EXISTENCE OF QUASI-STATIONARY MEASURES FOR ASYMMETRIC ATTRACTIVE PARTICLE SYSTEMS ON \mathbb{Z}^{d}

By Amine Asselah and Fabienne Castell
Université de Provence

Abstract

We show the existence of nontrivial quasi-stationary measures for conservative attractive particle systems on \mathbb{Z}^{d} conditioned on avoiding an increasing local set \mathcal{A}. Moreover, we exhibit a sequence of measures $\left\{v_{n}\right\}$, whose ω-limit set consists of quasi-stationary measures. For zero-range processes, with stationary measure v_{ρ}, we prove the existence of an $L^{2}\left(v_{\rho}\right)$ nonnegative eigenvector for the generator with Dirichlet boundary on \mathcal{A}, after establishing a priori bounds on the $\left\{v_{n}\right\}$.

1. Introduction. We consider the "processus des misanthropes," which includes the asymmetric exclusion process and zero-range processes. For concreteness, let us describe here the dynamics of a zero-range process. We denote the path of the process by $\left\{\eta_{t}, t \geq 0\right\}$ with $\eta_{t}(i) \in \mathbb{N}$ for $i \in \mathbb{Z}^{d}$. At site i and at time t, one of the $\eta_{t}(i)$ particles jumps to site j at rate $g\left(\eta_{t}(i)\right) p(i, j)$, where

$$
\begin{align*}
& g: \mathbb{N} \rightarrow[0, \infty) \text { is increasing, with } g(0)=0, \\
& \sup _{k}(g(k+1)-g(k))<\infty \tag{1.1}
\end{align*}
$$

and $p(\cdot, \cdot)$ is the transition kernel of a transient random walk. Under assumptions that we make precise later, the informal dynamics described above corresponds to a Markov process with stationary product measures $\left\{v_{\rho}, \rho>0\right\}$ (see [1]).

Our motivation stems from statistical physics where such systems model a gas of charged particles in equilibrium under an electrical field. An interesting issue is the distribution of the occurrence time of density fluctuations in equilibrium. Thus, let Λ be a finite subset of \mathbb{Z}^{d} and consider the event

$$
\begin{equation*}
\mathcal{A}=\left\{\eta: \frac{1}{|\Lambda|} \sum_{i \in \Lambda} \eta(i)>\rho^{\prime}\right\}, \quad \text { with } \rho^{\prime}>\rho \tag{1.2}
\end{equation*}
$$

Let τ be the first time a trajectory $\left\{\eta_{t}: t \geq 0\right\}$ enters \mathcal{A}. As in [4, 5], we consider two complementary issues:
(i) estimating the tail of the distribution of τ;
(ii) characterizing the law of η_{t} at large time, conditioned on $\{\tau>t\}$, when the initial configurations are drawn from v_{ρ}.

We denote by \mathcal{L} the generator of our process on the domain $\mathscr{D}(\mathcal{L})$, by $\left\{S_{t}, t \geq 0\right\}$ the associated semigroup and by P_{μ} the law of the process with initial probability μ. For any probability ν, we denote by $T_{t}(v)$ the law of η_{t} conditioned on $\{\tau>t\}$, with respect to P_{ν}. Thus, for φ continuous and bounded, $\int \varphi d T_{t}(\nu):=E_{\nu}\left[\varphi\left(\eta_{t}\right) \mid \tau>t\right]$.

Now, from a statistical physics point of view, a relevant issue is the existence of a limit for $T_{t}\left(v_{\rho}\right)$, the so-called Yaglom limit, say μ_{ρ}. A Yaglom limit is established by Kesten [13] for an irreducible positive recurrent random walk on \mathbb{N} with bounded jump size and with $\mathcal{A}=\{0\}$. Also, a Yaglom limit is established in [5] for the symmetric simple exclusion process in dimension $d \geq 5$, relying strongly on the self-adjointness and attractiveness and establishing uniform $L^{2}\left(v_{\rho}\right)$ bounds for $\left\{d T_{t}\left(v_{\rho}\right) / d v_{\rho}, t \geq 0\right\}$. We refer to the Introduction of [12] for a review of countable Markov chains for which the Yaglom limit is established. This notion was introduced first by Yaglom [18] in 1947 for subcritical branching processes.

