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A GENERAL LIMIT THEOREM FOR RECURSIVE ALGORITHMS
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Limit laws are proven by the contraction method for random vectors of
a recursive nature as they arise as parameters of combinatorial structures
such as random trees or recursive algorithms, where we use the Zolotarev
metric. In comparison to previous applications of this method, a general
transfer theorem is derived which allows us to establish a limit law on the
basis of the recursive structure and the asymptotics of the first and second
moments of the sequence. In particular, a general asymptotic normality result
is obtained by this theorem which typically cannot be handled by the more
common �2 metrics. As applications we derive quite automatically many
asymptotic limit results ranging from the size of tries or m-ary search trees
and path lengths in digital structures to mergesort and parameters of random
recursive trees, which were previously shown by different methods one by
one. We also obtain a related local density approximation result as well as a
global approximation result. For the proofs of these results we establish that a
smoothed density distance as well as a smoothed total variation distance can
be estimated from above by the Zolotarev metric, which is the main tool in
this article.

1. Introduction. This work gives a systematic approach to limit laws for
sequences of random vectors that satisfy distributional recursions as they appear
under various models of randomness for parameters of trees, characteristics
of divide-and-conquer algorithms or, more generally, for quantities related to
recursive structures. While there are also strong analytic techniques for the
subject, we extend and systematize a more probabilistic approach—the contraction
method. This method was first introduced for the analysis of Quicksort in [48] and
further developed independently in [49] and [47]; see also the survey article by
Rösler and Rüschendorf [51]. The name of the method refers to the fact that the
analysis makes use of an underlying map of measures, which is a contraction with
respect to some probability metric.

Our article is a continuation of the article by Neininger [41], who used the
�2 metric approach to establish a general limit theorem for multivariate divide-and-
conquer recursions, thus extending the one-dimensional results in [50]. Although
the �2 approach works well for many problems that lead to nonnormal limit
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distributions, its main defect is that it does not work for an important class of
problems that lead to normal limit laws. We discuss this problem in more detail
in Section 2 and, to overcome this problem, we propose to use, as alternative
metrics, the Zolotarev metrics ζs , which are more flexible and at the same time
still manageable. The advantage of alternative metrics such as the Zolotarev
metrics for the analysis of algorithms has been demonstrated for some examples
in [47] and [10].

The flexibility of the ζs metrics is in the fact that while for s = 2, we reobtain
the common �2 theory, we also can use ζs with s > 2, which gives access to
normal limit laws, or with s < 2, which leads to results where we can weaken
the assumption of finite second moments—an assumption that is usually present
in the �2 approach.

In his 1999 article, Pittel [44] stated as a heuristic principle that various global
characteristics of large size combinatorial structures such as graphs and trees
are asymptotically normal if the mean and variance are “nearly linear” in n.
As a technical reason, he argued that the normal distribution with the same
two moments “almost” satisfies the recursion. He exemplified this idea by the
independence number of uniformly random trees. An essential step in the proof of
our limit theorem is the introduction of an accompanying sequence which fulfills
approximatively a recursion of the same form as the characteristics do and is
formulated essentially in terms of the limiting distribution. This is similar to the
technical idea proposed by Pittel [44].

We obtain a general limit theorem for divide-and-conquer recursions where the
conditions are formulated in terms of relationships of moments and a condition
that ensures the asymptotic stability of the recursive structure. These conditions
can quite easily be checked in a series of examples and allow us to (re)derive many
examples from the literature. In fact, for the special case of normal limit laws, we
need—according to Pittel’s principle—the first and second moment to apply the
method; see Corollary 5.2.

Several further metrics can be estimated from above by the Zolotarev metric.
We prove that, in any dimension, a smoothed density distance and the smoothed
total variation distance are estimated from above by a Zolotarev metric. As
a consequence we obtain a local density approximation result and a global
approximation property for general recursive algorithms.

We investigate sequences of d-dimensional vectors (Yn)n∈N0 , which satisfy the
distributional recursion

Yn
D=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0,(1)

where (A1(n), . . . ,AK(n), bn, I
(n)

), (Y
(1)
n ), . . . , (Y

(K)
n ) are independent, A1(n),

. . . ,AK(n) are random d × d matrices, bn is a random d-dimensional vector,
I (n) is a vector of random cardinalities I

(n)
r ∈ {0, . . . , n} and (Y

(1)
n ), . . . , (Y

(K)
n )
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are identically distributed as (Yn). The D= denotes equality in distribution and we
have n0 ≥ 1. Note that we do not define the sequence (Yn) by (1); we only assume
that (Yn) satisfies the recurrence (1). In our discussion, the number K ≥ 1 is, for
simplicity of presentation, considered first to be fixed. However, in Section 4.3
we state the extension of the main result to random K depending on n. Later, in
Section 5.2, we also treat the situation of K = Kn being random with Kn → ∞
almost surely.

This situation is present for many parameters of random structures of a recursive
nature like random trees or recursive algorithms. Many examples are given in
Section 5. In this context the I

(n)
r are the cardinalities of the subproblems generated

by the divide-and-conquer algorithm and bn is the cost to subdivide and merge,
also called the toll function. For more background and reference to related work,
see [41].

We normalize the Yn by

Xn := C−1/2
n (Yn − Mn), n ≥ 0,(2)

where Mn ∈ R
d and Cn is a positive-definite square matrix. If first or second

moments for Yn are finite, we essentially choose Mn and Cn as the mean and
covariance matrix of Yn, respectively. The Xn satisfy

Xn
D=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0,(3)

with

A(n)
r := C−1/2

n Ar(n)C
1/2

I
(n)
r

, b(n) := C−1/2
n

(
bn − Mn +

K∑
r=1

(
Ar(n)M

I
(n)
r

))
(4)

and independence relationships as in (1).
We use the contraction method to prove a limit theorem for the sequence (Xn).

Our aim is to establish a transfer theorem of the following form: Appropriate
convergence of the coefficients A

(n)
r → A∗

r , b
(n) → b∗ implies weak convergence

of the parameters (Xn) to a limit X. The limit distribution L(X) satisfies a fixed
point equation obtained from (3) by letting formally n → ∞:

X
D=

K∑
r=1

A∗
rX

(r) + b∗.(5)

Here (A∗
1, . . . ,A

∗
K,b∗),X(1), . . . ,X(K) are independent and X(r) ∼ X for r =

1, . . . ,K , where X ∼ Y denotes equality of the distributions of X and Y .
We show convergence for (Xn) with respect to a Zolotarev metric. This class of

metrics is introduced in the next section, where we also explain the necessity for
a change from the more common �2 metric to these metrics by using an example



LIMIT LAWS FOR RECURSIVE ALGORITHMS 381

of a fixed-point equation of the form (5) related to the normal distribution. Then
we study contraction properties of fixed-point equations (5) with respect to these
metrics in Section 3 and give a transfer theorem as desired in Section 4. The rest
of the article is devoted to applications of our general transfer result, where we
(re)derive various central limit laws for random recursive structures, ranging from
the size of m-ary search trees or random tries path lengths in digital search trees,
tries and Patricia tries, via top-down mergesort, and the maxima in right triangles
to parameters of random recursive trees and plane-oriented versions thereof.

2. The Zolotarev metric. The contraction method applied in this article is
based on certain regularity properties of the probability metrics used for proving
convergence of the parameters as well as on some lower and upper bounds for these
metrics. A probability metric τ = τ (X,Y ) defined for random vectors X and Y in
general depends on the joint distribution of (X,Y ). The probability metric τ is
called simple if τ (X,Y ) = τ (µ, ν) depends only on the marginal distributions
µ and ν of X and Y . Most of the metrics used in this article are simple and therefore
induce a metric on (a subclass of ) all probability measures on R

d . A simple metric
τ is called ideal of order s > 0 if

τ (X + Z,Y + Z) ≤ τ (X,Y )(6)

for all Z independent of X and Y , and

τ (cX, cY ) = |c|sτ (X,Y )

for all c �= 0. Note that τ (X,Y ) = τ (µ, ν) depends only on the marginal
distributions µ and ν of X and Y .

The �2 metric defined by

�2(µ, ν) = inf
{‖X − Y‖2 :X ∼ µ, Y ∼ ν

}
has been used frequently in the analysis of algorithms since its introduction in
this context by Rösler [48] for the analysis of Quicksort (see, e.g., [39, 41, 42]);
note that �2 is ideal of order 1. This implies that �2 typically cannot be used for
fixed-point equations that occur for the normal distribution such as

X
d= 1√

2
X1 + 1√

2
X2

d=: T X,(7)

where Xr are independent copies of X. Here we consider T as a map T :M → M
on the space M of univariate probability measures with T µ := L(Z1/

√
2 +

Z2/
√

2), where Z1 and Z2 are independent with distribution µ, and we abbreviate
T X := T L(X). For centered X and Y with finite second moment, we may choose
independent optimal couplings (X1, Y1), (X2, Y2) of (X,Y ), that is, vectors that



382 R. NEININGER AND L. RÜSCHENDORF

satisfy �2(X,Y ) = ‖Xr − Yr‖2, r = 1,2. Then we have

�2
2(T X,T Y ) ≤

∥∥∥∥ 1√
2
(X1 − Y1)

∥∥∥∥
2

2
+
∥∥∥∥ 1√

2
(X2 − Y2)

∥∥∥∥
2

2

=
((

1√
2

)2

+
(

1√
2

)2)
�2

2(X,Y )

= �2
2(X,Y ).

This suggests that restriction of T to the space M1
2(0) of univariate centered

probability measures with finite second moment is not a strict contraction in �2,
which would be essential for application of the contraction method. In fact, T is
not a contraction on M1

2(0) in any metric. This results from the fact that all the
centered normal distributions are (exactly) the fixed points of T . On the other
hand, strict contraction would imply uniqueness of the fixed point.

The basic idea is to refine the working space. We restrict T to the subspace
M1

s (0, σ 2) ⊂ M1
2(0), 2 < s ≤ 3, where the variance of the measures is fixed to

be σ 2 > 0 and a finite absolute sth moment is assumed. In our example (7) the
fixed point is then unique and, in fact, we can prove the contraction property in the
Zolotarev metrics ζs .

Zolotarev [57] found the following metric ζs , which is ideal of order s > 0,
defined for d-dimensional vectors by

ζs(X,Y ) = sup
f ∈Fs

∣∣E(
f (X) − f (Y )

)∣∣,(8)

where for s = m + α, 0 < α ≤ 1, m ∈ N0,

Fs := {
f ∈ Cm(Rd,R) :

∥∥f (m)(x) − f (m)(y)
∥∥ ≤ ‖x − y‖α

}
.

