.

For all r < 20, stages 1 to r — 2 are passed through consecutively, and the
value of ¢ becomes very small at the end of stage r — 2, indicating that vir-
tually all the vertices are used up at that time. Thus, in these cases Theorem
5 actually gives the asymptotic size of the independent set found by the algo-
rithm, not merely a lower bound. We conjecture that this is the case for all
r>3.
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