We note that the existence of μ_{ρ} implies trivially that there is $\lambda(\rho) \in[0, \infty]$ such that, for any $s>0$,

$$
\begin{equation*}
P_{\mu_{\rho}}(\tau>s)=\lim _{t \rightarrow \infty} \frac{P_{\nu_{\rho}}(\tau>t+s)}{P_{\nu_{\rho}}(\tau>t)}=\exp (-\lambda(\rho) s) \tag{1.3}
\end{equation*}
$$

which, in turn, implies readily that

$$
\begin{equation*}
\lambda(\rho)=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(P_{\nu_{\rho}}(\tau>t)\right) \tag{1.4}
\end{equation*}
$$

Thus, right at the outset, one faces three issues:
(i) When does the ratio in (1.3) have a limit? This is linked with a wide area of investigations (see, e.g., [9, 11, 13]).
(ii) Is there a formula for $\lambda(\rho)$? One recognizes in $\lambda(\rho)$ the logarithm of the spectral radius of $\mathcal{L}: L^{\infty}\left(v_{\rho}\right) \rightarrow L^{1}\left(v_{\rho}\right)$ with Dirichlet conditions on \mathcal{A}. When \mathcal{L} is a second-order elliptic operator on a bounded domain, and when we work with the sup-norm topology, Donsker and Varadhan [10] give a variational formula for (1.4).
(iii) When is $\lambda(\rho)$ a positive real? In other words, what is the right scaling for large deviations for the occupation time of \mathcal{A}. For symmetric simple exclusion, it is shown in [2] and [4] that $\lambda(\rho)>0$ if and only if $d \geq 3$.

Since $\left\{T_{t}, t \geq 0\right\}$ is a semigroup, the Yaglom limit, when it exists, is a fixed point of T_{t} for any t. Thus, a preliminary step is to characterize possible fixed points of $\left\{T_{t}\right\}$, which are called quasi-stationary measures. In other words, μ is quasi-stationary if there is $\lambda \geq 0$ such that, for any $\varphi \in \mathscr{D}(\mathcal{L})$ and any $t>0$,

$$
\int E_{\eta_{0}}\left[\varphi\left(\eta_{t}\right) \mathbb{1}_{\tau>t}\right] d \mu\left(\eta_{0}\right)=e^{-\lambda t} \int \varphi d \mu
$$

We note that, in our context, the Dirac measure on the empty configuration is trivially a quasi-stationary measure with $\lambda=0$. Thus, by nontrivial quasistationary measure, we mean one corresponding to $\lambda>0$. Finally, we note that, in dynamical systems, quasi-stationary measures are well studied and named after Pianigiani and Yorke [15], who prove their existence for expanding C^{2}-maps.

Assume that μ is a probability measure with support in \mathscr{A}^{c} such that, for any $t \geq 0, T_{t}(\mu)=\mu$. By differentiating this equality at $t=0$, we obtain, for φ in the domain of \mathcal{L} with $\left.\varphi\right|_{\mathcal{A}}=0$,

$$
\begin{equation*}
\int \mathcal{L}(\varphi) d \mu=\int \mathscr{L}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d \mu \int \varphi d \mu \tag{1.5}
\end{equation*}
$$

Moreover, assume that μ is absolutely continuous with respect to a measure v and that $f:=d \mu / d \nu \in L^{2}(v)$. If \mathcal{L}^{*} denotes the adjoint operator in $L^{2}(v)$, then $f \in D\left(\mathcal{L}^{*}\right)$ and f is a nonnegative solution of

$$
\mathbb{1}_{\mathcal{A}^{c}} \mathcal{L}^{*} f+\lambda f=0 \quad \text { and } \quad \lambda=\int-\mathcal{L}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d \mu
$$

Thus, the problem of quasi-stationary measure for attractive particle systems is a problem of finding principal eigenvectors in a context where we lack irreducibility conditions and where neither the space nor the operator is compact.

