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A GENERALIZED MAXIMUM PSEUDO-LIKELIHOOD
ESTIMATOR FOR NOISY MARKOV FIELDS

By DaviD J. BARSKY! AND ALBERTO GANDOLFI

University of California, Davis, and University of California, Berkeley

In this paper we present an asymptotic estimator, obtained by observ-
ing a noisy image, for the parameters of both a stationary Markov random
field and an independent Bernoulli noise. We first estimate the parameter
of the noise by solving a polynomial equation of moderate degree (about
6-7 in the one-dimensional Ising model and about 10-15 in the two-
dimensional Ising model, for instance) and then apply the maximum
pseudo-likelihood method after removing the noise. Our method requires
no extra simulation and is likely to be applicable to any Markov random
field, in any dimension. Here we present the general theory and some
examples in one dimension; more interesting examples in two dimensions
will be discussed at length in a companion paper.

1. Introduction. In recent applications, images as well as other pro-
cesses have been modeled by a Markov random field, that is, a Gibbs state
with a finite range interaction, sometimes degraded by noise [see Comets and
Gidas (1992) and references contained therein].

We are interested here in statistical inference, that is, the estimation of
parameters, for stationary Markov random fields. This section contains a
brief discussion of the models together with some previous results and our
findings; a more formal presentation is found in the rest of the paper.

We start with a single infinite black and white image, which is a specifica-
tion of +1 (black) or —1 (white) at each vertex ( pixel) of an infinite lattice.
The lattice we consider is Z¢ and typically d = 2. The statistical properties of
the image are described by a stationary Markov random field (with stationary
interaction), which depends on some parameters 6, = (6,(1),...,6,(s). A
noisy image is obtained by independently flipping the sign (i.e., the color) of
the image at each pixel with probability ¢,. The problem here is to estimate
0, and &, by observing part of the noisy image, typically a finite rectangular
array, with the sole a priori knowledge that 6, belongs to some subset
O Cc R® and that &, is small, typically ¢, < 3. [Here we assume sufficient
knowledge of the structure of the Markov random field so that s is known.
For questions related to the estimation of s in the case with no noise and no
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such knowledge, see Ji and Seymour (1991) and Denny and Wright (1991).]
More precisely, the problem is to find a pair of functions (called estimators)
6™ and &™) of the noisy image in A C Z¢, such that if {A },cn is an
increasing sequence of arrays whose union equals Z¢, then O(An) - 6, and
24w — g, with probability 1 (with respect to the joint distribution, P, , , of
the Markov random field and the noise).

Various estimators have been proposed, both for specific Markov random
fields and for more general models. Two of these are the maximum likelihood
estimator [Dempster, Laird and Rubin (1977), Geman and McClure (1985)
and Younes (1989)] and the maximum pseudo-likelihood estimator
[Chalmond (1987) and Younes (1991)], both of which are based on the EM
algorithm. Unfortunately, these estimators are obtained by iterative meth-
ods, requiring the simulation of a Markov random field at each iteration and
resulting in a complex process. Other estimators are obtained by the methods
of moments [Geman and McClure (1985) and Frigessi and Piccioni (1990)].
These methods do not require any extra simulation and are based on estimat-
ing various moments of the joint distribution P, , from the noisy image.
Some combinations of these moments turn out to be functions of 6, indepen-
dent of &,, so they can be used to estimate 6, provided they are invertible.
Unfortunately, inverse functions cannot be easily produced even for the
two-dimensional Ising model with zero external field, for which Onsager’s
exact solution of the model is available [one such inverse function was
remarkably obtained in Frigessi and Piccioni (1990)], and they seem out of
reach, if they exist at all, for all Markov random fields without an exact
solution [i.e., most of them; see Baxter (1982)].

Our paper presents a new estimator for ¢,, whose computation requires no
extra simulations, no iterations and which is (in principle) as easy and
accurate as the solution of a moderate degree polynomial equation. An
estimator of 6, is then obtained by a method analogous to the maximum
pseudo-likelihood for the Markov random field alone [which is a very effective
method; see Besag (1977)]. The advantages of our method lie in potentially
very simple estimations. It is possible that it may also lend itself to new
proofs of the identifiability of parameters. This method, however, is not
without its own difficulties. The problem is now reduced to (1) producing the
above-mentioned polynomial equation (whose form depends on the structure
of the Markov random field and on ®) from the noisy image and (2) determin-
ing a priori which one of the roots of this equation is an estimator for &,. In
this paper, we describe how to produce suitable polynomial equations for any
Markov random field (Sections 2 and 3). Determination of the correct root,
however, is more difficult. We have made some progress in the general case,
but have had enough ideas, patience or computer power to complete this
programme only in some limited cases [described in Section 4 and in the
companion paper, Barsky and Gandolfi (1995)]. We now briefly outline the
main ideas in the paper; a rigorous treatment starts afresh in Section 2.

Our approach begins with construction of the polynomial equations. We
list the probabilities of all possible specifications of colors in some fixed finite
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array, as given by the Markov random field alone. This listing uses a great
number of parameters: 6§, and many other probabilities whose functional
dependences on 6, are known only from the exact solution of the model,
rarely available and in any case not used in this paper. Then we describe how
these probabilities are transformed under the noise, introducing the parame-
ter £,. Next, we invert this transformation (which amounts to the inversion of
a large matrix) and apply the inverse transformation (parametrized by a new
variable, £) to a corresponding list of probabilities of patterns of colors in the
noisy image. [An analogous matrix can be found in Meloche and Ruben
(1992).] If £ = ¢,, the inversion procedure described above returns us to the
original list of probabilities, but for other values of & the process only gives a
list of functions of ¢ (and &, and 6,). Using the structure of the Markov
random field, we can indicate some necessary conditions, in the form of
polynomial relations, which must be satisfied in order for such a list of
functions to be the list of probabilities for a Markov random field. [Some
similar notions can be found in Newman (1987).] Each of these necessary
conditions provides a polynomial equation in &, and & = g, is always a root.
The idea is, therefore, to estimate from the data (i.e., the noisy image) the list
of probabilities already transformed by the noise, apply the inverse transfor-
mation with the parameter £ to this observed list of empirical probabilities
and then solve one (or more) polynomial relations to determine for which
value(s) of ¢ the inverse-transformed list satisfies some of the necessary
condition(s) for being the list of probabilities for a Markov random field.
Having found an estimator for &, it is easy to “remove” the noise and use a
maximum pseudo-likelihood method to estimate 6,,.

It is regrettable that we do not yet have a general method to indicate
which real root of these polynomial equations is an estimator for . Some of
the polynomial equations might even be identically zero, for some or for all
# € O. Such equations are called null relations, and we shall discard them.
However, the null relations depend on the specific models and need to be
identified on a case by case basis. The nonnull relations, or effective relations,
on the other hand, will generally have other roots besides ¢ = ¢, and a priori
identification of the root estimating &, again is done case by case. Some
restrictions on g, are demanded; for example, if the Markov random field has
a global spin—flip symmetry, then &, cannot be distinguished from 1 — g,
(which is reflected in the polynomial equations being invariant under the
exchange &~ 1 — £). Additionally, £, = 3 cannot generally be identified
(which is reflected in the above-mentioned matrix being singular when
&= 1), but even if &, € [0, 3), some polynomial equations have multiple real
roots.

One possible solution to the problem of multiple roots is the simultaneous
use of two or more equations, looking for common roots. However, when
estimated from empirical data, such a set of equations would typically not
have any common roots and, at present, we have no good estimates on how
far the roots of equations from the data can stray from their theoretical
values. Additionally, it seems difficult to give a set of equations whose only
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common root is g, for all 6, € @. Nevertheless, it might be possible to obtain
such a set of equations, and this issue could be the subject of further
research.

In a different attempt to deal with the problem of multiple roots, we
explicitly study our equations for the one-dimensional Ising models G.e.,
Markov chains) in Section 4, and for the two-dimensional Ising model in a
companion paper [Barsky and Gandolfi (1995)]. We have found that for
several of these equations (1) £ = ¢, is a single root and (2) it is the smallest
real root. It might be the case for every Markov random field that there
always are equations for which statements (1) and (2) both occur, so we have
formulated a theorem of consistency for the estimation in the context of this
case, hoping that this will be the only consistency result required by the
present theory. The possibility remains that statements (1) and (2) hold (and
thus our consistency theorem applies) even in situations which are too
complicated for us to verify. If there is some physical intuition which suggests
that these conditions are met, then our estimator could still be used for
practical applications.

The reader can now either turn directly to Section 4 for a treatment (which
we tried to make self-contained) of simple one-dimensional models or else
first read Sections 2 and 3 for the abstract theory.