Convergence in ζs implies weak convergence and moreover, for some c > 0,

cζs(X,Y ) ≥
{

E(‖X‖s − ‖Y‖s),

π1+s(‖X‖,‖Y‖),
where π is the Prohorov metric (see [58]). There are upper bounds for ζs in terms
of difference pseudomoments

κs(X,Y ) = sup
{|Ef (X) − f (Y )| :‖f (x) − f (y)‖ ≤ ∥∥‖x‖s−1x − ‖y‖s−1y

∥∥}.
Note that κs is the minimal metric of the compound metric

τs(X,Y ) = E
∥∥‖X‖s−1X − ‖Y‖s−1Y

∥∥,(9)

that is, κs(µ, ν) = inf{τs(X,Y ) :X ∼ µ,Y ∼ ν}, and, therefore, allows estimates
in terms of moments. We also use that κs and �s are topologically equivalent
on spaces of random variables with uniformly bounded absolute sth moment.
Finiteness of ζs(X,Y ) implies that X and Y have identical mixed moments up to
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order m. Mixed moments are the expectations of products of powers of coordinates
of a multivariate random variable. The order of a mixed moment is the sum of the
exponents in such a product. For X and Y such that all mixed moments up to
order m are zero and moments of order s are finite, we have that

ζs(X,Y ) ≤ 	(1 + α)

	(1 + s)

s(X,Y ),(10)

where


s(X,Y ) = 2mκs(X,Y ) + (2κs(X,Y ))α
[
min(Ms

X,Ms
Y )
]1−α

.(11)

Here Ms
X and Ms

Y are the absolute moments of X and Y of order s. From (11) we
obtain, in particular, for α = 1 (i.e., s ∈ N),

ζs(X,Y ) ≤ (2m + s)κs(X,Y ).

For s ∈ N, finiteness of ζs(X,Y ) does not need finiteness of sth absolute moments
and so ζs also can be applied to stable distributions, for example.

For proving convergence to a normal distribution, ζs is well suited for s > 2. The
reason for this is that the operator T in (7) that characterizes the normal distribution
is a contraction on M1

s (0, σ 2) with respect to ζs ,

ζs(T X,T Y ) = ζs

(
1√
2
X1 + 1√

2
X2,

1√
2
Y1 + 1√

2
Y2

)

≤ ζs

(
1√
2
X1,

1√
2
Y1

)
+ ζs

(
1√
2
X2,

1√
2
Y2

)

≤
((

1√
2

)s

+
(

1√
2

)s)
ζs(X,Y ),

and we have 2(1/
√

2 )s < 1. Note, however, that by normalization typically only
the first two moments can be matched and so the range of application is restricted
to s ≤ 3. For linear transformations A, one obtains

ζs(AX,AY ) ≤ ‖A‖s
opζs(X,Y ),(12)

where ‖A‖op := sup‖x‖=1 ‖Ax‖ is the operator norm of A (see [58]). Some further
properties are established throughout the article.

3. Contraction and fixed-point properties. In this section random affine
transformations of multivariate measures are studied. Given a vector (A1, . . . ,

AK,b) of random d × d matrices A1, . . . ,AK and a random d-dimensional
vector b, we associate the transformation

T :Md → Md, µ �→ L

(
K∑

r=1

ArZ
(r) + b

)
.(13)
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Here (A1, . . . ,AK,b),Z(1), . . . ,Z(K) are assumed to be independent, Z(r) ∼ µ for
r = 1, . . . ,K and Md denotes the space of d-dimensional probability measures. If
(A1, . . . ,AK,b) has components with finite absolute sth moments and ‖µ‖s :=
(E|Z|s)(1/s)∨1 < ∞, then, by independence, ‖T µ‖s < ∞. In the following
discussion, Lipschitz and contraction properties of T with respect to the Zolotarev
metric ζs are crucial. To have ζs(µ, ν) < ∞ we assume that µ and ν have finite
absolute sth moments and that all mixed moments of µ,ν of orders less than s are
equal. In this case the following Lipschitz property, which is an extension of (12),
holds:

LEMMA 3.1. Let (A1, . . . ,AK,b) and T be given as in (13), and let
µ,ν ∈ Md with ‖µ‖s ,‖ν‖s < ∞ and identical mixed moments of orders less
than s. Let (A1, . . . ,AK,b) be s-integrable. Then we have

ζs(T µ,T ν) ≤
(

E

K∑
r=1

‖Ar‖s
op

)
ζs(µ, ν).(14)

PROOF. By independence we have ‖T µ‖s,‖T ν‖s < ∞. For given (A1, . . . ,

AK,b) the mixed moments of order less than s of T µ depend only on the mixed
moments of µ of order less than s. Thus T µ and T ν have identical mixed moments
of order less than s. This implies ζs(T µ,T ν) < ∞. The s-homogeneity of ζs

with respect to linear transformations given in (12) implies, with the notation
ϒ = L(A1, . . . ,AK,b) and α = (α1, . . . , αK),

ζs(T µ,T ν)

= ζs

(
K∑

r=1

ArZ
(r) + b,

K∑
r=1

ArW
(r) + b

)

= sup
f ∈Fs

{∣∣∣∣∣E
[
f

(
K∑

r=1

ArZ
(r) + b

)
− f

(
K∑

r=1

ArW
(r) + b

)]∣∣∣∣∣
}

= sup
f ∈Fs

{∣∣∣∣∣
∫

E

[
f

(
K∑

r=1

αrZ
(r) + β

)
− f

(
K∑

r=1

αrW
(r) + β

)]
dϒ(α,β)

∣∣∣∣∣
}

(15)

≤
∫

sup
f ∈Fs

{∣∣∣∣∣E
[
f

(
K∑

r=1

αrZ
(r) + β

)
− f

(
K∑

r=1

αrW
(r) + β

)]∣∣∣∣∣
}

dϒ(α,β)

=
∫

ζs

(
K∑

r=1

αrZ
(r) + β,

K∑
r=1

αrW
(r) + β

)
dϒ(α,β)

≤
∫ K∑

r=1

‖αr‖s
opζs(µ, ν) dϒ(α,β) =

(
E

K∑
r=1

‖Ar‖s
op

)
ζs(µ, ν),
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where Z(1), . . . ,Z(K),W(1), . . . ,W(K), (A1, . . . ,AK,b) are independent with
Z(r) ∼ µ and W(r) ∼ ν. �

REMARK. With respect to the �2 metric, the corresponding contraction
property is (see [5, 41])

�2(T µ,T ν) ≤
∥∥∥∥∥E

K∑
r=1

At
rAr

∥∥∥∥∥
op

�2(µ, ν).

Since ‖E
∑K

r=1(A
t
rAr)‖op ≤ E

∑K
r=1 ‖At

rAr‖op = E
∑K

r=1 ‖Ar‖2
op, the contraction

condition for �2 is weaker than that for the comparable ζ2 and, therefore, it is
preferable to apply �2 compared to ζ2 if it applies. Note, however, that in the one-
dimensional case both conditions are identical and only first moments have to be
controlled for the application of ζ2 and �2. In comparison to the �p metrics, the
ζs metrics allow the exponent s in (14) to vary and thus are a much more flexible
tool compared to the �p metrics.

From the point of view of applications, we can scale only the first and second
mixed moments. Therefore, in particular, the cases 0 < s ≤ 3 are of interest. For
2 < s ≤ 3 we have to control the mean and the covariances to obtain the finiteness
of the ζs metric. We define for 2 < s ≤ 3, a vector m ∈ R

d , and for a symmetric
positive semidefinite d × d matrix C, the space

Md
s (m,C) := {

µ ∈ Md :‖µ‖s < ∞,Eµ = m, Cov(µ) = C
}
.(16)

Then ζs is finite on Md
s (m,C) × Md

s (m,C) for all 2 < s ≤ 3, m ∈ R
d and

symmetric positive semidefinite C. For the sake of short notation, we also write
Md

s (m,C) for 0 < s ≤ 2; this same term for 1 < s ≤ 2 denotes the subspace
of probability distributions with finite sth moment and mean m (the C has no
meaning). For 0 < s ≤ 1, the m and C have no meaning, and Md

s (m,C) then
denotes the space of probability distributions on R

d with finite sth moment; thus,

Md
s (m,C) := {µ ∈ Md : ‖µ‖s < ∞,Eµ = m}, 1 < s ≤ 2,(17)

:= {µ ∈ Md :‖µ‖s < ∞}, 0 < s ≤ 1.(18)

A direct calculation yields the ranges of the restriction of T to the set Md
s (m,C):

LEMMA 3.2. Let (A1, . . . ,AK,b) and T be given as in (13) with (A1, . . . ,

AK,b) being s-integrable for some 0 < s ≤ 3. Then it holds that

T
(
Md

s (m,C)
)⊂ Md

s (mT ,CT )
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with

mT :=
(

E

K∑
r=1

Ar

)
m + Eb(19)

and

CT := E[bbt] + E

K∑
r=1

(ArCAt
r)

(20)

+ E

[(
K∑

r=1

Ar

)
mbt

]
+ E

[(
K∑

r=1

Ar

)
mbt

]t

.

We are interested in fixed points of the map T in certain subsets of Md . To this
aim we consider, for a fixed (A1, . . . ,Ak, b), some m ∈ R

d and some symmetric
positive semidefinite d × d matrix C such that

m = mT , C = CT .

Then, by Lemma 3.2, T maps Md
s (m,C) into Md

s (m,C) for all 0 < s ≤ 3.
Moreover, by Lemma 3.1, T is a contraction on (Md

s (m,C), ζs) if

E

K∑
r=1

‖Ar‖s
op < 1.

Next we prove the existence and uniqueness of a fixed point of T in Md
s (m,C).

LEMMA 3.3. Let (A1, . . . ,AK,b) and T be given as in (13) with (A1, . . . ,

AK,b) being s-integrable for some 0 < s ≤ 3. Let m ∈ R
d and let a symmetric

positive semidefinite d × d matrix C be given such that m = mT and C = CT

[defined in (19) and (20)]. If the contraction condition

ξ := E

K∑
r=1

‖Ar‖s
op < 1

is satisfied, then the restriction of T to Md
s (m,C) has a unique fixed point.

PROOF. We choose µ0 ∈ Md
s (m,C) and define µn := T (µn−1) = T (n)(µ0)

for n ≥ 1. Then for all p ∈ N we have, by Lemma 3.1,

ζs(µn,µn+p) ≤
p−1∑
i=0

ζs(µn+i,µn+i+1)

≤ ζs(µ0,µ1)

p−1∑
i=0

ξn+i

≤ ζs(µ0,µ1)
ξn

1 − ξ
→ 0
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as n → ∞. Thus (µn) is a Cauchy sequence in the metric space (Md
s (m,C), ζs).