Equation (1.5) is the starting point of Ferrari, Kesten, Martínez and Picco [12], whose work we describe in some detail since ours builds upon it. These authors consider an irreducible, positive recurrent random walk, $\left\{X_{t}, t \geq 0\right\}$ on \mathbb{N}, with rates of jump $\{q(i, j), i, j \in \mathbb{N}\}$. They study the first time the origin is occupied, say τ, when there is $\lambda>0$ and $i \in \mathbb{N} \backslash\{0\}$ such that $E_{i}[\exp (\lambda \tau)]<\infty$. Assuming that μ satisfies (1.5), one obtains, for any φ with $\varphi(0)=0$,

$$
\begin{equation*}
\sum_{j \neq 0} \sum_{k \neq 0}(q(j, k)+q(j, 0) \mu(k))(\varphi(k)-\varphi(j)) \mu(j)=0 \tag{1.6}
\end{equation*}
$$

Thus, μ can be thought of as the invariant measure of a new random walk, say $\left\{X_{t}^{\mu}, t \geq 0\right\}$ on $\mathbb{N} \backslash\{0\}$ with rates $\{q(j, k)+q(j, 0) \mu(k), j, k \in \mathbb{N} \backslash\{0\}\}$. When μ is such that $E_{\mu}[\tau]<\infty, X_{t}^{\mu}$ is positive recurrent and has a unique invariant measure v, and this procedure defines a map $\mu \mapsto \Phi(\mu)=\nu$. Thus, the problem reduces to finding fixed points of Φ. They notice also that X_{t}^{μ} can be built from the walk X_{t}, by starting it afresh from a random site drawn from μ, each time X_{t} hits 0 . Then, using this renewal representation, an expression of $\Phi(\mu)$ is obtained (see equation (2.4) of [12])

$$
\begin{equation*}
\Phi(\mu)=\frac{1}{E_{\mu}[\tau]} \int_{0}^{\infty} T_{t}(\mu) P_{\mu}(\tau>t) d t \tag{1.7}
\end{equation*}
$$

In our case, the Laplace-like transform (1.7) is a well-defined map, and as observed in [8], as soon as $E_{\mu}[\tau]<\infty, \mu$ is quasi-stationary if and only if $\Phi(\mu)=\mu$.

In [12], the authors study the sequence of iterates $\left\{\Phi^{n}\left(\delta_{i}\right)\right\}_{n \geq 1}$ for $i \in \mathbb{N} \backslash\{0\}$. They show that this sequence is tight and that any limit point belongs to \mathcal{M}_{λ},
the subspace of probability measures under which τ is an exponential time of parameter

$$
\lambda=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(P_{\delta_{i}}(\tau>t)\right)>0
$$

Then the facts that $\Phi\left(\mathcal{M}_{\lambda}\right) \subset \mathcal{M}_{\lambda}$ and Φ is continuous on the compact set \mathcal{M}_{λ} imply that Φ has a fixed point in \mathcal{M}_{λ}.

Though the irreducibility assumption no longer holds for attractive particle systems on \mathbb{Z}^{d}, we show that $\left\{\Phi^{n}\left(v_{\rho}\right)\right\}$ is tight through the a priori bounds $\Phi^{n}\left(v_{\rho}\right) \prec v_{\rho}$, where \prec denotes stochastic domination. These bounds permit us to prove that, as soon as $\lambda(\rho)>0, \tau$ is an exponential time of parameter $\lambda(\rho)>0$ under any limit point of the iterates sequence. We establish that $\lambda(\rho)>0$ in any dimensions for zero-range processes, whereas $\lambda(\rho)>0$ is only proved to hold in dimensions larger or equal than 3 for exclusion processes.

Once $\lambda(\rho)>0$ holds, we show that any limit point of the Cesaro mean $\left(\Phi\left(v_{\rho}\right)+\cdots+\Phi^{n}\left(v_{\rho}\right)\right) / n$ is quasi-stationary. It is useful to have a sequence converging to a quasi-stationary measure. Indeed, through a priori bounds, one gets regularity of the limiting quasi-stationary measure. For instance, for zerorange processes, we can show that, in dimensions $d \geq 3$, quasi-stationary measures obtained as Cesaro limits have a density with respect to v_{ρ} which is in any $L^{p}\left(v_{\rho}\right)$ for $p \geq 1$. In this way, we establish the existence of a Dirichlet eigenvector, say $f \in D\left(\mathscr{L}^{*}\right)$ with

$$
\forall \eta \notin \mathcal{A}, \quad \mathcal{L}^{*} f(\eta)+\lambda(\rho) f(\eta)=0 \quad \text { and }\left.\quad f\right|_{\mathcal{A}}=0
$$