2. Definitions and the main result. Let Z¢ be the d-dimensional
integer lattice and let A € Z? be any box of the form I1¢_4[i,, i, +j,]1 N Z¢,
for some (i,...,i;) € Z% and (jj,...,j;) € Z%. In the present paper our
interest is focused on the observed images y, € {—1,1}*, which are the final
result of some stochastic process. Our set of definitions is basically the
description of this process.

Depending on the context, we indicate the configuration space {—1, 1% by
X, Y or Z; also, Xg, Yy and Zg will all indicate {—1,1}5, for S ¢ Z¢. We
suppose that we are dealing with an original image x € X, which has been
corrupted by a noise z € Z, resulting in an observable image y € Y given by
y;, =x,-2; for all i € Z% Elements i € Z¢ are called pixels, and for any given
pixel i € 7%, x, (resp., ;) is called the original (resp., observable) coloring of
i. The observed image y, is the restriction of y to the box A. Apart from the
distinction between observable and observed image, in the following we will
often regard configurations in { — 1, 1} as the restrictions of configurations in
{—1,1)%,if 8§, c S, c 7°.

The original image, the noise and the observable image are described by
some elements of the sets Py, &, and £y of the probability measures on the
Borel o-algebra of X, Z and Y, respectively.

The original image. Let @ be a locally finite (i.e., {[C € #: i € C}| < « for
,all i € Z¢, where | A| denotes the cardinality of A) and translation invariant
[ie., 7,(C) € ¥ if C € &, where 7; indicates the translation by the vector
i € Z%] collection of sets C  Z¢ called cliques. Note that the local finiteness
and translation invariance of # together imply that each clique is finite. An



ESTIMATORS FOR NOISY MARKOV FIELDS 1099

interaction ¢ based on % is a translation invariant real-valued function
defined on U ;.4 X, Let 0 indicate the origin of Z¢. Then the local interac-
tions of ¢ are the entries of the vector {¢(n)},cx,0ccce- We use these
interactions to define Markov random fields. Later on we shall see that these
models can be reparametrized using fewer parameters than the total number
of local interactions; it will then be advantageous to use a different, but
equivalent, notation.

For now, let a set of cliques # and an interaction ¢ be fixed. For each finite
S c 79, the energy function U$: X — R is defined by

(2.1) Ug(x) = Y ¢(xc).

Ce®
CN S nonempty

Note that the energy function can be thought of as a linear combination, with
integer coefficients, of the local interactions.

For A c 7Z¢ and x € X, a finite volume Markov random field for # and ¢
in A with boundary condition X is the probability measure

(2.2) maz(%0) = Zik exp(—UY(x, VX)),
where
Zyz= ), exp(-UP(x, AX)).

xp EX)

Here x, V ¥ € X is the configuration which agrees with x, in A and with x
in Z\ A. A Markov random field for # and ¢ is any convex combination My
of weak limits of u, ; as A 17¢, that is, as A ranges over an increasing
sequence of boxes which eventually covers the whole of Z¢ [see Ruelle (1978),
Chapter 1]. Phase transition occurs if there is more than one Markov random
field for the given & and ¢. In this paper, we only consider translation
invariant Markov random fields; the set .Z, of all such Markov random fields
for the interaction ¢ is always nonempty [Ruelle (1978), Theorem 3.7]. Since
our estimation scheme begins with a single infinite (noisy) image, we may
assume that Ky is ergodic for the group of translations of 7%, as any original
image is a typical configuration for some ergodic component of .

Markov random fields u, satisfy the Markov property: for any finite
S c Z? there exists a finite T D S such that w,(xg|%) = p,(xg|%pg) for
xg € Xg and X € X. In particular, for S = {0} one may take 7' = U ¢.gcce¢C;
we denote this particular set by N, and we call it the complete neighborhood
of the origin 0. Configurations £ € X, ~, are called complete local patterns. For
i € 74, N, will be the translation 7,(N,) of N, by the vector i. The neighbor-
hood of i is N, = N, \ {i}. It follows from the translation invariance of & that
i € N, if and only if —i € N,; thus |N,| is even. Local patterns are configu-
rations ¢ € Xy, and each such configuration gives rise to a pair of local
characteristics

(2.3) (%0 | €) = my(xo | €) = Zgy exp(—Ug(xy V £)).
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[Our notation, here and elsewhere, in writing Uy’ (and Z, ,) is that when S is
the singleton {0}, we write S = 0 as an abbreviation.]

Note that local characteristics are functions of the YT.gccc#2/¢' local
interactions. Moreover, the local characteristics are functions of ¢ indepen-
dent of the specific u, €.#,. Also, since the local characteristics are always
strictly positive, the Markov property implies that u,(xg) > 0 for all x5 € Xj,
for every finite S c Z4.

The noise and the observable image. For some ¢ € [0, 1], the statistical
properties of the configurations z € Z are described by the Bernoulli proba-
bility measure v, = I'1;. ¢, ;, defined on the Borel o-algebra of Z, where
v,(z; = —=1) = ¢ = 1 — y, ;(z; = 1). The action of the noise is given by setting
y; = x; - 2;. This amounts to flipping each pixel with probability ¢, indepen-
dently of the other pixels and of x. For any given interaction ¢ and noise
level ¢, the joint probability measure P, = u,-v,, defined on the Borel
o-algebra of Y, describes the statistical properties of the observable image.
Eventually, the interactions ¢ will be parametrized by a vector 6. Then we
will write P, , for the joint measure.

Estimation of parameters. Suppose now that the single infinite black and
white observable image y € Y is fixed and we observe y, as A 1Z% The
statistical properties of y are described by P, , for a known &, but with
both ¢, and ¢, unknown. We want to estimate £, and ¢,, but this is only
feasible if both are identifiable. The restriction of ¢, to [0, %) is sufficient for
identification of &;, but ¢, can only be identified modulo the following
equivalence relation [see also Gidas (1991), Appendix, for a related discus-
sion].

Two interactions ¢, and ¢, are equivalent, ¢, = ¢,, if #, =4, |or,
equivalently, if .#;, and .#, have nonempty intersection; see Gidas (1991)].
In our setting, the equivalence relation is better described by the following
lemma. Note that, by translation invariance, an interaction ¢ is identified by

the
r= Z 2]01
C:0eCe?%

local interactions, so it can be treated as a vector in R”. The energies
corresponding to the choice of any s_interactions ¢,,..., ¢, € R™ can be
written as a function Uy = (Ug,..., Ug*) defined on Xy and taking values

in R®,

LEMMA 1. (a) Two interactions ¢, and ¢, are equivalent iff
(24) Ud1(xg V €) —Ud(—xo V €) = U*(xo V €) — Ug*(—x, V £),
for all ¢ € Xy . The two interactions are also equivalent iff

(25) U (2 V €) —Uf(—x9 Vv £) =0,
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for all ¢ € Xy, with ¢ = ¢; — ¢y. In both (2.4) and (2.5), x, can be taken to
be either +1 or —1.

(b) Define = {¢ € R": ¢ satisfies (2.5) for all ¢ € Xy, and let biyenns b,
€ R” be a basis of some maximal linear space . which is linearly indepen-
dent of #. If 6 = (04,..., 6,) and 0- U, is the standard inner product of 6 and

- Uy in R?, then

(26) 6-U, = Uézf-l"i:ﬁ')’
(2.7) 0-[Up(xo V €) —Up(—24V £)] =0 forall £€ Xy iff6=0,

and
(2.8) s = dim(&) < min{2Wel 7},

Proor. Two interactions ¢, and ¢, are equivalent iff all of the finite
volume Markov random fields for ¢, and ¢, coincide, and this holds iff all
ratios

exp(—UP(x, V %))
exp(— U (=), V &))

are the same for ¢, and ¢2, whenever A ¢ Z%, % € de\A and x,, x}, € X,. It
may further be assumed in (2.9) that x, and x)y differ in exactly one pixel.
Now all ratios (2.9) are of the form

exp(—Ud’(xo v f) + U¢(—xo \4 f))

for some £ € Xy and xy = 1,50 ¢, = ¢, iff (2.4) holds for all £ € X, . Note
that Ug is linear in ¢ € R’, so that (2.5) holds (with ¢ = ¢; — ¢,) whenever
(2.4) is_satisfied. This linearity also yields (2.6), as 0-U, = £:_,0,U$ =
UgH-1899, Moreover, 8- [Uy(xg V £€) — Up(—x¢ V €)] = 0, for all feXN iff
U@“’) (29 V &) = UEH®) (—x4 v €) =0, for all ¢ € Xy, iff If. 10¢, =0
(the interaction Whlch is 1dent1cally zero) iff = 0 (the zero vector in R?),
which proves (2.7). Finally, the nontrivial part of (2.8) (that s < 2/™ol) follows
from the facts that the dimension of % cannot exceed the number of linearly
independent equations of type (2.5) and that there are only 2!V linear
relations of this type—before checking for linear independence. O

(2.9)

Later on we show that actually a strict inequality holds in (2.8). It is now

convenient to fix a basis ¢,,..., @, of a maximal linear space . C R”, which
is independent of .7, and to replace the energy in (2.1)-(2.3) by 6- Uj(x, V %),
with 0 € R® and U, = (U?,..., U?:). The parameters § € R® are now identi-

fiable and they will replace qS in our various notations: w, and P, , become
uy and P, ., respectively. We may also assume, for simplicity, that each &;
has integer entries.