By the lower estimate of ζs in the Lévy metric, we obtain that (µn) converges
weakly to a µ ∈ Md . The weak convergence, the independence properties in the
definition of T and the continuity of the affine transformation imply T µn → T µ

weakly; thus we have that µ = T µ is a fixed point of T . For random variables
Xn and X with L(Xn) = µn and L(X) = µ, and with the estimate |E‖Xn‖s −
E‖Xm‖s | ≤ constζs(µn,µm) [see (9)], we have that the real sequence (‖µn‖s) is
a Cauchy sequence and, therefore, bounded. This implies the uniform integrability
of {|Xn|s̃ :n ∈ N} for all 0 < s̃ < s, which together with the convergence in
distribution implies Xn → X in Ls̃ . Since EXn = m for all n ∈ N in the case
s > 1 and additionally Cov(Xn) = C for all n ∈ N in the case s > 2, this implies
EX = m and Cov(X) = C in these cases, respectively. By the lemma of Fatou,
E‖X‖s < ∞; thus L(X) ∈ Md

s (m,C). For the uniqueness, let µ,ν ∈ Md
s (m,C)

be fixed points of T . Then

ζs(T µ,T ν) ≤
(

E

K∑
r=1

‖Ar‖s
op

)
ζs(µ, ν);

thus ζs(µ, ν) = 0 and µ = ν. �

REMARK. Svante Janson pointed out to us that the metric spaces (Md
s (m,

C), ζs) are complete, which, by Banach’s fixed-point theorem, implies the
assertion of Lemma 3.3 as well.

Subsequently, Idd denotes the d × d identity matrix. The previous considera-
tions yield:

COROLLARY 3.4. Let (A1, . . . ,AK,b) and T be given as in (13) with
(A1, . . . ,AK,b) being s-integrable, 0 < s ≤ 3 and E

∑K
r=1 ‖Ar‖s

op < 1. Assume

Eb =



0 and E[bbt ] + E
∑K

r=1(ArA
t
r) = Idd , if 2 < s ≤ 3,

0, if 1 < s ≤ 2.

Then T has a unique fixed point in Md
s (0, Idd).

4. The main convergence theorem.

4.1. Convergence in the Zolotarev metrics. We return to the situation outlined
in the Introduction. Given is a sequence (Yn) of random vectors satisfying the
recurrence

Yn
D=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0,(21)
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with relationships as in (1). In the case 2 < s ≤ 3, we assume that Cov(Yn) is
positive definite for n ≥ n1 ≥ n0. The fact that for the application of ζs we have to
control mixed moments up to order less than s allows the following flexibility in
the normalization: We set

Xn := C−1/2
n (Yn − Mn), n ≥ 0,(22)

where

Mn :=




EYn, Cn :=
{

Idd for 0 ≤ n < n1,

Cov(Yn) for n ≥ n1,
if 2 < s ≤ 3,

EYn, Cn is positive definite if 1 < s ≤ 2,

Cn is positive definite if 0 < s ≤ 1.

The normalized quantities (Xn) then satisfy the modified recurrence

Xn
D=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n1,(23)

with A
(n)
r and b(n) as in (4). The following theorem gives a transfer of the type

that convergence of the coefficients in (23) yields under appropriate conditions
convergence of the Xn to the fixed point of the associated limiting equation (5).

THEOREM 4.1. Let (Xn) be given as in (22) and be s-integrable, 0 < s ≤ 3.
We assume that (

A
(n)
1 , . . . ,A

(n)
K , b(n)) Ls→ (

A∗
1, . . . ,A

∗
k, b

∗),(24)

E

K∑
r=1

‖A∗
r ‖s

op < 1,(25)

E

[
1{I (n)

r ≤l}∪{I (n)
r =n}‖A(n)

r ‖s
op

]
→ 0(26)

for all l ∈ N and r = 1, . . . ,K . Then (Xn) converges to a limit X,

ζs(Xn,X) → 0, n → ∞,

where L(X) ∈ Md
s (0, Idd) is given as the unique fixed point in Md

s (0, Idd) of the
equation

X
D=

K∑
r=1

A∗
rX

(r) + b∗.(27)

Here (A∗
1, . . . ,A

∗
k, b

∗),X(1), . . . ,X(K) are independent and X(r) ∼ X for r =
1, . . . ,K .
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PROOF. For 2 < s ≤ 3, the sequence (Xn) in (23) is standardized; thus we
obtain the relationships

Eb(n) = 0, Eb(n)(b(n))t + E

K∑
r=1

(
A(n)

r (A(n)
r )t

)= Idd , n ≥ n1.(28)

For 1 < s ≤ 2, the sequence (Xn) is centered; thus Eb(n) = 0. Thus from the
convergence in Ls in (24) we obtain

Eb∗ = 0, E[b∗(b∗)t ] + E

K∑
r=1

(
A∗

r (A
∗
r )

t
)= Idd

in the case 2 < s ≤ 3 and Eb∗ = 0 for 1 < s ≤ 2. Therefore, by Corollary 3.4,
there exists a unique fixed point L(X) ∈ Md

s (0, Idd) of (27) in Md
s (0, Idd) for all

0 < s ≤ 3.
We introduce the accompanying sequence

Qn :D=
K∑

r=1

A(n)
r

(
1{I (n)

r <n1}X
(r)

I
(n)
r

+ 1{I (n)
r ≥n1}X

(r)
)

+ b(n), n ≥ n1,

where (A
(n)
1 , . . . ,A

(n)
K , b(n), I (n)),X(1), . . . ,X(K), (X

(1)
n ), . . . , (X

(K)
n ) are indepen-

dent with X(r) ∼ X and X
(r)
j ∼ Xj for r = 1, . . . ,K, j = 0, . . . , n1 − 1. Since

L(X) ∈ Md
s (0, Idd) and comparing the definition of Qn for 2 < s ≤ 3 with Xn

in (23), we deduce Cov(Qn) = Cov(Xn); hence L(Qn) ∈ Md
s (0, Idd) for all

n ≥ n1 and thus ζs distances between Xn, Qn and X are finite for n ≥ n1. We
obtain from the triangle inequality

ζs(Xn,X) ≤ ζs(Xn,Qn) + ζs(Qn,X).(29)

First we show that ζs(Qn,X) → 0. This is a consequence of the upper bound
in (10) and of the convergence of the pseudomoments κs(Qn,X) → 0 which
follows from �s(Qn,X) → 0, since absolute moments of order s are bounded

for (Qn): With the representation X
D=∑K

r=1 A∗
rX

(r) + b∗, we obtain

�s(Qn,X) ≤
∥∥∥∥∥

K∑
r=1

(
A∗

r − 1{I (n)
r ≥n1}A

(n)
r

)
X(r)

∥∥∥∥∥
s

+ ∥∥b(n) − b∗∥∥
s

+
∥∥∥∥∥

K∑
r=1

1{I (n)
r <n1}A

(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

≤
K∑

r=1

(∥∥A∗
r − A(n)

r

∥∥
s +

∥∥∥1{I (n)
r <n1}‖A

(n)
r ‖op

∥∥∥
s

)
‖X‖s + ∥∥b(n) − b∗∥∥

s(30)

+
K∑

r=1

∥∥∥∥∥
n1−1∑
j=0

1{I (n)
r =j }A

(n)
r X

(r)
j

∥∥∥∥∥
s

.(31)
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The three summands in (30) converge to zero by (24) and (26). The summand
in (31) tends to zero using (26) by∥∥∥1{I (n)

r =j }A
(n)
r X

(r)
j

∥∥∥
s

≤
∥∥∥1{I (n)

r =j }‖A(n)
r ‖op‖X(r)

j ‖
∥∥∥
s

≤
∥∥∥1{I (n)

r <n1}‖A
(n)
r ‖op

∥∥∥
s

sup
0≤j<n1

‖Xj‖s .

The first summand in (29) is estimated similarly to (15). Let ϒn denote the joint
distribution of (A

(n)
1 , . . . ,A

(n)
K , b(n), I (n)) and α = (α1, . . . , αK), j = (j1, . . . , jK).

Then with

pn := E

K∑
r=1

(
1{I (n)

r =n}‖A(n)
r ‖s

op

)
→ 0, n → ∞,

we obtain, for n ≥ n1,

ζs(Xn,Qn)

= ζs

(
K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n),

K∑
r=1

A(n)
r

(
1{I (n)

r <n1}X
(r)

I
(n)
r

+ 1{I (n)
r ≥n1}X

(r)
)

+ b(n)

)

(32)

≤
∫

ζs

(
K∑

r=1

αrX
(r)
jr

,

K∑
r=1

αr

(
1{jr<n1}X

(r)
jr

+ 1{jr≥n1}X(r)
))

dϒn(α,β, j)

≤
∫ K∑

r=1

1{jr≥n1}‖αr‖s
opζs(Xjr ,X)dϒn(α,β, j)

≤ pnζs(Xn,X) +
(

E

K∑
r=1

‖A(n)
r ‖s

op

)
sup

n1≤j≤n−1
ζs(Xj ,X).

Thus with (29) it follows that

ζs(Xn,X) ≤ 1

1 − pn

[(
E

K∑
r=1

‖A(n)
r ‖s

op

)
sup

n1≤j≤n−1
ζs(Xj ,X) + o(1)

]
.

This implies that (ζs(Xn,X)) is bounded. Let η̄ := supn≥n1
ζs(Xn,X) and η :=

lim supn→∞ ζs(Xn,X), and let ε > 0 be arbitrary. There exists an l ∈ N with
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ζs(Xn,X) ≤ η + ε for all n ≥ l. We deduce, using (33), (29) and (24),

ζs(Xn,X) ≤ 1

1 − pn

[∫ K∑
r=1

1{n1≤jr≤l}‖αr‖s
opζs(Xjr ,X)dϒn(α,β, j)

+
∫ K∑

r=1

1{l<jr<n}‖αr‖s
opζs(Xjr ,X)dϒn(α,β, j)

]

≤ η̄

1 − pn

E

K∑
r=1

(
1{n1≤I

(n)
r ≤l}‖A(n)

r ‖s
op

)
+ η + ε

1 − pn

E

K∑
r=1

‖A(n)
r ‖s

op

≤
(

E

K∑
r=1

‖Ar‖s
op

)
(η + ε) + o(1).

With n → ∞ we obtain

η ≤
(

E

K∑
r=1

‖Ar‖s
op

)
(η + ε).

Since ε > 0 is arbitrary and E
∑K

r=1 ‖Ar‖s
op < 1, we obtain η = 0. Hence

ζs(Xn,X) → 0. �

4.2. Other metrics. Theorem 4.1 yields convergence of Xn to X w.r.t. the
ζs metric, where X is the unique fixed point of (27) in Md

s (0, Idd) under the
contraction condition E

∑K
r=1 ‖A∗

r‖s
op < 1. It is of interest that several related

convergence results are obtainable for further metrics by similar arguments or by
upper bounds for these metrics in terms of the Zolotarev metric ζs . We show that
this, in particular, leads to local and global approximation results.

For random vectors X and Y with densities fX and fY , let

�(X,Y ) = ess sup
x∈Rd

|fX(x) − fY (x)|

denote the sup distance of the densities. Let θ be a random vector with a smooth
density fθ . We say that fθ satisfies the Hölder condition (Hr), r = m + α,
0 < α ≤ 1, if

(Hr)
∥∥f (m)

θ (x) − f
(m)
θ (y)

∥∥≤ Cr(θ)‖x − y‖α.(33)

By means of θ we introduce a smoothed version �̃r of the distance �. Define
�̃r = �̃r,θ by

�̃r (X,Y ) = sup
h∈R

|h|r�(X + hθ,Y + hθ).