This, in turn, gives estimates for $P_{\nu_{\rho}}(\tau>t)$, improving on (1.4).
Finally, we note that a natural way to prove the existence of quasi-stationary measures for our particle systems on \mathbb{Z}^{d} would have been to work first with finite-dimensional approximations, where we can rely on the Perron-Frobenius theory. This strategy, naively implemented, fails as is shown in a simple example in Section 5.
2. Notation and results. We consider $\mathbb{N}^{\mathbb{Z}^{d}}$ with the product topology. The local events are the elements of the union of all σ-algebras $\sigma\{\eta(i), i \in \Lambda\}$ over a Λ finite subset of \mathbb{Z}^{d}. We start by recalling the definition of the "processus des misanthropes" [7]. The rates $\left\{p(i, j), i, j \in \mathbb{Z}^{d}\right\}$ satisfy:
(i) $p(i, j) \geq 0, \sum_{i \in \mathbb{Z}^{d}} p(0, i)=1$;
(ii) $p(i, j)=p(0, j-i)$ (translation invariance);
(iii) $p(i, j)=0$ if $|i-j|>R$ for some fixed R (finite range);
(iv) if $p_{s}(i, j)=p(i, j)+p(j, i)$, then, $\forall i \in \mathbb{Z}^{d}, \exists n, p_{s}^{(n)}(0, i)>0$ (irreducibility);
(v) $\sum_{i \in \mathbb{Z}^{d}} i p(0, i) \neq 0$ (drift).

Let $b: \mathbb{N} \times \mathbb{N} \rightarrow[0, \infty)$ be a function with:
(i) $b(0, \cdot) \equiv 0$;
(ii) $n \mapsto b(n, m)$ is increasing for each m;
(iii) $m \mapsto b(n, m)$ is decreasing for each n;
(iv) $b(n, m)-b(m, n)=b(n, 0)-b(m, 0) \forall n, m \geq 1$;
(v) $\Delta:=\sup _{n}(b(n+1,0)-b(n, 0))<\infty$.

Let $g: \mathbb{N} \rightarrow[0, \infty)$ satisfy (1.1) and let $g(1)=1$. For any $\gamma \in\left[0, \sup _{k} g(k)[\right.$, we define a probability θ_{γ} on \mathbb{N} by

$$
\begin{equation*}
\theta_{\gamma}(0)=1 / Z(\gamma), \quad \theta_{\gamma}(n)=\frac{1}{Z(\gamma)} \frac{\gamma^{n}}{g(1) \cdots g(n)} \quad \text { when } n \neq 0 \tag{2.3}
\end{equation*}
$$

where $Z(\gamma)$ is the normalizing factor. If we set $\Upsilon(\gamma)=\sum_{n=1}^{\infty} n \theta_{\gamma}(n)$, then $\Upsilon:\left[0, \sup _{k} g(k)\left[\rightarrow\left[0, \infty\left[\right.\right.\right.\right.$ is increasing. Let $\gamma:\left[0, \sup _{\gamma} \Upsilon(\gamma)\right) \rightarrow\left[0, \sup _{k} g(k)\right)$ be the inverse of Υ and let ν_{ρ} be the product probability with marginal law $\theta_{\gamma(\rho)}$. Thus, we have

$$
\begin{equation*}
\forall i \in \mathbb{Z}^{d}, \quad \int \eta(i) d v_{\rho}=\rho \quad \text { and } \quad \int g(\eta(i)) d v_{\rho}=\gamma(\rho) . \tag{2.4}
\end{equation*}
$$

Following [1] (and [17], Section 2), let

$$
\alpha(i)=\sum_{n=0}^{\infty} 2^{-n} p^{n}(i, 0)
$$

and, for $\eta, \zeta \in \mathbb{N}^{\mathbb{Z}^{d}}$,

$$
\|\eta-\zeta\|=\sum_{i \in \mathbb{Z}^{d}}|\eta(i)-\zeta(i)| \alpha(i)
$$

Our state space is $\Omega=\{\eta:\|\eta\|<\infty\}$, and we call \mathcal{C}_{b} the space of a bounded Lipshitz function from $(\Omega,\|\cdot\|)$ to $(\mathbb{R},|\cdot|)$. In [1], it is shown that a semigroup can be constructed on \mathcal{C}_{b} with generator

$$
\begin{equation*}
\mathcal{L}_{\mathrm{b}} \varphi(\eta):=\sum_{i, j \in \mathbb{Z}^{d}} p(i, j) b(\eta(i), \eta(j))\left(\varphi\left(\eta_{j}^{i}\right)-\varphi(\eta)\right) \tag{2.5}
\end{equation*}
$$

where $\eta_{j}^{i}(k)=\eta(k)$ if $k \notin\{i, j\}, \eta_{j}^{i}(i)=\eta(i)-1$ and $\eta_{j}^{i}(j)=\eta(j)+1$.
For a function b satisfying (2.2), we assume there is g as above, with $b(n$, $m-1) g(m)=b(m, n-1) g(n)$, which together with (2.2(iv)) and (2.1(i)), implies that $\left\{v_{\rho}, \rho \in\left[0, \sup _{\gamma} \Upsilon(\gamma)\right)\right\}$ are invariant with respect to \mathcal{L}_{b}.