Fix ® c R?, 6, € © and ¢, € [0, 3). We want to define functions #*)(y)
and 6M(y) such that

(2.10) EM(y) > gy as A1Z°
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and
(2.11) 6M(y) —» 6, as A1Z¢

for P, , -almost all y €Y.

The reason for not necessarily taking ® = R® is that the extra information
provided by the knowledge of ® can make the estimation of &, easier, as will
be seen in the consistency theorem.

The main quantity which we will be estimating from the data is most
conveniently introduced as a function of the empirical process generated by
an original (resp., observable) image, or more generally, as a function of
probability measures in Py (resp., Py ). For each box A C Z? and image
x €X (resp., y €Y), define x» € X (resp., y») €Y) to be the periodic
extension of the restricted image x, (resp., y,). The empirical process R, , €
Py is defined by

Ry W (f) = o7 X f(r-ix®)

IA | i€ |

for all continuous functions f: X — R. The empirical process R, .y 18 51m11arly
defined. For P € %y (resp., P € %y), let M be the vector whose 27! entries,
indexed by the complete local patterns & € Xy, (resp., £€ Yy,), are given by

My (&) = E*(1]xg, = E]),

where E indicates the expectation with respect to P and 1 is the indicator
function of the event in the brackets. The components of M are thus the
probabilities of the various local patterns. In the case of the empirical
processes, the components are just the relative frequencies in some portion of
the image. For simplicity we use the notation

(2.12) M, . = MR}\,x,
M, , = MRM

and

(2.13) M,=M,,

where, in (2.13), u, is some Markov random field for the interaction 4. We
suppress the dependence of M, on u, as we shall eventually work (see
Lemma 3) with propertles of the vector which are independent of the particu-
lar choice of the measure u, €.#,. Additionally,

Mog_ PO —MA

where the second equality makes reference to the 2/Nel x 2/¥! matrix A,
defined in (2.14).

We comment here on our vector notation. We generally do not distinguish
between row vectors and column vectors and use whichever notation seems to
be most natural for the purpose at hand, as it will usually be clear from the
context which is meant. For example, in writing My A, above, we are using
the usual probablhstlc notation and regarding M, as a row vector. Later, in
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Section 4 [above (4.4)] it will be equally evident that the vectors ¢ and U(¢)
are column vectors and that we are using the usual linear-algebraic notation
in writing U(¢) = U¢.

The entries of A, are indexed by £ € Xy and £{® € Yy, and given by

(2.14) ] Ae(«f‘”, E®) = gP(1 — £)IMl-D),

where D = D(¢§W, E®) =¢, _ w3 P — P is the Hamming dlstance be-
tween £® and §(2) As shown in Lemma 5, A, is invertible for £ # } and its
inverse A;! has components

‘1(5(1), E(Z)) - (26‘ _ 1)—|Ivo|€D(€ _ 1)(|1V.,|—D).

[Properties of related matrices appear in Barsky (1995) and Meloche and
Ruben (1992).]

The estimator 2*) in (2.10) is one of the roots of a polynomial equation in
¢ constructed by relating the entries of M, , A;! to the probabilities of
complete local patterns in w, . After this, a(A) is used to remove the noise
from the data so that an estimator §V) satisfying (2.11) can be determined.

Before we can give the exact form of the polynomial equations, it is
necessary to study Markov random fields in greater detail.

Structure of Markov random fields. We shall eventually see (in Lemma 3)
that it is possible to produce 2'Vo! — s polynomial equations (although several
of these may be null). To be certain that we have any equations at all, we
must first show that the upper bound for s given in (2.8) can be improved.

LEMMA 2. Let & be a locally finite, translation invariant set of cliques, not
all of size 1. Then if &% is as in Lemma 1,

(2.15) s=dim(%) < ¥
C:0eCe® IC
ICl=2

I(2IC| — 1) < 2|No|

PROOF. From-(2.8) we have that s <7 = Y¢.qccce2/, but s is in fact
smaller for three reasons. We present these reasons as linear conditions
which can (actually, the first condition must) be satisfied by the vectors of .%,
thereby giving successive upper bounds to s.

In the first place, interactions are translation invariant. If 7, stands both
for the translation by the vector i € Z¢ and for the map 1nduced by this
translation on the configurations of X, then interactions satisfy ¢(r;n;) =
d>(nc) for all i € C, 0, € X, and C € %. Roughly speaking, the translation
invariance implies that a clique C and all of its translates can contribute at
most 2/°! parameters to the sum which is the dimension of .. More formally,

1
s< Yy, =20
C: OECE‘gICI
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In the second place, for each C € @ and for any interaction ¢ based on C,
we may assume that ¢(7) = 0 for at least one 7 € X,. In fact, for any fixed
7 € X, (with C € &), we can define

3 " [é(n) — #(m), formeE X,
(M =1 (), forn € X,.,C' # C.

Then ¢ = ¢ by (2.4), which shows that

1
s< Y —=(2C-1).
C:O(ECG‘?K'C'I

Finally, we can also assume that ¢(n) =0 for all n € X, whenever
IC| = 1. Indeed, we have just shown above that if [C|= 1, then it may be
assumed that (acting on the color at that single pixel) ¢(—1) = 0. Assuming
that ¢(+1) # 0 and that there is a clique C € & with |C| > 2, define

d(n) + d(+1)|{i € C:m; = +1})|/ICI, forn € Xg,
é(m) = {0, if n e Xg,ICl =1,
é(n), otherwise.

(In order to not upset the argument of the preceding paragraph, we must
take the 7 for X to be identically —1.) By (2.4), ¢ = ¢, which concludes the
proof of the first inequality in (2.15).

We next prove the second inequality in (2.15) for d = 1. Afterwards we
will show how to reduce higher-dimensional cases to this setting. Given &
and its associated complete neighborhood of 0, N, = Ny(%) ={i_, 2>
L |Ng1/2+10 -+ s LN, 2} (Where it may be assumed that i, is increasing in n),
define ¢: Ny = N = {—INyl/2, —IN,l/2 + 1,...,INy|/2} by ¢(i,,) = n. In par-
ticular, note that y(i,) = 0 since i, = 0. Now define ' ={k + ¢(C): k €
Z,0cC e %). It is readily seen that %' is a locally finite, translation
invariant set of cliques and that ¢ induces a cardinality-preserving bijection
between {C € #: 0 € C} and {C' € #': 0 € C'}. Therefore,

1

1 ,
Z E(ZICI - 1) = Z IC/|(2ICI - 1)
C:0eCe?® C':0eC'e®’
ICl=2 IC'1=2

Since Ny(¢') = N, it now suffices to prove that the second inequality in (2.15)
holds for all # with Ny(%) = N. For such a %, observe that the subset of
those cliques containing 0 can be partitioned into equivalence classes by
declaring a pair of cliques to be equivalent if they are translates of one
another. Each equivalence class has a “least” representative: a clique for
which the origin is the maximal pixel. Let & denote the set of least represen-
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tatives for the equivalence classes of those cliques C having 0 € C and
IC| = 2. Then

1
Y g@I-n= % @"-1.
C.l%elz(}ze? Ceg

The number of least representatives in 2 having cardinality » cannot exceed

(I’Ij"_'/ 12 since any such representative must contain the origin and exactly

n — 1 pixels in {—|Nyl/2, —|Nyl/2 + 1,..., —1}. Thus
No/2+1
Z (2]C| _ 1) —_ OZ (INol/z)(zn _ 1)
Ceg n=2 n-1
= 9.38INl/2 _ 9INol/2 _ 1
< 2Nl
for [Nyl = 2,4,...