Smoothing metrics have been used for proving central limit theorems for
normalized sums and for martingales in probability theory (cf. [45, 46, 53]).
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PROPOSITION 4.2 (Regularity of �̃r ). Let r > d and θ satisfy condition
(Hr−d). Then �̃r is a probability metric ideal of order r − d and

�̃r (X,Y ) ≤ Cr−d(θ)ζr−d(X,Y ),(34)

where Cr(θ) is the Hölder constant in (33).

PROOF. The probability metric property and property (6) are easy to establish.
To see that �̃r is ideal of order r − d , let c �= 0. Then

�̃r (cX, cY ) = sup
h∈R

|h|r ess sup
x∈Rd

∣∣fcX+hθ (x) − fcY+hθ (x)
∣∣

= sup
h∈R

|h|r ess sup
x∈Rd

∣∣fc(X+(h/c)θ)(x) − fc(Y+(h/c)θ)(x)
∣∣

= 1

|c|d sup
h∈R

|h|r ess sup
x∈Rd

∣∣∣∣fX+(h/c)θ

(
x

c

)
− fY+(h/c)θ

(
x

c

)∣∣∣∣
= 1

|c|d sup
h∈R

|h|r ess sup
x∈Rd

∣∣fX+(h/c)θ (x) − fY+(h/c)θ(x)
∣∣

= |c|r−d �̃r(X,Y ).

To prove (34) note that

�̃r (X,Y ) = sup
h∈R

|h|r ess sup
x∈Rd

∣∣fh(X/h+θ)(x) − fh(Y/h+θ)(x)
∣∣

= sup
h∈R

|h|r−d ess sup
x∈Rd

∣∣∣∣fX/h+θ

(
x

h

)
− fY/h+θ

(
x

h

)∣∣∣∣
= sup

h∈R

|h|r−d�

(
X

h
+ θ,

Y

h
+ θ

)
.

If θ satisfies condition (Hr−d), then we obtain with H = PX − PY , where
PX denotes the distribution of X,

�(X + θ,Y + θ) = ess sup
x∈Rd

∣∣∣∣
∫

fθ (x − y) dH(y)

∣∣∣∣
≤ Cr−d(θ)ζr−d(X,Y ),

since for any x, fθ(x − ·) is a Hölder function of order r − d with Hölder constant
Cr−d(θ). Therefore,

|h|r�(X + hθ,Y + hθ) = |h|r−d�

(
X

h
+ θ,

Y

h
+ θ

)

≤ |h|r−dCr−d(θ)ζr−d

(
X

h
,
Y

h

)

= Cr−d(θ)ζr−d(X,Y ).
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This implies that �̃r (X,Y ) ≤ Cr−d(θ)ζr−d(X,Y ). �

REMARK. The smoothed metric �̃r = �̃r,θ was introduced in [45] equation
14.2.12, and used to prove central limit theorems. The statement of the regularity
properties and bounds there is correct, however, only for d = 1 and is corrected
here.

As a consequence, we obtain the following local convergence result.

COROLLARY 4.3 (Local convergence theorem). Let θ satisfy the Hölder
condition (Hs). Then under the conditions of Theorem 4.1 we obtain the local
convergence result

αn := �̃s+d(Xn,X) → 0.

In particular, for any sequence hn such that αn/hs+d
n → 0, we obtain that

�(Xn + hnθ,Y + hnθ) ≤ αn

hs+d
n

→ 0.

If θ has a bounded support and hn → 0, then we obtain a local density
convergence result with smoothing over a shrinking neighborhood. If, moreover,
Y has a continuous density, we have �(Y + hnθ,Y ) = O(hn). Then with the
triangle inequality, we obtain �(Xn + hnθ,Y ) → 0, which is uniform convergence
of the density of Xn + hnθ to the density of Y for an appropriate sequence (hr).

As a second example we consider the global smoothed total variation metric.
Let

σ(X,Y ) = 2 sup
A

|P(X ∈ A) − P(Y ∈ A)|

denote the total variation metric and let

σ̃r (X,Y ) = σ̃r,θ (X,Y ) = sup
h∈R

|h|rσ (X + hθ,Y + hθ)

denote the smoothed total variation metric (see [45], page 267).

PROPOSITION 4.4 (Regularity of σ̃r ). Assume that θ satisfies the Hölder
condition (Hr). Then σ̃r is a probability metric, ideal of order r , and

σ̃r (X,Y ) ≤ Cr(θ)ζr (X,Y ).

PROOF. The proof is similar to that of Proposition 4.2. Note that σ is regular
of order zero, that is,

σ(cX, cY ) = σ(X,Y ).
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Therefore, σ(X + hθ,Y + hθ) = σ(X/h + θ,Y/h + θ). Furthermore,

σ(X + θ,Y + θ) = sup
|f |≤1

∣∣∣∣
∫ (

f (X + θ) − f (Y + θ)
)
dP

∣∣∣∣
= sup

|f |≤1

∣∣∣∣
∫

f̄θ (x) dH(x)

∣∣∣∣,
where H = PX − PY and f̄θ (x) = ∫

fθ (y − x)f (y) dy. Since fθ satisfies the
Hölder condition of order r , f̄θ also satisfies the Hölder condition of order r and
Hölder constant Cr(θ). Therefore, σ(X + θ,Y + θ) ≤ Cr(θ)ζr (X,Y ). Thus

σ̃r (X,Y ) = sup
h∈R

|h|rσ (X + hθ,Y + hθ)

≤ sup
h∈R

|h|r ζr

(
X

h
,
Y

h

)
Cr(θ)

= Cr(θ)ζr (X,Y ).

This yields the assertion. �

As a consequence, we therefore obtain the following global convergence result.

COROLLARY 4.5 (Global convergence). Let θ satisfy the Hölder condi-
tion (Hs). Then under the conditions of Theorem 4.1, we obtain the global con-
vergence result

αn = σ̃s(Xn,X) → 0.

In particular, for any sequence hn such that αn/hs
n → 0, we obtain

σ(Xn + hnθ,Y + hnθ) ≤ αn

hs
n

→ 0.

Similar convergence results also hold true for further metrics like the smoothed
�1 metric. For dimension d = 1,

(�̃1)s(X,Y ) = sup
h∈R

|h|s�1(X + hθ,Y + hθ)

= sup
h∈R

|h|s
∫

|FX+hθ (x) − FY+hθ(x)|dx,

where FX denotes the distribution function of X. The corresponding local result
also holds true. It concerns the smoothed Kolmogorov metric, d = 1:

ρ̃s(X,Y ) = sup
h∈R

|h|sρ(X + hθ,Y + hθ)

= sup
h∈R

|h|s sup
x∈R

|FX+hθ (x) − FY+hθ (x)|.
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4.3. Random K depending on n. The arguments presented to develop Theo-
rem 4.1 can be extended to cover recurrences, where the number of copies K of
the costs Yn and Xn in recurrences (1) and (3), respectively, may be random and
depend on n. However, we assume subsequently that Kn tends to a proper random
variate, whereas in Section 5.2, we handle cases where Kn → ∞ almost surely.
We assume that (Yn)n∈N0 satisfies

Yn
D=

Kn∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0,

where ((Ar(n))r∈N, bn, I
(n)

,Kn), (Y
(1)
n ), (Y

(2)
n ), . . . are independent, A1(n),

A2(n), . . . are random d × d matrices, bn is a random d-dimensional vector, (I
(n)
r )

are random cardinalities with I
(n)
r ∈ {0, . . . , n}, Kn is a positive integer-valued ran-

dom variable and (Y
(1)
n ), (Y

(2)
n ), . . . are identically distributed as (Yn). We scale

Xn := C−1/2
n (Yn − Mn), n ≥ 0,(35)

as in (22), where in the case 2 < s ≤ 3 we assume that Cov(Yn) is positive definite
of all n ≥ n1 ≥ n0. Then we have

Xn
D=

Kn∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n1,(36)

with A
(n)
r and b(n) as in (4), and with K in the definition of b(n) replaced by Kn. For

the formulation of a corresponding limit equation, let ((A∗
r )r∈N, b∗,K) be a tuple

of random d × d matrices A∗
r , a random d-dimensional vector b∗ and a random

variate K in the positive integers such that

‖b∗‖s < ∞,

∥∥∥∥∥
K∑

r=1

‖A∗
r ‖op

∥∥∥∥∥
s

< ∞.(37)

In the conditions of the subsequent theorem we use the convention

A(n)
r (ω) = 0 for r > Kn(ω), A∗

r (ω) = 0 for r > K(ω)

for all ω of the underlying probability space. Then we have:

THEOREM 4.6. Let (Xn) be given as in (35) and be s-integrable, 0 < s ≤ 3.
We assume the conditions (37) and∥∥∥∥∥

Kn∨K∑
r=1

∥∥A(n)
r − A∗

r

∥∥
op

∥∥∥∥∥
s

→ 0, n → ∞,

E

K∑
r=1

‖A∗
r ‖s

op < 1,

∥∥∥∥∥
Kn∑
r=1

1{I (n)
r ≤l}∪{I (n)

r =n}‖A(n)
r ‖op

∥∥∥∥∥
s

→ 0
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for all l ∈ N. Then (Xn) converges to a limit X,

ζs(Xn,X) → 0, n → ∞,

where L(X) ∈ Md
s (0, Idd) is given as the unique fixed point in Md

s (0, Idd) of the
equation

X
D=

K∑
r=1

A∗
rX

(r) + b∗.

Here (A∗
1,A

∗
2, . . . , b

∗,K),X(1),X(2), . . . are independent and X(r) ∼ X for r =
1,2, . . . .

While we are mainly concerned with the analysis of combinatorial structures,
data structures and recursive algorithms, where we typically have fixed K or
Kn → ∞ almost surely, the theorem may prove useful for the analysis of branching
processes such as Galton–Watson trees. In particular, the theorem covers a proof
of Yaglom’s exponential limit law as given for an application of the contraction
method in the �2 setting by Geiger [17]. The exponential limit distribution is

characterized as the fixed point of X
D= U(X + X∗), with X,X∗,U independent

and U unif[0,1] distributed. The Kn is the number of children of the most recent
common ancestor of the population at generation n.

5. Applications: central limit laws. In this section we link expansions of
moments to our transfer theorem, Theorem 4.1, in a general setup. This leads to
both, asymptotic normality and nonnormal cases. The normal distribution appears
as the fixed point of the maps T given in (13) with

b = 0,

K∑
r=1

ArA
t
r = Idd(38)

almost surely. It is easy to check by characteristic functions that N (0, Idd) is
then a fixed point of T and by Corollary 3.4 that this solution is unique in the
space Md

s (0, Idd) for s > 2 if E
∑K

r=1 ‖Ar‖s
op < 1. In all the central limit laws in

Section 5.3, the normal distribution as a limit distribution comes up as the fixed
point of a transformation T satisfying (38).