In [17], Section $2, \mathcal{L}_{\mathrm{b}}$ is extended to a generator, say \mathcal{L}, on $L^{2}\left(v_{\rho}\right)$ for any $\rho>0$. It is also shown that \mathcal{C}_{b} is a core for \mathcal{L}.

Now, if we choose $b(n, m)=g(n)$, we obtain the zero-range process. We describe a way of realizing this process, in a case like ours, where the labeling of particles is innocuous. We start with an initial configuration $\eta \in \Omega$. We
label arbitrarily particles on each site i from 1 to $\eta(i)$. We associate to each particle a path $\left\{S_{n}, n \in \mathbb{N}\right\}$, paths being drawn independently from those of a random walk with rates $\{p(i, j)\}$. Then a particle labeled k at site i jumps with rate $g(k)-g(k-1)$. If it jumps on site j, it gets the last label. Also, the remaining particles at site i are relabeled from 1 to $\eta(i)-1$. Now, as $\Delta:=\sup _{k>1}(g(k)-g(k-1))<\infty$, we can dominate the Poisson clocks with independent Poisson clocks of intensity Δ, so that each particle is coupled with a random walk wandering faster on the same path.

If we restrict the process to $\{0,1\}^{\mathbb{Z}^{d}}$ and choose $b(n, m)=1$ if $n=1, m=0$ and $b(n, m)=0$ otherwise, we obtain the exclusion process. The measure v_{ρ} is then a product Bernoulli measure.

We consider also the adjoint (or time-reversed) of \mathcal{L} in $L^{2}\left(v_{\rho}\right)$ as acting on bounded Lipshitz functions φ and ψ by

$$
\begin{equation*}
\int \mathscr{L}^{*}(\varphi) \psi d v_{\rho}:=\int \varphi \mathscr{L}(\psi) d v_{\rho} \tag{2.6}
\end{equation*}
$$

With our hypothesis, \mathcal{L}^{*} is again the generator of a "processus des misanthropes" on Ω, with the same functions b and g, but with $p^{*}(i, j):=p(j, i)$ (see, e.g., [6]). We denote by $\left\{S_{t}^{*}\right\}$ the associated semigroup, and by P_{η}^{*} the associated process with initial configuration $\eta \in \Omega$.

For convenience, we fix an integer k and Λ a finite subset of \mathbb{Z}^{d}, and set $\mathcal{A}:=\left\{\eta: \sum_{i \in \Lambda} \eta(i)>k\right\}$. We consider a density $\rho>0$ such that $v_{\rho}\left(\mathcal{A}^{c}\right)>0$. We denote by $\overline{\mathcal{L}}:=\mathbb{1}_{\mathcal{A}^{c}} \mathcal{L}$ and $\left\{\bar{S}_{t}, t \geq 0\right\}$, respectively, the generator and associated semigroup for the process killed on \mathcal{A}. A core of $\overline{\mathcal{L}}$ consists of bounded Lipshitz functions vanishing on \mathcal{A}.

For $\eta, \xi \in \Omega$, we say that $\eta \leq \xi$ if $\eta(i) \leq \xi(i)$ for all $i \in \mathbb{Z}^{d}$. Also, a function is increasing (resp. decreasing) if $\eta \leq \xi$ implies that $f(\eta) \leq f(\xi)$ [resp. $f(\eta) \geq$ $f(\xi)$]; in particular, we say that $A \subset \Omega$ is increasing if $\mathbb{1}_{A}$ is increasing. Finally, for given probability measures v, μ on Ω, we say that $v \prec \mu$ if $\int f d \nu \leq \int f d \mu$ for every increasing function f. We recall that the "processus des misanthropes" is an attractive process; that is, there is a coupling such that $P_{\eta, \zeta}\left(\eta_{t} \leq \zeta_{t}, \forall t\right)=1$ whenever $\eta \leq \zeta$.