For the higher-dimensional cases, we construct a map ¢: Z¢ — Z which
induces a cardinality-preserving bijection between {C € #: 0 € C} and {C’ €
%'. 0 € C'}, where &' is some locally finite, translation invariant collection of
cliques in Z. Given &, we note that it is always possible to choose integers
ny,...,ng so that ¢(iy,...,i;) = X% ,n,i, is injective on Ny(#). The collec-
tion ' ={k + ¢y(C). k€ Z, 0 € C € %} is a translation invariant, locally
finite set of cliques in Z with Ny(%’) = ¢(Ny(%)), and hence |Ny(%') =

| Ng(®)l. Therefore,

L m@-ns T @ei-

C:0eCe? C':0eC'e®’
ICl=2 [C'1=2
< 2INo(&")
= 9INo(®)

as desired. O

It is clear that dim(.%’) might even be smaller than proven in Lemma 2. For
instance, the first inequality in (2.15) yields s < 3 for the one-dimensional
nearest-neighbor Ising model, but it is easy to verify that actually s = 2, with
the two parameters corresponding to the two parameters of the 2 X 2
stochastic matrix defining the one-dimensional two state Markov chain. Also,
the choice of the parameters made in this proof might not be the most
convenient for a physical description of the model. In the Ising model, for
example, one often uses the external field A = 3(¢(+1) + ¢(—1)) as a pa-
rameter.

We now fix # and O and turn to the issue of showing that the probabilities
of the local patterns in a Markov random field satisfy certain polynomial
equations. A polynomial relation for the vector M = (M(& ) X5, is any
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homogeneous polynomial @ = Q(M) of the 2N entries of M. Some particu-
larly relevant polynomial relations are of the form

Q.(M) = l'I [M(+1vg)]“+(f)[M(_1V§)]—a_<‘s>

(2.16)
- rI [M(-1v &) O M(+1V £)] ¥,

(eXy,
where @ = (@(£)); c x, is a vector with integer entries, « (5) = max{a(¢), 0}

and a_(¢&) = mln{a(f) 0}). We are especially interested in polynomial rela-
tions for the vector M, defined in (2.13). Some of these are described in the
next lemma.

LEMMA 3. Given % and O, there exist linearly Lndependent integer vectors

a™ e 72 n=1,...,2Wl g each with entries indexed by & € Xy,, such
that ‘
(217) Qa<")(Mo) = 0,

for all 0 € O, and for all Markov random fields u, €.4,.

PROOF. A simple computation using (2.165, (2.13) and (2.35 shows that, for
any 0 € R® (and any u, €.4,), Q,(M,) = 0 iff

M,(+1V ¢) 3
fe%Nooz(f)log————]‘,‘,e(_l ) =0
iff
(2.18) Y a(&)[U(+1v é) —U(-1V &)] =o.

(€ Xy,

Asking that (2.18) be satisfied for all # € R® is the same as seeking solutions
to

| aU=0,
where U is the 2!V X s matrix having entries
(2.19) U(&,i) =UF(+1V ¢) —UF(-1V &),

for ¢ € Xy and i €{1,..., s}. By the assumption that é1,..., ¢, is a basis for
a subspace of R” which is linearly independent of .#, we know that the
columns of U must be linearly independent. Since rank(U) = s, we have that
the nullity of the mapping @ — aU is 2Nol — s > 1, where the inequality
follows from Lemma 2. Finally, as the entries of U are all integers, it is
possible to find a basis {a™)2"7~* for the null space of this mapping with
each a(™ having only integer entries. O

. Definition of an estimator. In the estimation of £;,, we will use some
polynomial equations of the form Q(M) = 0, provided they satisfy some
suitable conditions. To better understand these conditions, let us consider the
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application of the relations found in Lemma 3 to the vector
(2.20) Me,é",a = Mg’elAa_l = MOA&.IA;I.

The case when &’ = g, is of special interest. Also setting & = &, shows that

M, ., ., =M, and hence & = ¢, is a solution of

(2.21) QM,,.,) =0

when &' = ¢g,.

As already mentioned in the Introduction, for any &' = ¢, € [0, 3), there
will typically be several values of £ satisfying (2.21). The examples presented
in Section 4 suggest that perhaps it is always possible to find equations (2.21)
for which &, is the smallest real root in & when ¢’ = &,. Motivated by these
examples, we will take our “suitable conditions” on the relations (2.17) to be
some variant of requiring that ¢, is the smallest real root in & of (2.21) when
&' = g,. Actually, it will turn out to be sufficient to require that 0 is a single
root in &, and the only root in (—,0], of (2.21) when &' = 0. We mention
here, primarily to establish terminology which will be used in the treatment
of the examples (see Section 4), that one way for a relation @ to fail to satisfy
this condition is for Q(M, .) to be identically zero in & for some 6 € ® and
g € [0, 1). Whenever this occurs, we say that @ is a null relation.

If we already knew the interaction 6,, then we could further specialize
(2.21) to the polynomial equation Q(M, .., ) =0 for &' = &, (or for £’ = 0).
However, it is because we suppose ourselves to be initially ignorant of the
choice of 6, € O that we use the relations of Lemma 3 which are valid for all
6 € O. Actually, an examination of the proof of Lemma 3 shows that the
relations (2.17) are satisfied for all § € R*. The reason for keeping track of ®
is that it is simpler to verify the above-mentioned suitable conditions if we
are allowed to use the a priori knowledge that the interaction belongs to the
region O in the interaction space R°®. In fact, when we subsequently turn to
the estimation of 6,, we will often make that estimation in the context of the
larger space R°®.

CONSISTENCY THEOREM. Let % and © be given, let ¢, € [0, ) and 6, € ©
and let @ be a polynomial relation. Suppose that Q(M,) = 0, for all 6 € O,
and define

M

’
0,e',¢e

=M,A, A .
Further suppose that, for all 0 € O, the equation
(2.22) Q(M,,,) =0

admits ¢ = 0 as a single root and has no real roots in (—=,0). Then for any
v>0:

(i) The smallest real root in [—v,1], 8™ (y) say, of
(2.23) Q(M,,,) =0,
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where
MA,y,e = MA

sy
is such that

lim 8WM(y) = &,
A1Z9

(ii) The vector 6MX(y) which maximizes (in R*)

(224)  GMPL(0,A,5) = T1  [m(xol&)]"eree=¥®

(xov f)EXNo

converges pointwise to 6, [i.e., lim, , z M (y)(m) = 0o(n), for all n € X, and
for all C € ] with P, , -probability 1.

3. Consistency. The consistency theorem is proven in this section after
three introductory lemmas concerning the matrix A,. The first of these
lemmas indicates that the noise transformation is well described by A, . We
choose a collection of cliques # and a set of interaction parameters ® C R?,
which are fixed throughout this section.

For x € X, z € Z and A C Z¢, define the matrix

AA x,z(g(l), 5(2))
(A1, ()™ T a[aff) = 80, (220 = 87,
icA

(3.1)
- if MA,x(E‘l)) # 0,
0, if M, (€%)=0.
Note that if y = x - z, then
(3-2) MA,y = MA,x ’AA,x,z-

LEMMA 4. Forall 6, € O, ¢, € [0, 1] and Ko, EMy,,

(3.3) L lim Ay, =4,
A1Z?
with P, , -probability 1.
PROOF. Let x € X, M € Xy and define S, (M) = (i € Z%: xy = £V}
As v, is a Bernoulli measure and e (D) > 0, for any £® € Zg, we have

€9

(34)  Im|S,(EV)nAI™Y L 1fzy = EV] = 5 (E®)
Arz? '

ieS(EMNA
)Wit‘h v, -probability 1. Since we assumed that u, is ergodic,
lim [AI7YS (ED) N Al= lim M, ,(ED) =M, (ED
T JATS,(E9) 0 Al = Tim, M, (E©) = M, (E%)
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with u, -probability 1. Therefore, writing £® = £¢® - £® and letting yl%\i) =
(x -z)%\i) for some z € Z, we have
i L 7 1[0 - 20
Arze IAI icA ! !
1 _
(35) =lim — T 1fzy = 9]
arze Al ieS(EMNnA

oo €)My (£)

with P,  -probability 1. It then follows that lim,,¢A, , ,(§®,£®) =
vgo(i(a)), again with P, _ -probability 1, and this concludes the proof since
Va(g(l’»)) = 8D(E(1),§(2>)(1 _ g)WM_D(f-“)’E(Z)). O

Lemma 4 was formulated for ¢, € [0, 1]. However, A, is defined for any
e € R and we now proceed to describe properties of A, for generic values
of &.