We first focus on the univariate case d = 1 and link the expansion of the
moments to our transfer theorem, Theorem 4.1, in a general setup that is not
restricted to normal limit distributions. This leads first to a general transfer theorem
that is capable of rederiving results involving nonnormal limit laws that also
could be proven via the usage of �r metrics. We give some applications from
the analysis of algorithms to illustrate our general theorem. Second, we give a
convenient specialization to asymptotic normality, which covers many examples
of central limit laws in the field of combinatorial structures. This is of particular
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importance because the competitive �r metric approach does not lead to such a
transfer theorem. In the last part we discuss the multivariate case together with
examples, where the number K of copies of the parameter on the right side may
be random, depend on n and satisfy Kn → ∞ almost surely.

5.1. Univariate central limit laws. A univariate situation quite common in
combinatorial structures encompasses recursions of the type

Yn
D=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0,(39)

where (Y
(1)
n ), . . . , (Y

(K)
n ), (I (n), bn) are independent, Y

(r)
j ∼ Yj , j ≥ 0, P(I

(n)
r =

n) → 0 for n → ∞ and r = 1, . . . ,K and such that Var(Yn) > 0 for n ≥ n1.
Assume that for functions f,g : N0 → R

+
0 with g(n) > 0 for n sufficiently large

we have the stabilization condition in Ls ,(
g(I

(n)
r )

g(n)

)1/2

→ A∗
r , r = 1, . . . ,K,

(40)
1

g1/2(n)

(
bn − f (n) +

K∑
r=1

f (I (n)
r )

)
→ b∗,

and the contraction condition

E

K∑
r=1

(A∗
r )

s < 1.(41)

THEOREM 5.1 (Univariate transfer theorem). Let (Yn) be s-integrable and
satisfy the recursive equation (39), and let f and g be given with stabilization and
contraction conditions (40) and (41) for some 0 < s ≤ 3. Assume

EYn =
{

f (n) + o
(
g1/2(n)

)
, Var(Yn) = g(n) + o(g(n)), if 2 < s ≤ 3,

f (n) + o
(
g1/2(n)

)
, if 1 < s ≤ 2.

Then

Yn − f (n)

g1/2(n)

L→ X,

where X is the unique fixed point of

X
d=

K∑
r=1

A∗
rX

(r) + b∗(42)

in M1
s (0,1), where (A∗

1, . . . ,A
∗
K,b∗),X(1), . . . ,X(K) are independent with

X(r) ∼ X.
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PROOF. We denote Mn := EYn for 1 < s ≤ 3, Mn := f (n) for 0 < s ≤ 1,
σn := √

Var(Yn) for 2 < s ≤ 3 and σn := √
g(n) for 0 < s ≤ 2. First note that

(Yn − f (n))/g1/2(n)
L→ X for some X if and only if Xn := (Yn − Mn)/σn

L→ X.
We have

Xn
D=

K∑
r=1

σ
I

(n)
r

σn

X
I

(n)
r

+ 1

σn

(
bn − Mn +

K∑
r=1

M
I

(n)
r

)
, n ≥ n1.(43)

By (40) we obtain the following convergences in Ls :

lim
n→∞

σ
I

(n)
r

σn

= lim
n→∞

(
g(I

(n)
r )

g(n)

)1/2

= A∗
r , r = 1, . . . ,K,

lim
n→∞

1

σn

(
bn − Mn +

K∑
r=1

M
I

(n)
r

)

= lim
n→∞

1

g1/2(n)

(
bn − f (n) +

K∑
r=1

f (I (n)
r )

)
= b∗.

Furthermore, we have, for all l ≥ 0,

E

[
1{I (n)

r ≤l}∪{I (n)
r =n}

(
I

(n)
r

n

)s/2
]

≤
(

l

n

)s/2

+ P
(
I (n)
r = n

)→ 0

for n → ∞. Since all the conditions of Theorem 4.1 are satisfied and X is the
unique solution of

X
D=

K∑
r=1

A∗
rX

(r) + b∗

in Md
s (0,1) subject to (A1, . . . ,AK),X(1), . . . ,X(K) independent and X ∼ X(r)

for all r = 1, . . . ,K , the assertion follows. �

REMARK. Note that for s = 2 the order of the variance can be guessed from
convergence in (40) and need not be known for the application of Theorem 5.1.
Moreover, if the theorem can be applied for some g and s = 2, we obtain from the
ζ2 convergence in Theorem 4.1,

Var(Yn) = Var(X)g(n) + o(g(n))(44)

since h(x) := x2/2, x ∈ R, is in F2. Similarly if the theorem can be applied for
some f , g and s = 1, we obtain

EYn = E[X]g1/2(n) + f (n) + o
(
g1/2(n)

)
(45)
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since the identity map is in F1. The properties that the variance (or mean) can be
guessed and proved by the application of the method are known for the �2 and �1
metric approaches. From this point of view ζ2 and ζ1 are as powerful as �2 and �1,
respectively. However, the range 2 < s ≤ 3 for ζs leads to applications especially
including normal limit laws which are out of reach for the �p metrics for all p ≥ 1.

The case 0 < s ≤ 2 leads to examples which previously have been treated by the
�p metrics. We first give some applications for these cases and focus then on
the range 2 < s ≤ 3, where we use the following specialization of Theorem 5.1
for the application to normal limit laws, thus extending the previously known
framework of the contraction method.

COROLLARY 5.2 (Central limit theorem). Let (Yn) be s-integrable, s > 2, and
satisfy the recursive equation (39) with

EYn = f (n) + o
(
g1/2(n)

)
, Var(Yn) = g(n) + o(g(n)).

Assume for all r = 1, . . . ,K and some 2 < s ≤ 3,
(

g(I
(n)
r )

g(n)

)1/2

→ A∗
r ,

(46)
1

g1/2(n)

(
bn − f (n) +

K∑
r=1

f (I (n)
r )

)
→ 0 in Ls

and
K∑

r=1

(A∗
r )

2 = 1, P(∃ r :A∗
r = 1) < 1.(47)

Then

Yn − f (n)

g1/2(n)

L→ N (0,1),

where N (0,1) denotes the standard normal distribution.

PROOF. The conditions of the univariate transfer theorem, Theorem 5.1, are
satisfied with b∗ = 0. The solution of the fixed-point equation (42) in M1

s (0,1) is
N (0,1) since

∑K
r=1(A

∗
r )

2 = 1, b∗ = 0. �

In the following sections we give applications of Theorem 5.1 and Corollary 5.2
for various choices of the parameters. We do not recall the underlying structures,
for example, the various types of random graphs, but do introduce the essential
recursive equations satisfied by the parameters of interest to cover the particular
algorithm or data structure. References to basic accounts on them are given.
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5.2. Nonnormal limit laws.

Quickselect. The number of key comparisons Yn of the selection algorithm
Quickselect, also known as FIND (for definition and mathematical analysis,
see [18, 24, 32, 39]) when selecting the smallest order statistic in a set of n data
satisfies Y0 = Y1 = 0 and the recurrence

Yn
D= YIn + n − 1, n ≥ 2,

where (Yn) and In are independent with In unif{0, . . . , n − 1} distributed. Here,
In corresponds to the size of the left sublist generated by the first splitting
step of the algorithm. We can directly apply Theorem 5.1 with K = 1, s = 1,
f (n) = 0, g(n) = n2, I

(n)
1 = In and bn = n − 1. We have (g(In)/g(n))1/2 → U

and bn/g
1/2(n) → 1 in L1 for an appropriate unif[0,1] random variate U .

Condition (41) is satisfied because we have EU = 1/2 < 1. Hence we obtain

Yn

n

L−→ X, X
D= UX + 1,(48)

where X and U are independent. This limit distribution is also known as the
Dickman distribution, which arises in number theory (see [56] and [24]). This can
easily be rederived by checking that the (shifted) Dickman distribution satisfies the
fixed-point relationship (48).

For the case where we apply the Quickselect algorithm to select an order statistic
of o(n) from a set of n data, we obtain the same limit distribution. This can be
derived via a slight generalization of Theorem 5.1 and is as well covered with
different approaches by all four references given above.

COROLLARY 5.3. The normalized number of comparisons Yn/n of Quicks-
elect when selecting an order statistic of o(n) from a set of n data converges in
distribution to the (shifted) Dickman distribution given as the unique solution of
the fixed point equation in (48).

Quicksort. The number of key comparisons Yn of the sorting algorithm
Quicksort applied to a randomly permuted list of n numbers (see [35]) satisfies
Y0 = Y1 = 0 and the recurrence

Yn
L= YIn + Y ∗

n−In
+ n − 1, n ≥ 2,(49)

with (Yn), (Y ∗
n ) and In independent and In unif{0, . . . , n− 1} distributed. It is well

known that EYn = 2n lnn + cn + o(n) for a constant c ∈ R. Theorem 5.1 can be
applied with K = 2, s = 2, f (n) = 2n lnn+cn, g(n) = n2, I (n)

1 = In, I (n)
2 = n−In

and bn = n − 1. We have (g(In)/g(n))1/2 → U and (g(n − In)/g(n))1/2 →
1 − U in L2 for an appropriate unif[0,1] random variate U . A direct calculation,
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(see [48]) shows that

1

g1/2(n)

(
bn − f (n) + f (In) + f (n − In)

)
→ E(U)

= 1 + 2U ln(U) + 2(1 − U) ln(1 − U)

in L2. Condition (41) is satisfied because we have E[U2 + (1 − U)2] = 2/3 < 1.
Thus Theorem 5.1 yields the convergence

Yn − 2n lnn − cn

n

L→ X ∈ M1
2(0,1), X

D= UX + (1 − U)X∗ + E(U),(50)

with X, X∗ and U independent and X ∼ X∗. This was first obtained by Rösler [48].

COROLLARY 5.4. The normalized number of comparisons (Yn − EYn)/n

of Quicksort when sorting a set of n randomly permuted data converges in
distribution to the unique solution in M1

2(0,1) of the fixed point equation in (50).

This convergence holds as well in the ζ2 metric following from Theorem 4.1.
Note that Corollaries 4.3 and 4.5 imply local and global convergence theorems
for sequences (hn) tending to zero sufficiently slowly. The exact order of the
rate of convergence of the standardized cost of Quicksort for the ζ3 metric has
been identified to be of the order �(ln(n)/n); see [43]. Hence, on the basis
of this refinement we obtain as well rates of convergence for global and local
convergences by applying Corollaries 4.3 and 4.5. This was made explicit by
Neininger and Rüschendorf [43] for the case of Quicksort given in (49). Following
this scheme, the general inequalities of Section 4.2 allow similar local and global
approximation results for all the examples mentioned in Section 5.