LEMMA 5. Fora, b €R, let A, , be the matrix defined by
A, (ED, E®) = gPEDEDpIN-DEDED)

for any €O, ¢@ e Xy,. Then

(36) Ae,l—e =Ae’
(3.7) Ay, =1 (theidentity matrix),
(38) Aab 'Acd = Aad+bc,ac+bd
and
ATV =A0L, y
(3.9)

= - — Nyl 1
- Aa/(23— 1),(e-1)/(2e-1) — (28 - 1) ° Ae,s—l for &+ 2

ProoF. Properties (3.6) and (8.7) are immediate and (3.9) follows from
(3.8) and the homogeneity of A,, in (a, d). Writing D,; as shorthand for
D(£D, ¢0) we verify property (3.8) as follows:

T A(E0,E9)A(E, E9)

I®exy,
= Z aDl,sb|ﬁo|—D1,3cD3‘2dlﬁo|—D3,2

E®eXxg,

= ol IZ\_/'o| - D1,2 - l INol=D15~1 s D1,2 m Dyp=m
Y z (ac)'(bd) X |57 (ad) " (be)
1=0 m=0

(ac + bd)lﬁd_Dm(ad + bc)Dl’2 = Aad+bc,ac+bd(g(l)’ 5(2))' a
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The next lemma describes how to use the condition on the roots of (2.22) to
obtain a related condition on the roots of (2.21) when &' = ¢,,.

LEMMA 6. Let &, €[0,3) and let @ be a polynomial relation satisfying
Q(M,) = 0. Suppose that, for all 6 € O, the equation Q(M,, ) =0 admits
& =0 as a single root and has no real roots in (—»,0). Then, for all 6 €0,
the equation

(3’10) Q(Me,so,s) =0

admits € = g, as a single root and has no real roots in (—®, g;).

Proor. Fix any 0 € @. It follows from Lemma 5 that
M0,0,s' = (280 - 1)_|ﬁ0|M0A9’,s’—1‘

Similarly,
= (2, — 1) "Mip, A

0,e9,8" " —gg,6" +e5—1

= My Ao/ -200), (" 201/ -2eg)- 1
where the last step uses the homogeneity of A,, in (a,d). Since @ is a
homogeneous polynomial, Q(M,,,.) has a root of order n at &' = & iff
Q(M, . ..) has aroot of order n at &” = (1 — 2£,)& + &,. The hypotheses of

the lemma now guarantee that (3.10) has a single root at ¢ = ¢, and it
cannot have any roots in (-, gy). O

We are now ready to prove the consistency of the estimators.

PROOF OF THE CONSISTENCY THEOREM. For e € R, x €X, z€Z and A C
z4, let M,,,, =M, A, A;', and for y,a,b >0, let R, ,,={teC:

—v < Re(t) < a, Im(t)| < b}. For any v,b > 0, a € (&), 3) and £ € Xy, we
claim that

(3.11) lim sup M, ,,. (€)M, .(€)=0

A1Z% ceR,,,

with P, , -probability 1. In fact, for any e Xy,

sup IMA,x,z,e(g) - Moo,so,s(g)l

c€R

v,a,b
< 2% max My, (3) M, (EO)I- sup 1472(80,F)
iWVeXxgy, e€R, , 5
E(l)exﬁo

< gzlﬁol{ max |AA,x,z(g(2), g(b) _Aao(ga), g(1>)|

E®, Z®eXy,

+ max |M, (£?®)- Meo(E@))l} - sup |AJY(EW,€)l,
§(2)GXN0 €€ER, .
EVeXg,
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so that (3.11) follows from the ergodic theorem, Lemma 4 and the continuity
of the mapping ¢ — A L.

For all ¢, € [0, 1), it follows from the assumptions about the roots of (2.22)
and from Lemma 6 that ¢ = &, is a single root of Q(3, , .) =0 and that
this equation has no other real root in (—o, g;). Since QM, , ) is a
polynomial in &, for every sufficiently small 6 > O,

(3.12) sgn[Q(M,, .. ..-s)] = —sen[@(M, ., ..+5)]
and there exists ¢ = ¢(8) > 0 such that

(3.13) Q(M,, .y e0-5) 1Q(Mp, 4, 00v5) = ¢
and

(3.14) inf IQ(MOO’SO,S)I > c.

E€R, ;-5

It follows from (3.11) and the continuity of @ in its arguments that, with
P, ,-probability 1, there is a A large enough that Q(M, ,,.) satisfies
(3. 12) (8.14) with ¢ replaced by ¢/2 in (3.13) and (3.14). As Q( M, A.x,2,) alsois
a polynomial in &, this implies that Q(M, , ,,) = 0 has at least one root in
[y — 8, & + 8], and no other roots in R, , _; . . Therefore, #"(y) can be
taken to be the smallest (real) root in [—7, ¢, + 8] of Q(M, . ) =0, and
letting 6 | 0 shows that

(3.15) EM(y) > gy as A1Z9,

with P, . -probability 1. This estimator for ¢, allows us to “clean,” that is,
reconstruct the probabilities of complete local patterns in u, . For all te Xy Ny

| M, ,y,é“’m( f) - Moo( f)'

< 27| max 1434,(E0, ) - AZH(EO,2)

+ max |M, (D) -M, ,(£P)- max |A L(ED, §)|}
g(l)eX EMex

so that

(3.16) My .y, 5005 = Mo,

with P, . -probability 1, by the continuity of the mapping ¢ —» A_ 1 (3.15)

and (8. 11)
We now will use a maximum pseudo-likelihood method to estimate 6. In
the case of no noise [Besag (1977)], the method uses the function

MPL(§, A, x)-= [T m(x; | x§)

ieA
M, (xoVE)
[T m(xol &)™ "7,
(xo\/f)EXNo

1 (3.17)
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which converges to

(3.18) MPL(6,600) = T1  m(xlg)Ma="®
(xoV é JeX, No

with u, -probability 1, as A 1 Z4. Our method uses (2.24) instead of (3.17). We
first prove the convergence of GMPL(6, A, y) to MPL(6, 6,) when 6 belongs
to some compact set ®, C R°. Note that here 6 is not restricted to ®. The
functions 0 —» m,(x, | £) are continuous and strictly positive. Therefore,

sup [log GMPL(6, A, y) — log MPL( 4, 6,)!

0c 0,

< 2%l sup |M, yimp(E) — My (E)l  sup  |log(m(x, | £))]
fexno fe @c
(xo v E)eX, No

< K(©,) sup M, , ;u,,(€) — M, (&),

EeXp,
with K(O,) a suitable constant depending on @,, so that
(3.19) sup [log GMPL( 6, A, y) — log MPL( 9, 6,)| = 0
0€0,

by (3.16), with P, _ -probability 1.
Next, we show that log GMPL(6, A, y) is a strictly concave function of 6.
Let 6, 0’ € R®, with 6’ # 0. Then

d
= log GMPL(6 + t6', A, y)

(3.20) = E MA,y,é(A)(y)( %o V E)My 9 (—% | £)0’
(xovf)eX;Vn
X[Up(=x9 V €) = Uy(x4 V €)]
and
2

d )
321 =- Z MA,y,é"‘)(y)( %o V )My po(—%g | §)Mysrg (29 | €)

(xoV f)eXN"

X(0" [Up(—xo V €) — Up(x4 V 5)])2
Since ' # 0 and M, (&) > 0, it follows from (2.7), (3.16) and (3.21) that, for
all 6 € R?, log GMPL(0 A, y) is strictly concave with P, , -probability 1 if A
is sufficiently large.

Finally, note that (3.20) and (3.21) also hold (with M,, replacing M, , s y))
if MPL(6, 6,) replaces GMPL(9, A, y). In this case, we may set 6 = 6§, in
(3.20) and use (2.7) to see that log MPL(#, 6,) has a unique maximum and
that it achieves this maximum at 6 = 6,. Therefore, by taking @, such that
6y € O, it follows from (3.19) that, with P, , -probability 1, if A is large

log GMPL(0 +1t0',A,y)
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enough, log GMPL(6, A, y) has a unique maximum in R® at 6™(y) € O, and
that 6X(y) - 6, as A1Z% 0O

The consistency theorem was formulated for the (homogeneous) polynomial
relations. Lemma 3 indicates how to produce at least one polynomial equation
of the type (2.17). However, it may happen that all of the polynomial relations
which are obtained in this fashion are null relations in that each is identi-
cally zero in & for certain values if § € @. In such circumstances, it may be
possible to use further insight into the model to obtain additional nonnull (or
effective) relations. An example is given in Section 4 (for the general nearest-
neighbor Markov random field on Z). Loosely speaking, the polynomial rela-
tions which we have shown how to construct in Lemma 3 can fail to be
effective if either O is taken to be an unreasonably large subset of R® or there
are some special symmetries in the process. In the latter case, it is not
unreasonable to expect that the presence of the many symmetries necessary
to make all of these polynomial relations null should lead to (enough of) an
exact solution of the model to enable one to construct some additional
relations which are not null. It is also conceivable that some these new
relations may not be polynomial relations in the sense defined above, in that
they may be nonhomogeneous. Actually, in the example of Section 4 men-
tioned above, we are able to find two effective relations: one is homogeneous
(and thus is covered by the consistency theorem); the other is not.

To be able to handle situations in which we wish to consider nonhomoge-
neous polynomials, we point out that if no use is made of Lemma 6 and the
homogeneity of @, then the proof of the consistency theorem yields the
following result.

COROLLARY. Let % and ® be given and let &, [0, 3) and 6, € 0.
Suppose that @ = Q(M) is a polynomial in the entries of M such that, for
every 6 € 0, Q(M,) = 0 and the only solution & € (—», &,] of

Q(Mo:é‘o:é‘) =0
is a single root at &,. Then for any y > 0:
(i) The smallest real root in [y, 1], call it £*)(y), of
Q(MA,y.s) =0

is such that

lim 2™ (y) = &,.
A1Z°

(ii) The vector 6“)y) which maximizes

GMPL(O’ A, y) = n ['ﬂ'o(xo | é’)] My,yz0x9)(%x9V )

(xoV f)EXNn

in R® converges pointwise to 0, with P, ;,-probability 1.
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4. Example in one dimension. The reader should be able to read this
section right after the Introduction (comments between brackets are for the
benefit of those who have also read Sections 2 and 3), occasionally looking at
some parts of Sections 2 and 3 when indicated.

In this section we consider the one-dimensional nearest-neighbor Markov
random field on {—1,1}%. Stationary one-dimensional nearest-neighbor
Markov random fields are in one-to-one correspondence with a collection of
stationary one-step Markov chains, the latter defined by means of a two-

parameter transition matrix (1 PR b), with a, b € (0,1). The Markov
chains with a =0, a=1, =0 or b =1 do not correspond to Markov
random fields because each of these chains prohibits some pattern of a pair of
colors, which corresponds to having an interaction which is infinite on that
pattern. We shall further assume that a # 1 — b, which is the same as
requiring that the Markov chain not be a Bernoulli process, since in that case
the interaction is not identifiable. We can use the correspondence between
Markov random fields and Markov chains as a method for writing down the
probabilities of the specification of colors in some finite array as explicit
functions of the interaction ¢,. This explicit functional dependence is called
an exact solution of the model.

The existence of an exact solution should mean that the estimation of the
parameters 6, and g, is not overly difficult, and this presentation serves
mainly to illustrate our method in a simple case and also to offer an explicit
estimator that the reader might want to compare with his /her preferred one.
It would now be easy to obtain our polynomial relations from the exact
solution (eventually we will do this, and the impatient reader can go directly
to the subsection on the general nearest-neighbor Markov random fields
below) but we choose instead to begin working from the general setup of
Markov random fields, using interactions between pixel colors (along the
lines of Section 2). In this way we shall also illustrate what one does when
the exact solution is not available.

Before we go on, let us mention some possible alternative estimators which
could be used in this situation. First, as the necessary probabilities can be
easily obtained from the exact solution, it appears that one could try to use
the maximum likelihood estimator to estimate a, b and ¢ simultaneously. In
practice this may not work. In our investigation of symmetric Markov chains
(i.e., a = b) we found that, for small images, the maximum likelihood estima-
tor was afflicted with a strong “endpoint” problem: it always returned an
estimate which had @ = 0, a = %, @ = 1 or & = 3 (all of which are ruled out
by our assumptions on the model), and for larger images, even though one
can explicitly write down the likelihood function, this is a polynomial of high
degree in several variables, and it may not be easy to locate where it achieves
its maximum. Second, in situations where maximum likelihood fails because
the estimation is based on incomplete data, one could do the estimation via
the EM algorithm, but as we remarked in the Introduction, this iterative
method can be computationally quite intensive. Third, if one has the a priori
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information that the Markov chain is symmetric, then the method of mo-
ments, as in Frigessi and Piccioni (1990), turns out to be a computationally
easier task. However, it is not clear how to extend the method of moments to
the asymmetric case a # b, and we thus make this our starting point,
providing a computationally fast method for estimating the parameter in an
asymmetric one-step Markov chain with independent symmetric noise. The
general case, with a,b €(0,1) and a # 1 — b (but without the hypothesis
that a + b) will be discussed afterward. At the end of this section we compare
(in the symmetric case) our estimator to the moment estimator of Frigessi
and Piccioni (1990).

Asymmetric nearest-neighbor Markov random fields. As mentioned above,
we begin our treatment by studying the interactions, which are functions of
the colors in cliques. It is suggested that the reader who has not already done
s0, should read the definitions in Section 2 up to (2.3). Here cliques are all the
elements of Z and all the pairs (which we can take to be ordered, for
simplicity) of nearest-neighbor elements of Z. Modulo translations, there are
two cliques in the present model, for a total of six specifications of colors:

(4.1) (), (+,=), (=), (=), (), (—)-
Here and in the following we abbreviate by dropping the 1in +1 and —1. It
is assumed that a noise level &, € [0, ) and an asymmetric interaction ¢,
are fixed but unknown. An interaction is a real-valued function of the six
specifications above and it is asymmetric if it is not invariant under the
exchange of + and — in the specification of colors above. Our goal is to
estimate the parameters ¢, and ¢,, which characterize the Markov random
field and the noise process, respectively, by observing the specification of
colors in finite portions of the observable image y € {—1, 1}2. This image is
distributed according to the product measure Py , = u, X v, , where u, is
a Markov random field of ¢, and v, is the Bernoulli measure with dens1ty
&,- The interaction can only be estimated up to an equivalence class, where
two interactions are said to be equivalent if they generate the same Markov
random field (see Lémma 1).

The neighborhood of the origin is {—1,1} c Z, the complete neighborhood
of the origin is {—1,0,1} C Z and interactions are vectors in R%. We list the
2Nl Jocal patterns

(4.2) (++),(+=),(=+), (=)

and the 2™l complete local patterns

(++4), (4 =), (= +4), (=4 =), (+ = 4),
(+——)’(—_+)’(—_ —)y

and we fix these orderings. .
The energy function (at the origin) is

U¢(g<—1,0,1>) = ¢’(g<~1,0)) + ¢(5(0,1>) + ¢(&)

(4.3)
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for any interaction ¢ and any E(_m,l) € Xp,. An examination of this energy

function leads to the construction of some polynomial relations (following

Lemmas 1 and 3).

1. Let U(¢) be the vector indexed by & = £_, ;, € Xy, and given by U(¢$)£)
=UH+V &) =~ UN-V §), where we define (xV £) = (§_q, =,
£.+1)) € Xg,. [For special choices of ¢, U(¢) is a column of the related
matrix U in (2.19).]

This defines a map
¢=(d(++),0(+-),¢(—+), (=), d(+), ¢(-)) = U(¢) =U¢

from R® to R* described by the matrix

2 -1 -1 0 1 -1

|1 0 0 -1 1 -1

(4.4) U= 1 0 0 -1 1 -1
0 1 1 -2 1 -1

when using the order given in (4.1) and (4.2).

2. The model can be parametrized (see Lemma 1) by first finding a basis of a
maximal linear space . independent of the null space of the matrix U and
then writing the interactions as linear combinations of these basis ele-
ments, which can be chosen to be vectors in Z. A customary choice in the
present case is to form the basis from ¢, = (1, -1, -1,1,0, 0) and ¢, =
(0,0,0,0,1, —1), in which case the two parameters are called 8 and A.
With this choice of parameters, the map (a,b) — (B, k) is somewhat
unpleasant and not entirely necessary here. Just for the purpose of show-
ing how to interpret our restrictions on a and b in the language of
interactions, we mention [see, e.g., Denny and Wright (1991)] that

[T—a (1-b)(1-a)\"*
el = 15 and e’3=( " ) .

Regardless of which basis we choose, we have that dim(%) = 2 <4 = 2ol
(as predicted by Lemma 2).
3. We find polynomial relations (see Lemma 3) by solving the equation
aU =0,
that is, by finding vectors a which are orthogonal to the columns of U.
Since U is a rank 2 [2 = dim(5)] linear transformation into R* [4 = 2¥el],
it is possible to find two such independent vectors, for instance,

(4.5) a®=(0,1,-1,0)
and
(4.6) a® = (1,-2,0,1).

4. Next, for any 6 = (6(1), 6(2)) € R2, let M, be the vector indexed by e Xy,
of the probabilities M,(£) = pyqys, + s@2)s{€)> Where ¢, and ¢, are a basis
for .. A pair of polynomial equations can be obtained from (2.16), using
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the a’s in (4.5) and (4.6):
Q.o(M) =M(++-)M(——+)

(4.7
-M(+--)M(-++)=0
and .
48) Quo(M) = M(+++)(M(+--))’M(-+-)
—M(+—+)(M(++-))’M(---) =0.
5. Let M,, ,=M,A, A;', where A, is the matrix defined in (2.14). It is

clear that & = ¢, is a solution of @,w(M, ., ) = 0 for i = 1, 2, but it is not
easy to tell whether the relations @, are null in the sense that, for some
value of 6, Q,w(M,,, ) =0 for all ¢ To decide whether these relations
are null or effective, we now turn to the exact solution, because proceeding
without it would prove quite arduous.