Path length in m-ary search trees. The internal path length Yn of random
m-ary search trees, m ≥ 2, containing n data satisfies Yj = j for j = 0, . . . ,m − 1
and

Yn
D=

m∑
r=1

Y
(r)

I
(n)
r

+ n − m + 1, n ≥ m,

with independence conditions as in recurrence (39). Let V = (U(1),U(2) −
U(1), . . . ,1 − U(m−1)) denote the vector of spacings of independent unif[0,1]
random variables U1, . . . ,Um−1. For u ∈ [0,1]m with

∑
ur = 1 the conditional

distribution of I (n) given V = u is multinomial M(n − m + 1, u). It is known
that EYn = (Hm − 1)−1n ln(n) + cmn + o(n) with constants cm ∈ R. We apply
Theorem 5.1 with K = m, s = 2, f (n) = (Hm − 1)−1n ln(n) + cmn, g(n) = n2
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and bn = n − m + 1. The conditional distribution of I (n) given V = u implies
I

(n)
r /n → Vr in L2. A calculation similar to the Quicksort case (see [42]) yields

1

g1/2(n)

(
bn − f (n) +

m∑
r=1

f (I (n)
r )

)
→ 1 + 1

Hm − 1

m∑
r=1

Vr ln(Vr).

Since E
∑

V 2
r < 1, we rederive a limit law from [42].

COROLLARY 5.5. The normalized internal path length (Yn − EYn)/n of
random m-ary search trees converges in distribution to the unique solution in
M1

2(0,1) of the fixed point equation

X
D=

m∑
r=1

(VrX
(r)) + 1 + 1

Hm − 1

m∑
r=1

Vr ln(Vr),

with X(1), . . . ,X(m), V independent and X(r) ∼ X for r = 1, . . . ,m.

5.3. Normal limit laws.

5.3.1. Linear mean and variance.

Size of random m-ary search trees. The size Yn of the random m-ary search
tree (see [34]) containing n data satisfies Y0 = 0, Y1 = · · · = Ym−1 = 1 and the
recursion

Yn
D=

m∑
r=1

Y
(r)

I
(n)
r

+ 1, n ≥ m.

Let V = (U(1),U(2) − U(1), . . . ,1 − U(m−1)) denote the vector of spacings of
independent unif[0,1] random variables U1, . . . ,Um−1 as in the previous example.
For u ∈ [0,1]m with

∑
ur = 1 the conditional distribution of I (n) given V = u is

multinomial M(n − (m − 1), u). Thus we obtain

I (n)

n
→ (

U(1),U(2) − U(1), . . . ,1 − U(m−1)

)
(51)

in L1+ε. The mean and the variance satisfy, for 3 ≤ m ≤ 26 (see [2, 7, 31, 36]),

EYn = 1

2(Hm − 1)
n + O(1 + nα−1), Var(Yn) = γmn + o(n),

with γm > 0 and α < 3/2 depending as well on m. Thus with Corollary 5.2 we
rederive the limit law (see [7, 33, 36]):

COROLLARY 5.6. The normalized size (Yn − EYn)/
√

Var(Yn) of a random
m-ary search tree with 3 ≤ m ≤ 26 converges in distribution to the standard
normal distribution.
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PROOF. We apply Corollary 5.2 with f (n) = (2(Hm − 1))−1n and
g(n) = γmn. Condition (46) follows from (51); (47) holds since α < 3/2. �

The case of linear mean and variance is ubiquitous for parameters that
satisfy (39), where the toll function bn is appropriately small. Such examples
covered by Corollary 5.2 are the number of certain patterns in random binary
search trees, secondary cost parameters of Quicksort or the cost of certain
tree traversal algorithms, Quicksort, m-ary search tree or generalized Quicksort
recursions with small toll functions; see [7, 8, 11, 12, 14, 16, 23].

5.3.2. Periodic functions in the mean and variance.

Size of random tries. The number Yn of internal nodes of a random trie with
n keys in the symmetric Bernoulli model (see [34]) satisfies Y0 = 0 and

Yn
D= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ 1, n ≥ 1,

where I
(n)
1 is B(n,1/2) distributed and I

(n)
2 = n − I

(n)
1 . The mean and variance

satisfy ([22])

EYn = n�1(log2 n) + O(1), Var(Yn) = n�2(log2 n) + O(1),(52)

where �1 and �2 are positive C∞ functions with period 1. We obtain a limit law
due to Jacquet and Régnier [26]:

COROLLARY 5.7. The normalized size (Yn − EYn)/
√

Var(Yn) of a random
trie in the symmetric Bernoulli model converges in distribution to the standard
normal distribution.

PROOF. For the application of Corollary 5.2 we first check (47). We have

f (n) = n�1(log2 n), g(n) = n�2(log2 n),

where �1 and �2 are given in (52). Here and in the following discussion we use
the convention log2 n := 0 for n = 0. We split the sample space into the ranges
A = {|I (n)

1 − n/2| < n3/4} and B = {|I (n)
1 − n/2| ≥ n3/4}. Note that on A and B

also |I (n)
2 − n/2| < n3/4 and |I (n)

2 − n/2| ≥ n3/4 hold, respectively.
For the estimate on the set A we assume n to be sufficiently large so that

n−1/4 < 1/4. Then by the mean value theorem we obtain, for r = 1,2,

1 + log2
I

(n)
r

n
= 1 + log2

(
1

2
+ I

(n)
r − n/2

n

)
= �n,r

I
(n)
r − n/2

n
,(53)

where the random �n,r satisfy, on A,∥∥∥∥�n,r − 2

ln 2

∥∥∥∥∞
≤ 8

ln 2
n−1/4(54)
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for n sufficiently large; in particular, |�n,r | ≤ 4/ ln 2, r = 1,2. Thus on A we have
|1 + log2(I

(n)
r /n)| ≤ (4/ ln 2)n−1/4, which implies, using the periodicity of �1,

�1(log2 I (n)
r ) = �1

(
log2 n +

(
1 + log2

I
(n)
r

n

))
(55)

= �1(log2 n) + �n,r

(
1 + log2

I
(n)
r

n

)

with random

�n,r ∈
{
� ′

1(x + log2 n) : |x| ≤ 4

ln 2
n−1/4

}
=: Bn, r = 1,2.

By the continuity of � ′
1 it follows that the sets Bn are intervals. Since � ′

1 is also
periodic, we obtain that � ′

1 is uniformly continuous and therefore the length of the
intervals Bn tends to zero. This implies, on A,

‖�n,1 − �n,2‖∞ → 0, n → ∞.(56)

Now we verify condition (47) to apply Corollary 5.2. Combining (53) and (55) we
have, on A with n sufficiently large,

1√
n

(
I

(n)
1 �1(log2 I

(n)
1 ) + I

(n)
2 �1(log2 I

(n)
2 ) − n�1(log2 n)

)
(57)

= 1√
n

(
�n,1�n,1I

(n)
1

I
(n)
1 − n/2

n
+ �n,2�n,2I

(n)
2

I
(n)
2 − n/2

n

)
(58)

= �n,1�n,1
1

n3/2

(
I

(n)
1

(
I

(n)
1 − n/2

)+ I
(n)
2

(
I

(n)
2 − n/2

))
(59)

+ (�n,2�n,2 − �n,1�n,1)
I

(n)
2 (I

(n)
2 − n/2)

n3/2 .(60)

First we estimate summand (60) on A. By (54) and (56) we have ‖�n,2�n,2 −
�n,1�n,1‖∞ → 0; thus

∫
A

∣∣∣∣(�n,2�n,2 − �n,1�n,1)
I

(n)
2 (I

(n)
2 − n/2)

n3/2

∣∣∣∣
3

dP

≤ ‖�n,2�n,2 − �n,1�n,1‖3∞
∫ ∣∣∣∣I

(n)
2 − n/2√

n

∣∣∣∣
3

dP

= o(1)
1

8
E|N (0,1)|3 → 0, n → ∞.
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For the first summand (59) we write I
(n)
1 /n = 1/2 + Rn, so that on A we have

‖Rn‖∞ ≤ n−1/4. Note that I
(n)
2 /n = 1/2 − Rn. This yields

1

n3/2

(
I

(n)
1

(
I

(n)
1 − n/2

)+ I
(n)
2

(
I

(n)
2 − n/2

))= 2Rn

I
(n)
1 − n/2√

n
.

Since |�n,1�n,1| remains bounded, say bounded by C, we obtain∫
A

∣∣∣∣�n,1�n,1
1

n3/2

(
I

(n)
1

(
I

(n)
1 − n/2

)+ I
(n)
2

(
I

(n)
2 − n/2

))∣∣∣∣
3

dP

≤ 2C‖Rn‖3∞
∫ ∣∣∣∣I

(n)
1 − n/2√

n

∣∣∣∣
3

dP → 0.

Putting this altogether, we obtain∫
A

∣∣∣∣ 1

g1/2(n)

(
1 − f (n) + f (I

(n)
1 ) + f (I

(n)
2 )

)∣∣∣∣
3

dP → 0.

By Chernoff’s bound we have P(B) ≤ 2 exp(−√
n ). With m2 :=

minx∈[0,1] �2(x) > 0 we obtain

∫
B

∣∣∣∣∣I
(n)
r (�1(log2 I

(n)
r ) − �1(log2 n))

g1/2(n)

∣∣∣∣∣
3

dP

≤
(

2‖�1‖∞
m

1/2
2

)3

n3/22 exp
(−√

n
)→ 0

for r = 1,2, which implies∫
B

∣∣∣∣ 1

g1/2(n)

(
1 − f (n) + f (I

(n)
1 ) + f (I

(n)
2 )

)∣∣∣∣
3

dP → 0.

Thus together we obtain (47).
For (46) note that with g(n) := n�2(log2 n) we have

g(I
(n)
r )

g(n)
= I

(n)
r

n

�2(log2 I
(n)
r )

�2(log2 n)
.

By the strong law of large numbers (SLLN) and and dominated convergence,
I

(n)
r /n → 1/2 in any Lp . Furthermore

∣∣∣∣�2(log2 I
(n)
r )

�2(log2 n)
− 1

∣∣∣∣=
∣∣∣∣�2(log2(n) + 1 + log2(I

(n)
r /n)) − �2(log2 n)

�2(log2 n)

∣∣∣∣
≤ 1

m2

∣∣∣∣∣�2

(
log2(n) + 1 + log2

(
I

(n)
r

n

))
− �2(log2 n)

∣∣∣∣∣.
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By the SLLN and the continuity of �2 this tends to zero almost surely. By
dominated convergence, the convergence holds in any Lp . Together this implies

g(I
(n)
r )

g(n)
→ 1

2
, in Ls

for any s > 0. �

REMARK. Note that the properties of �1 and �2 that are needed are the
periodicity, the lower positive bound for �2, that �1 is continuously differentiable
and that �2 is continuous. This seems to be of some generality as the following
examples on path lengths in digital structures show. However, there are also
examples where the differentiability of �1 fails to hold and our method still may
be applied as shown below for the top-down mergesort.