. It is most convenient to change from the original parameters 6, = (6,, 6,)

to the parameters @ and b appearing in the transition matrix for the
Markov chain corresponding to the Markov random field. Let us indicate
this change of parameters by the transformation (a, b) — 6(a, b). We then
have

Ma,b = Mo(a,b)

(4.9 =(a+ b)'I[b(l —a)?,ab(1 — a),ab(1 — a),ab, ab?,

(4.10)

ab(1 —b),ab(1-b),a(1 - b)zl’

where we use the ordering of the complete local patterns given in (4.3). A
direct calculation (left to the reader) shows that @, is a null relation. On
the other hand, temporarily assuming that &, = 0, we note that
Qa(z)(Ma(a,b),O,s) = 0 reduces to

e(e—1)ab(b —a)[a — (1 - b)]*(s® — & + ab)
x[(a+b)e? — (a+b)e+ab(2—a-b)] =0,

where we have ignored various factors of @ + b and 2& — 1. Our assump-
tions on the parameters @ and b (a, b # 0, a # 1 — b and a # b) guaran-
tee that (4.10) is not identically zero. Therefore, we only need to study the
roots of the last two factors in order to verify that they cannot be confused
with the root at & =g, (= 0) when estimating &, from the data. It is
easily seen that the real roots (in ¢) of last two factors in (4.10) are in (0,1)
for all a, b € (0,1). The homogeneity of the polynomial @, allows us to
conclude from the observation that & = 0 is (a single root and) the smallest
real root of (4.10), that for any &, €[0, 3) the root at &=g¢g, of
Quo(My(, 4, .. .) =0 is (a single root and) the smallest real root (see
Lemma 6).

. We are now ready to define our estimators. Recall that for any given

interaction ¢, € R® there is a vector 8, € R? with 6,(1)¢; + ¢¢(2)b, = ¢,
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where ¢; and ¢, are the elements of some basis for ., as described in
step 2 above. We will estimate £, and 6,. First, let y® be the periodic
extension to Z of the observed image y, (which is the restriction of the
observable image y to A) and define M A,y to be the vector, indexed by
e Xy ~,» of the empirical frequencies of the spemﬁcatlons of colors & in y®™
in A [see (2.12)]. Then, form the equation in &,

(4.11) Q.o(M, A1) =

[as in (2.23)]. Next, find the smallest real root #*)(y) of (4.11) (as we
proved in the consistency theorem):

EM(y) = &

with P, o -probability 1 as A 1Z¢. Finally, consider the function GMPL:
R? > R given [as in (2.24)] by

9 — GMPL(0, A, )

(412 ©TL el s,
(xov f)EXN

where m(xq | €) = My(xy V £)/(M,(+V &) + My(—V £)), for e Xy,
The vector 6 )(y) € [R2 which maximizes GMPL(6, A, y) satisfies [see the
consistency theorem (and its proof)]

G(A)(y) = 0

with P, . -probability 1 as A1Z ¢ and this concludes the discussion of the
asymmetric case.

General nearest-neighbor Markov random fields. We retain our “finite
energy” (a, b # 0) and non-Bernoulli (a # 1 — b) assumptions on the param-
eters a and b, but now relax the asymmetry (a # b) hypothesis. Note that it
was essential in (4.10) that a # b. If we are not given this a priori informa-
tion, then @, is also a null relation and unfortunately no effective relations
are derived from the most abstract version of our theory. However, one can
now go further and add more relations by using the exact solution (4.9)
explicitly. An examination of (4.9) yields a pair of equations which are
independent of the two null relations (4.7) and (4.8):

(4.13) Q;(M)=M(++-)—-M(—++)=0
and
(4.14) Qu(M) =M(+++)M(—+-) — (M(++-))*=0.

Another direct calculation (left to the reader) shows that @, is a null relation.
However, it is also readily seen that @,(M,, ;,,,) = 0 is equivalent (neglect-
ing various factors of a + b and 2¢ — 1) to

(4.15) e(e—1)abla — (1 -b)]* =
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Therefore, @, is an effective relatlon and as above, for any &, € [0, 1) and
$o € R®, we can define the estimators £ and §™ to be the smallest (real)
rootin & of Q(M, A1) =0 and the vector in R? maximizing (4.12) with this
current value of g(A’, respectively. These estimators converge (with Py o
probability 1) to &, and 6,, respectively, where 6, is related to the interac-
tion ¢, by 0,(D¢d, + (770(2)qf>2 do- (Although Q, was not obtained via the
constructlon described in Lemma 3, it is a polynomial relation, and so the
convergence of the estimators is accordlng to the consistency theorem)

For the sake of completeness we point out that there are eight components
to M, ,. We know that these eight components are functions of two parame-
ters, they sum to 1 and they satisfy Q,0(M,,) = Q,o(M, ;) = @3(M, ,) =
Q4 M, ,) = 0. Thus we should be able to extract one more relation from the
complete solution, and indeed we can. One choice for a fifth independent
equation is ‘ '

Qs(M) = M(—+—)[M(=+~) + M(+—+)]
(4.16) X[M(+++) +M(++-)]?
—M2(++—)M(+—+)=0.

This fifth equation is different from the first four in that it is not homoge-
neous, but it is still possible to base the estimation on this relation. As a
demonstration of how to proceed in the case of a nonhomogeneous polynomial
we next show that @ is effective.

A somewhat lengthy calculation shows that @;(M,, )., .) = 0 reduces to

(2= 20)[ = (1 - £)](2¢ — D*abla — (1 - B)]”
X[82 —&e+tab+ (1 —4b)gy(1 — 80)]
X{3(a +b)ed —[2a + Tb + 5(a — b)g,y] &?
+[b(5 — a® — ab) + (4a — 6b + 4a%b + 4ab?)e,
+(a + b — 4a%b — 4ab?)&l] e
+[b(a? = 1) + b(1 — 5a® + ab) &,
~ +(b—2a + 8a%b — 4ab?)s?
+(a — b —4a’b + 4ab2)sg]} =0.

We emphasize that because of the nonhomogeneity of @ it is no longer
sufficient only to verify that the smallest root in & of @5(Mj 4)0.) =0 is
e=0. We must show more generally that the smallest root in & of
Q5(My(4,5,) =0 is & = &. Another feature of the lack of homogeneity is
that it now becomes critical to remember the denominators a + b and 2¢ — 1
in M,, and A;' when computing (4.17), whereas they could have been
neglected in the similar computations of (4.10) and (4.15). To see that the
" penultimate factor in (4.17) does not vanish for any ¢ < &,, we note that at
& = g, this term, its derivative with respect to ¢ and its second derivative

(4.17)
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with respect to & are ab(2g, — 1)? (positive), (2¢, — 1) (negative) and 2
(positive), respectively. Hence this factor must be strictly positive for all
& < &,. A similar line of reasoning shows that the last term in (4.17) is
strictly negative for all & < &,. Therefore, @; is an effective (albeit nonhomo-
geneous) polynomial. We can now produce the estimators 2 and §®), as
described above for the homogeneous cases, by using @;(M, A; 1) = 0 to find
&M from the observed image y,. (The convergence of the  estimators is
guaranteed by the corollary at the end of Section 3.)

Comparison with other estimators. In this section we present some calcu-
lations which compare our estimator with an estimator obtained by the
method of moments. For simplicity, we focus on the estimation of the noise
parameter £. The comparison is in the context of a small string of n (= 10)
pixels, and we will explicitly compute the estimators by analyzing all possible
configurations of two allowed colors.

We now indicate the specific choices made for this comparison, but the
results should not be too dependent on these details. The original image is an
element x € X = {—1,1}". The measure u, describing the original image is
taken to be symmetric, as this is the only case where the method of moments
can be used. Note that our estimator suffers no such deficiency. The transi-

tion matrix for the original chain is ( l1-a ) e a) and the measure is given by

I

(x) = gliel,..., n—l}:x,»*xi+1}|(1 _ a)l(ie(l ..... n—1}:x;=x; )l

for a € (0,1), up to a factor of 3 which we ignore. The noise is described by
the Bernoulli measure with density £ € [0,1/2) of —1’s, and the product
measure describing the observed image y € Y is indicated by P,

There are various ways to generate estimators for £ by our method. For
instance, by using (4.15) with b =a we see that (4.14) is an effective
estimator in the symmetric case. However, in order to avoid inappropriate
asymmetries, it is better to use a slightly modified (symmetrized) version:

Qu(M) = (M(++—) + M(—++) + M(+——) + M(——+))/4)*
(4.18) —-(M(—+-)+M(+—-+))/2)
X((M(+++)+M(——--))/2) =0.