Path lengths in digital structures. The fundamental search trees based on bit
comparisons are the digital search tree, the trie and the Patricia trie; see [55]. The
cost to build up these trees from n data is measured by their path lengths Yn, that
is, the internal path length for digital search trees and the external path lengths for
tries and Patricia tries. In the symmetric Bernoulli model we have Y0 = 0 and

Yn
D= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ n − b̃n, n ≥ 1,

where I
(n)
1 ∼ B(n − 1,1/2), I

(n)
1 + I

(n)
2 = n − 1 and b̃n = 1 for digital search

trees, and for the other two structures, I (n)
1 ∼ B(n,1/2), I (n)

1 +I
(n)
2 = n and b̃n = 0

for the trie and b̃n = 1{I (n)
1 ∈{0,n}}n for Patricia tries. The small disturbance in the

recursion is reflected by their similar moments,

EYn = n log2 n + n�3(log2 n) + O(log n),

VarYn = n�4(log2 n) + O(log2 n),

where �r are periodic functions (with period 1) that vary from one of the structures
to the other; see [28–31]. It is known that �4 is continuous and positive in each
case. For �3 we have the representations

�3(x) = C + 1

ln 2

∑
k∈Z\{0}

	(−ωk)e
2kπix, x ∈ R,

for the digital search tree and

�3(x) = C + 1

ln 2

∑
k∈Z\{0}

ωk	(−ωk)e
2kπix, x ∈ R,

for the trie and Patricia trie, where the constant C varies from case to case and

ωk = 1 + 2kπi

ln 2
, k ∈ Z.
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Note that for Fourier series h(x) =∑
k∈Z ake

2πikx the condition |ak| = O(k−(m+2))

for |k| → ∞ implies that h is m times continuously differentiable. Since |	(−ωk)|
decays exponentially for |k| → ∞, we obtain that �3 is infinite differentiable in all
cases. Only the C1 property is needed. This implies asymptotic normality, which
for digital search trees and tries was proven in [25] and [27], respectively; see
also [52]:

COROLLARY 5.8. The normalized internal (resp., external) path lengths
(Yn − EYn)/

√
Var(Yn) of digital search trees, tries and Patricia tries are

asymptotically normal in the symmetric Bernoulli model.

PROOF. We apply Corollary 5.2. Condition (46) follows from the continuity
of �4 as in the proof of Corollary 5.7. For (47) we have

1√
n

(
n − b̃n − n log2 n − n�3(log2 n) + I

(n)
1 log2 I

(n)
1

+ I
(n)
1 �3(log2 I

(n)
1 ) + I

(n)
2 log2 I

(n)
2 + I

(n)
2 �3(log2 I

(n)
2 )

)
= − b̃n√

n
+ 1√

n

(
n + I

(n)
1 log2 I

(n)
1 + I

(n)
2 log2 I

(n)
2 − n log2 n

)
(61)

+ 1√
n

(
I

(n)
1 �3(log2 I

(n)
1 ) + I

(n)
2 �3(log2 I

(n)
2 ) − n�3(log2 n)

)
.(62)

Now, b̃n/
√

n tends to zero in Lp for any p > 0 in all three cases. The summand
in (62) is essentially the term (57) estimated in the proof of Corollary 5.7. The
second summand in (61) can also be seen to tend to zero in L3 by the estimates
of Corollary 5.7: Applying (53) leads to (58) with �n,1 = �n,2 = 1 there; thus we
can conclude as in Corollary 5.7. �

For related recursions that arise in the analysis of the size and path length of
bucket digital search trees, see [19].

Mergesort. The number of key comparisons Yn of top-down mergesort (for
definition and mathematical analysis, see [15] and [20]), applied to a list of
n randomly permuted items, satisfies Y0 = 0 and

Yn
D= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ n − Sn, n ≥ 1,

where I
(n)
1 = �n/2�, I (n)

2 = n− I
(n)
1 and Sn is a random variate that is independent

of (Y
(1)
n ) and (Y

(2)
n ); see [31], Section 5.2.4. In particular, we have ES3

n = O(1).
Flajolet and Golin [15] proved

EYn = n log2 n + n�5(log2 n) + O(1),(63)

Var(Yn) = n�6(log2 n) + o(n),
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where �5 and �6 are continuous functions with period 1, �6 is positive and �5
is not differentiable. In particular,

�5(u) = C + 1

ln 2

∑
k∈Z\{0}

1 + �(χk)

χk(χk + 1)
e2kπiu, u ∈ R,(64)

where C ∈ R is a constant, � is a complex function of O(1) on the imaginary line
�(s) = 0 and

χk = 2πik

ln 2
, k ∈ Z.

Moreover, Flajolet and Golin showed that (Yn −EYn)/
√

Var(Yn) satisfies a central
limit theorem by applying Lyapunov’s condition. Hwang [20] found a local limit
theorem and large deviations including rates of convergence and, in [21], gave
full (exact) asymptotic expansions for the mean and variance. Cramer [9] obtained
the (central) limit law by applying the contraction method. For methodological
reasons, we rederive this limit law on the basis of the expansions (63) including
the representation for �5 directly from Corollary 5.2: We have

f (n) = n log2(n) + n�5(log2 n), g(n) = n�6(log2 n).

Thus, by I
(n)
1 = �n/2� and the continuity of �6, we have deterministically

(
g(I

(n)
1 )

g(n)

)1/2

→ 1√
2
,

(
g(I

(n)
2 )

g(n)

)1/2

→ 1√
2
.

Since ES3
n = O(1) we obtain, in L3,

1√
n

(
f (I

(n)
1 ) + f (I

(n)
2 ) − f (n) + n − Sn

)

= 1√
n

(⌈
n

2

⌉
log2

⌈
n

2

⌉
+
(
n −

⌈
n

2

⌉)
log2

(
n −

⌈
n

2

⌉)
(65)

− n log2(n) +
⌈

n

2

⌉
�5

(
log2

⌈
n

2

⌉)

+
(
n−

⌈
n

2

⌉)
�5

(
log2

(
n −

⌈
n

2

⌉))
− n�5(log2 n) + n − Sn

)

→ 0,

where the only nontrivial contribution comes from the �5 terms in (65) with odd n,
say n = 2m + 1. The asymptotic cancellation of these terms follows from∣∣�5

(
log2(m + 1)

)− �5
(
log2(m + 1/2)

)∣∣= o(m−1/2).
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For this note that∣∣∣∣exp
(
2kπi log2(m + 1)

)− exp
(

2kπi log2

(
m + 1

2

))∣∣∣∣
≤ min

{
2,

πk

(m + 1/2) ln(2)

}
, k ∈ Z, m ∈ N,

and that ∣∣∣∣ 1 + �(χk)

χk(χk + 1)

∣∣∣∣≤ c

k2 , k ∈ Z \ {0},

with a constant c > 0. Now we split the range of summation in (64) into the ranges
|k| ≤ m and |k| > m and note that

∑
k>m k−2 = O(1/m). This yields∣∣∣∣�5

(
log2(m + 1)

)− �5

(
log2

(
m + 1

2

))∣∣∣∣= O

(
Hm

m

)
.

COROLLARY 5.9. The normalized number of key comparisons (Yn − EYn)/√
Var(Yn) of top-down mergesort applied to a randomly permuted number of items

is asymptotically normal.

For other variants of mergesort and a limit law for the queue mergesort, see [6]
and the references therein. Note that the limit law for queue mergesort in [6] cannot
be obtained by Corollary 5.2 since the corresponding prefactors (g(I

(n)
r )/g(n))1/2

do not converge, r = 1,2. However, the extension of our approach in Section 5.2
seems to be promising.

5.3.3. Other orders for mean and variance.

Maxima in right triangles. We consider the number Yn of maxima of n

independent, uniform samples in a right triangle in R
2 with vertices (0,0), (1,0)

and (0,1); see [3] and [4]. According to Proposition 1 in [3], this number satisfies
the recursion Y0 = 0 and

Yn
D= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ 1,

where the indices I
(n)
1 and I

(n)
2 are given as the first two components of a mixed

trinomial distribution as follows: Let (Un,Vn) denote the point that maximizes the
sum of the components in the sample of the n points. Then I (n) = (I

(n)
1 , I

(n)
2 , I

(n)
3 )

conditioned on (Un,Vn) = (u, v) is multinomially distributed:

P
I (n)|(Un,Vn)=(u,v) = M

(
n − 1,

u2

(u + v)2
,

v2

(u + v)2
,

2uv

(u + v)2

)
.
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The mean and variance satisfy (see [3])

EYn = √
π

√
n + O(1),

Var(Yn) = σ 2√n + O(1),

with some σ 2 > 0. Thus we have the orders f (n) = √
π

√
n and g(n) = σ 2√n.

Moreover, I (n)/n → (U2, (1 −U)2,2U), where U is unif[0,1] distributed. So we
obtain I

(n)
1 /n → U1/2 and I

(n)
2 /n → (1 − U)1/2 in any Lp . In [4] by the method

of moments, a central limit law for Yn was derived. We can give an easy approach
to asymptotic normality based on Corollary 5.2:

COROLLARY 5.10. Let Yn be the number of maxima of n independent uniform
samples in a right triangle as described above. Then

Yn − EYn√
Var(Yn)

L→ N (0,1).

PROOF. It remains to check (46). We have

1

n1/4

∣∣(I (n)
1 )1/2 + (I

(n)
2 )1/2 − n1/2∣∣

≤ n1/4
∣∣∣∣
(

I
(n)
1

n − 1

)1/2

− Un

Un + Vn

∣∣∣∣+ n1/4
∣∣∣∣
(

I
(n)
2

n − 1

)1/2

− Vn

Un + Vn

∣∣∣∣
+ O(n−3/4).

It is sufficient to bound one of these two nontrivial summands. We denote

A :=
{(

I
(n)
1

n − 1

)1/2

+ Un

Un + Vn

≥ n−3/14
}
,

B :=
{(

I
(n)
1

n − 1

)1/2

+ Un

Un + Vn

< n−3/14
}
.

On A it holds that∣∣∣∣
(

I
(n)
1

n − 1

)1/2

− Un

Un + Vn

∣∣∣∣
3

≤ n9/14
∣∣∣∣ I

(n)
1

n − 1
− U2

n

(Un + Vn)
2

∣∣∣∣
3

.

Thus denoting by ϒn the distribution of U2
n/(Un + Vn)

2 and denoting by Bn,u a
B(n − 1, u) distributed random variable, we obtain

∫
A

∣∣∣∣
(

I
(n)
1

n − 1

)1/2

− Un

Un + Vn

∣∣∣∣
3

dP ≤ n9/14
∫ ∣∣∣∣ Bn,u

n − 1
− u

∣∣∣∣
3

dϒn(u)

≤ n9/14Cn−3/2 = Cn−6/7,
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since the third absolute central moment of Bn,u is bounded by Cn3/2 with a
constant C > 0 uniformly in p ∈ [0,1], following from Chernoff’s bound. On B

we use the trivial bound
∫
B

∣∣∣∣
(

I
(n)
1

n − 1

)1/2

− Un

Un + Vn

∣∣∣∣
3

dP ≤ P(B)n−9/14.

Finally we obtain, with ϒ ′
n denoting the distribution of Un + Vn,

P(B) = P

(
Un

Un + Vn

≤ n−3/14
)

= P

(
Un

Un + Vn

≤ n−3/14,0 ≤ Un + Vn ≤ 1

2

)

+ P

(
Un

Un + Vn

≤ n−3/14,
1

2
≤ Un + Vn ≤ 1

)

≤
(

1

4

)n

+ P

(
Un ≤ n−3/14,Un + Vn ≥ 1

2

)

=
(

1

4

)n

+
∫ 1

1/2

√
2n−3/14
√

2u
dϒ ′

n(u)

= O(n−3/14).