This is also an effective relation because it reduces to (4.15) when evaluated
at the vector of probabilities M,,,. Given an image y, we compute the
empirical vector M, by

M (ww) =l{i € {1,...,n = 2}: 3, = 4, y;11 =V, ¥iyp = w}|
and then solve
(4.19) Q. (M,A;Y) =0,

with the matrix A, as in (2.14). If (4.19) has real roots and the smallest real
root is in [0, 3), then we say that the estimator exists, we define it to be that



ESTIMATORS FOR NOISY MARKOV FIELDS 1121

smallest root and we denote it by Z5ypr(¥). The roots of (4.19) which are
complex, negative or greater than 1 are eliminated because they do not make
sense as possible values of &, given our assumptions on the noise. When & = 3
the parameters are generally not identifiable, and for this reason 3 is also
excluded from the possible values taken by the estimator.

To implement an estimator based on the method of moments (MOM), one
first computes the estimated moments

n—-1 n-2

1
N. - . =— Y.
() =——3 El Yi¥ier and Ny(y) = — El YiYiv2

It can be seen from Frigessi and Piccioni (1990) that

(4.20) Ewom(y) = [1 — sen(Ny(»))Ny(9) /VN:() | /2

is an estimator for &. As above (and for similar reasons), we adopt the
convention of saying that this estimator exists only if [N,(y) > 0 and]
Emom(¥) €10, 3).

To compare the two estimators we generate all possible images y € Y and
then compute &gyp(y) and &yom(y). The two estimators can be then com-
pared by computing (for j = GMPL, MOM)

pi(a, &) = P, (& exists)

and

where E, , is the expectation with respect to P, ,. The consistency theorem of
Section 3 [resp., Frigessi and Piccioni (1990)] tells us that, for each a € (0, 1),
a+3 and £€[0,3), peurla, &) [resp., pyom(a, &) tends to 1 and
Egyri(a, &) [resp., Eyon(a, )] tends to & as the number of pixels n diverges.
We have computed the (polynomial) functions p;(a, &) and the (rational)
functions Ej(a, &) for j = GMPL,MOM and » =6,7,8,9,10. Rather than
transcribe the (long) formulas here, we first describe our findings in words
and then provide some (crude) quantification.

The functions p(a, &) (j = GMPL, MOM) are both maximized at the points
(a =0, e =0)and (a = 1, £ = 0) (where these probabilities take the value 1),
they tend to their respective infima (when n =9, 35/128 for both; when
n = 10, 67,/256 for pgyp;, and 37/128 for pyoy) as either a —> % or & / 3
and there are no other local extrema in [0, 1] X [0, 1]. We remark that these
findings are in accordance with the intuition that the estimation should be
simplest when the noise is small (¢ near 0) and the model more “determinis-
tic” (a near either 0 or 1), and the estimation should become more difficult as
, the image pixels become symmetric Bernoulli random variables (a or & near
1). As might be expected from the preceding two sentences, for both estima-
tors, E/(a, ¢) is close to & in the vicinity of the points (a = 0, ¢ =0) and
(@ =1, £ =0). For & small and a near 3, E(a, &) is much larger than ¢
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(positive bias), and for & near %, E{a, &) is significantly smaller than &
(negative bias).

One way to quantify the results described above so that we may compare
the two estimators is to compute the average values of the probabilities of the
existence of the estimators and the deviation of the conditional expectation
from & (i.e., the bias) with respect to a uniform (prior) measure on the
parameter space {(a,¢): 0<a <1, a+ %, 0<e<3i}) We will therefore
report in Table 1 (for j = GMPL, MOM)

421 p. =2 (a,e)dade,
(4.21) p; f( o otonn P (@)
(4.22) EM =2 |Ei(a, c) — ¢ldade

0,1)x[0,1/2)
and

1/2

4.23 E® = (2 E(a,&) — ¢ *dads
(4.23) / <o,1)><[o,1/2)[ s(a: ) ]

The integrals of (4.21) give some indication of the utility of the estimators
[the average probability of having a “feasible” estimate], while the integrals
of (4.22) and (4.23) serve to quantify the bias.

The results shown in Table 1 give a rough indication that the estimator
that we are presenting here performs more or less with the same accuracy as
the method of moments. In terms of reducing the magnitude of the bias, our
estimator appears a little better than the moment estimator. As far as the
probability of existence of the estimators is concerned, the method of mo-
ments appears to be better than ours, but we will next report some evidence
that indicates that this may not be the case when there are more pixels. First
let us comment that the reason for restricting the investigation reported in
Table 1 to images of 10 or less pixels is essentially a computing constraint
imposed by working on small computers: the length of the calculations grows
geometrically with the number of pixels. A computationally less intensive
procedure is to simply count the number of observed images y for which
either estimator exists; for j = GMPL, MOM we define the frequencies

noa .
(4.24) fi=|{y e ¥ = {-1,1)": 3 exists}|.
TABLE 1

n PempL Puom Epr, Efiom . E&mpL Efom

6 0.256 0.393 0.110 0.127 0.136 0.159
L7 0.315 0.369 .0.104 0.147 0.129 0.183

8 0.244 0.350 0.107 0.104 0.133 0.129

9 0.332 0.350 0.118 0.123 0.146 0.152
10 0.321 0.364 0.102 0.097 0.124 0.118
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The relative frequencies f;/2" can be interpreted as the average of pi(a, &)
with respect to some prior distribution which gives rise to the uniform
product measure on the space Y of observed images. Since the computation
time is significantly shorter for this gauge of the feasibility of the estimators,
it is possible for us to treat some cases of more pixels, as we have done in
Table 2.

Note that although p; differs in magnitude from f;/2" for those strings for
which we are able to obtain both numbers, the comparison between pgypr
and pyoy Seems similar to that between foypr/2" and fyom/2". If this
correspondence holds also for n > 10, then the data at the bottom of Table 2
suggest that there are situations where our estimator has a significantly
higher probability of existence than the moment estimator. Our overall
conclusion is that the estimator that we are presenting here performs more or
less with the same accuracy as the method of moments, and perhaps im-
proves on it for larger images. Of course, this is only a first indication, and
more detailed studies and simulations of the behavior of the various estima-
tors for large n are needed.

It is important to mention that, while in this case the complexity of
computing the estimators is about the same, in higher dimensions the
complexity of the method of moments increases so as to become essentially
untreatable. On the other hand, the complexity of our estimator does not
substantially change with the dimension of the image: this is a key aspect of
our method. What does change then is the difficulty in giving a rigorous proof
that the root we indicated (the smallest one) is indeed the correct one, but
this burden does not fall on the actual user of the algorithm and it needs to be
done only once. However, those proofs do require more elaborate methods,
and we present, in a separate paper [Barsky and Gandolfi (1995)], the
rigorous verification that the smallest root is the correct one for a simple
two-dimensional case (the Ising model). We actually verify the conjecture
about the smallest root in the following cases:

1. no external field and the same vertical and horizontal positive interac-

TABLE 2

n fompL Fvom fompL / 2" fvom / 2"

6 12 20 0.188 0.313

7 32 36 0.250 0.281

8 44 68 0.172 0.266

9 140 140 0.273 0.273
10 268 296 0.262 0.289
11 748 528 0.365 0.258
12 1,112 1136 0.271 0.277
13 2,564 2460 0.313 0.300
14 4,708 5832 0.287 0.356

15 12,488 9700 0.381 0.296
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tions, both in the presence and absence of phase transition; in these cases
the method of moments [see Frigessi and Piccioni (1990)] can also be used;

2. nonzero external field and the same vertical and horizontal positive inter-
actions.

A general polynomial relation that is possibly valid under the mild as-
sumption that the interactions are positive, but with no other constraint, is
also presented, and if the conjecture were verified in that case, it would
include the earlier mentioned cases 1 and 2 as well [see Barsky and Gandolfi
(1995)].

At present we lack a general method to verify our conjecture, but no
evidence so far has indicated that it might not hold in the general setup of the
present paper. We then consider that if no contrary indication shows up, it
might be possible to implement this method in applied problems and to take
advantage of its simplicity without waiting for a rigorous proof. To lower the
risk of a mistake, one could even use two or three of the estimators produced
by our equations at the same time. There are several cases which can be
studied next to test the conjecture about the smallest root; in particular,
longer range one-dimensional Markov chains, examples in one or two dimen-
sions with more allowed colors per pixel (where the matrix A becomes more
complicated). There also remains the possibility that a simple convexity
argument will yield a proof of the general conjecture, although if it exists, it
has eluded us thus far. In the meantime, we hope that it will be possible to
put these estimators to practical use.
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