Thus putting everything altogether, we obtain∥∥∥∥ 1

g1/2(n)

(
f (n) − f (I

(n)
1 ) − f (I

(n)
2 )

)∥∥∥∥
3(66)

= O
(
(n3/4n−6/7)1/3)= O(n−1/28).

The assertion follows by Corollary 5.2. �

Note that estimates for the term (66) are also required in the moments method
approach in [3]; compare the (different) estimates of Vr(n) there on pages
14 and 15.

5.4. Multivariate central limit laws. The generalization of Corollary 5.2 to
higher dimensions is straightforward and is omitted here. Applications of such
an extension cover, for example, limit laws for recursions as in [33]. Instead, we
extend our approach to multivariate recursions where the number K of copies
of the parameter on the right side may be random, depending on n, and even
satisfy K = Kn → ∞ for n → ∞. Clearly, in such a situation the heuristic
that a stabilization of the coefficients as in (24) plus a contraction condition as
in (25) leads to a fixed-point equation and a related convergence theorem as in
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Theorem 4.1 no longer holds. However, for normal convergence problems, we use
the fact that the multivariate standard normal distribution satisfies all the equations

X
D=

Kn∑
r=1

ArX
(r)(67)

with (Kn,A1,A2, . . .),X
(1),X(2), . . . independent, X ∼ X(r) for all r ≥ 1 and∑Kn

r=1 ArA
t
r = Idd . For problems with Kn → ∞, we typically have Ar tending to

zero for n → ∞ for every fixed r , so that we have no meaningful limiting equation
at hand. Nevertheless, our arguments may apply, since we are able to compare with
a normal distribution for every n by means of an (in n changing) equation of the
type (67).

5.4.1. Random recursive trees. The recursive tree of order n is a rooted tree on
n vertices labeled 1 to n such that for each k = 2, . . . , n, the labels of the vertices
on the path from the root to the node labeled k form an increasing sequence. For
a random recursive tree of order n, we assume the uniform model on the space of
all recursive trees of order n, where all (n − 1)! trees are equally likely. It is well
known that a random recursive tree may be obtained by successively adjoining
children to the existing tree, where for the nth vertex the parent node is chosen
uniformly from the vertices labeled 1, . . . , n − 1. For a survey of recursive trees,
we refer to [54]. Mahmoud and Smythe [38] studied the joint distribution of Yn =
(Bn,Rn,Gn), where Bn, Rn and Gn are the number of vertices in the tree with
out-degree 0, 1 and 2, respectively. Based on a formulation as a generalized Pólya–
Eggenberger urn model, they derived the mean EYn = n(1/2,1/4,1/8) + O(1)

and the covariance matrix Cov(Yn) = n�0 + O(1), where �0 is explicitly given
in [38], Theorem 4.1. By an application of a martingale central limit theorem, the
asymptotic trivariate normality is shown.

Here, we offer a recursive approach to parameters of random recursive trees
based on a generalization of our previous settings, allowing the number K of
summands on the right-hand side of (1) to be random, depending on n, and tending
to infinity for n → ∞.

There are several possibilities for a recursive decomposition of a parameter
of a random recursive tree: First of all we may decompose by counting the
parameters of all the Kn subtrees separately and calculate from these the parameter
of the whole tree. This is the line we follow in the subsequent analysis. Here
the random number Kn of subtrees of the root has a representation as a sum of
independent Bernoulli random variables. Second, we could also subdivide into,
for example, the leftist subtree of the root and the rest of the tree (including the
root) as was done in [13] for the analysis of the internal path length in random
recursive trees. However, the example of Mahmoud and Smythe [38] will, in
this decomposition, not be covered by our present approach, since a dependence
between bn and (Y

(2)
n ) is present which is forbidden in our setup. Third, we
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may first use a bijection between recursive trees and binary search trees, the
“oldestchildnextsibling” (see [1]), transpose the parameter under consideration
into the binary search tree setting and use the recursive structure of the binary
search tree. However, parameters of a simple form for recursive trees may have
more complex counterparts in the binary search tree setup.

The vector Yn defined above satisfies the recursions Y0 = (0,0,0), Y1 = (1,0,0)

and

Yn
D=

Kn∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0,(68)

with n0 = 2 and bn = (1{Kn=0},1{Kn=1},1{Kn=2}), where (Kn, I
(n), bn), (Y

(1)
n ),

(Y
(2)
n ), . . . are independent with Y

(r)
j ∼ Yj for all j ≥ 0, r ≥ 1. Here, we use that

given the number Kn and the cardinalities I
(n)
1 , . . . , I

(n)
Kn

of the subtrees of the root,

these subtrees are random recursive trees of orders I
(n)
1 , . . . , I

(n)
Kn

, respectively, and
are independent of each other.

More generally, we assume that (Yn) is a sequence of random d-dimensional
vectors satisfying (68), where bn is “small”; more precisely, bn/

√
n → 0 in L3,

and mean and (co)variances of Yn are linear, that is,

EYn = nµ + o
(√

n
)
, Cov(Yn) = n� + o(n),(69)

with components µl �= 0 for l = 1, . . . , d and � being positive definite. We assume
Cov(Yn) to be positive definite for some n ≥ n1 and scale as in (22) with 2 < s ≤ 3,
Xn := C

−1/2
n (Yn − Mn). This leads to the recursion

Xn
D=

Kn∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n1,(70)

with

A(n)
r =

(
I

(n)
r

n

)1/2

Idd +o(1), b(n) = o(1),(71)

where the o(1) terms are converging uniformly. A substitute for the contraction
condition (25) is given by the next lemma:

LEMMA 5.11. Let Kn be the out-degree of the root of a random recursive tree
of order n and let I

(n)
1 , . . . , I

(n)
Kn

be the cardinalities of the subtrees of the root.
Then, for all s > 2,

lim sup
n→∞

E

Kn∑
r=1

(
I

(n)
r

n

)s/2

≤ 6 + s

4 + 2s
< 1

holds.
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PROOF. By Theorem 5.1 in [37] we have, in particular, I
(n)
1 /n → U ∼

unif[0,1] almost surely. Hence it follows that

E

Kn∑
r=1

(
I

(n)
r

n

)s/2

≤ E

[(
I

(n)
1

n

)s/2

+
Kn∑
r=2

I
(n)
r

n

]
(72)

= E

[(
I

(n)
1

n

)s/2

+ n − 1 − I
(n)
1

n

]

→ 6 + s

4 + 2s
, n → ∞.

The assertion follows. �

COROLLARY 5.12. Let (Yn) be a sequence of vectors of parameters of a
random recursive tree in L3 satisfying (68) and (69). Then, for all 2 < s ≤ 3,

ζs

(
Cov(Yn)

−1/2(Yn − EYn),N (0, Idd)
)→ 0, n → ∞,

holds.

PROOF. For an estimate as in the proof of Theorem 4.1, we introduce the
accompanying sequence

Qn
D=

Kn∑
r=1

A(n)
r

(
1{I (n)

r <n1}X
(r)

I
(n)
r

+ 1{I (n)
r ≥n1}N

(r)
)

+ b(n), n ≥ 2,

where (A
(n)
1 , . . . ,A

(n)
Kn

, b(n), I (n),Kn),N
(1),N(2), . . . , (X

(1)
n ), (X

(2)
n ), . . . are inde-

pendent with N(r) ∼ N (0, Idd), X
(r)
j ∼ Xj for r ≥ 1, 0 ≤ j < n1 − 1. Then we

have

ζs

(
Xn,N (0, Idd)

)≤ ζs(Xn,Qn) + ζs

(
Qn,N (0, Idd)

)
.

As in the proof of Theorem 4.1, we obtain [cf. (33)]

ζs(Xn,Qn) ≤
∫ ∫ k∑

r=1

1{jr≥n1}‖αr‖s
opζs(Xjr ,X)dϒ(k)

n (α, j) dP
Kn(k),(73)

where ϒ
(k)
n is the joint distribution of (A

(n)
1 , . . . ,A

(n)
Km

, I (n)) given Kn = k and
α = (α1, . . . , αk), j = (j1, . . . , jk). This implies

ζs

(
Xn,N (0, Idd)

)≤
(

E

Kn∑
r=1

‖A(n)
r ‖s

op

)
sup

n1≤j≤n−1
ζs

(
Xj ,N (0, Idd)

)+ o(1).(74)

By (71) and Lemma 5.11 the prefactor is less than or equal to (6 + s)/(4 + 2s) < 1
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for n sufficiently large, which gives that (ζ(Xn,N (0, Idd))) is bounded. Then
with ξ := lim sup ζ(Xn,N (0, Idd)), we obtain from (73), as in the proof of
Theorem 4.1,

ξ ≤ 6 + s

4 + 2s
(ξ + ε)

for all ε > 0; thus ξ = 0. �

As a consequence we obtain, in particular, the asymptotic trivariate normality
result of Mahmoud and Smythe [38].

5.4.2. Random plane-oriented recursive trees. Plane-oriented recursive trees
are recursive trees with ordered sets of descendents; a random plane-oriented
recursive tree of order n is chosen with equal probability from the space of all
such trees, with n nodes. As for random recursive trees, there is a probabilistic
growth rule available to build up the plane-oriented counterpart; for details and
definitions, see [54].

Parameters of random recursive trees which admit a representation (68) have
counterparts for plane-oriented recursive trees, where (68) is still valid, but
the distribution of (Kn, I

(n)) has to be adjusted. These two trees behave quite
differently. For example, the growth order of the number of subtrees Kn of the
root, on the average, changes from being logarithmic to

√
n when switching to the

plane-oriented version. A convergence scheme similar to Corollary 5.12 can be
built upon the following contraction lemma, which corresponds to Lemma 5.11:

LEMMA 5.13. Let Kn be the out-degree of the root of a random plane-
oriented recursive tree of order n and let I

(n)
1 , . . . , I

(n)
Kn

be the cardinalities of the
subtrees of the root. Then, for all s > 2,

lim sup
n→∞

E

Kn∑
r=1

(
I

(n)
r

n

)s/2

≤ 5 + 2s

3 + 3s
< 1

holds.

PROOF. We enumerate the subtrees of the root such that the first subtree in
our enumeration is the one with root labeled 2. Then by Theorem 5 in [40],
I (n)/n → V holds almost surely, where V has the beta(1/2,1) distribution. In
particular, EV s/2 = 1/(s + 1) for s > 0. An estimate similar to (72) leads to the
assertion. �

From this contraction property we obtain that our Corollary 5.12 is valid also
for the plane-oriented version of the recursive tree.
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COROLLARY 5.14. Let (Yn) denote the vector of parameters of plane-
oriented recursive trees in L3 that satisfy (68) and (69). Then

ζs

(
Cov(Yn)

−1/2(Yn − EYn),N (0, Idd)
)→ 0, n → ∞.

For possible applications, see Section 8 in [40].
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