Since \mathcal{A} is an increasing local event, attractiveness implies that, for any $t \geq 0$, both $P_{\eta}(\tau>t)$ and $P_{\eta}^{*}(\tau>t)$ are decreasing in η. As our product measure satisfies FKG's inequality, we have

$$
\begin{align*}
P_{v_{\rho}}(\tau>t+s) & =\int \mathbb{1}_{\mathcal{A}^{c}} \bar{S}_{t+s}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d v_{\rho} \\
& =\int \bar{S}_{t}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) \bar{S}_{s}^{*}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d v_{\rho} \tag{2.7}\\
& \geq P_{v_{\rho}}(\tau>t) P_{v_{\rho}}(\tau>s)
\end{align*}
$$

Also, it is easy to see that $v_{\rho}\left(\mathscr{A}^{c}\right)>0$ implies that, for any $t \geq 0, P_{v_{\rho}}(\tau>t)>0$ [this is true for short time by continuity, and one then uses (2.7) to extend it to
any time]. Thus, the subadditivity of $t \mapsto-\log \left(P_{\nu_{\rho}}(\tau>t)\right)$ [as seen in (2.7)] and $P_{\nu_{\rho}}(\tau>t)>0$ imply the existence of the limit $\lambda(\rho)<\infty$ in (1.4).

A key, though elementary, observation of $[8,12]$ is as follows.

Lemma 2.1. Let μ be such that $E_{\mu}[\tau]<\infty$. Then, μ is quasi-stationary if and only if $\Phi(\mu)=\mu$.

We recall that, for $\varphi \in \mathcal{C}_{\mathrm{b}}$,

$$
\int \varphi d \Phi(\mu)=\frac{\int_{0}^{\infty} \int \bar{S}_{t}(\varphi) d \mu d t}{\int_{0}^{\infty} \int \bar{S}_{t}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d \mu d t}
$$

Thus, Lemma 2.1 follows readily: if μ is quasi-stationary, then it is obvious that $\Phi(\mu)=\mu$. Conversely, for any $\varphi \in \mathcal{C}_{\mathrm{b}}$,

$$
\int \bar{S}_{s}(\varphi) d \mu=\frac{1}{E_{\mu}[\tau]} \int_{0}^{\infty} \int \bar{S}_{t}\left(\bar{S}_{s}(\varphi)\right) d \mu d t=\frac{1}{E_{\mu}[\tau]} \int_{s}^{\infty} \int \bar{S}_{t}(\varphi) d \mu d t
$$

which implies that

$$
\int \bar{S}_{s}(\varphi) d \mu=\exp \left(-\frac{s}{E_{\mu}[\tau]}\right) \int \varphi d \mu .
$$

Now, a key a priori bound relies on the notion of stochastic domination.

Lemma 2.2. Assume $\lambda(\rho)>0$. If Φ^{n} denotes the nth iterate of Φ, then $\Phi^{n}\left(v_{\rho}\right) \prec v_{\rho}$. Also, $\left\{\Phi^{n}\left(v_{\rho}\right)\right\}$ is tight.

This allows us to prove a result analogous to Lemma 3.2 of [12].

Lemma 2.3. Assume $\lambda(\rho)>0$. Then, for any integer $k \geq 1$,

$$
\lim _{n \rightarrow \infty} \int \tau^{k} d \Phi^{n}\left(v_{\rho}\right)=\frac{k!}{\lambda(\rho)^{k}}
$$

Moreover, for any $s \geq 0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{\Phi^{n}\left(v_{\rho}\right)}(\tau>s)=\exp (-\lambda(\rho) s) \tag{2.8}
\end{equation*}
$$

If we set $\bar{v}_{n}:=(1 / n)\left(\Phi\left(v_{\rho}\right)+\cdots+\Phi^{n}\left(v_{\rho}\right)\right)$, then our existence result reads as follows.

THEOREM 2.4. Assume $\lambda(\rho)>0$. Then any limit point along a subsequence of $\left\{\bar{v}_{n}, n \in \mathbb{N}\right\}$, which we denote by μ_{ρ}, is a quasi-stationary measure corresponding to $\lambda(\rho)$.

We prove Lemmas 2.2 and 2.3 and Theorem 2.4 in Section 3. We now give conditions under which $\lambda(\rho)>0$. Note that in the symmetric case [4] established the following stronger result using spectral representation:

$$
\begin{align*}
& \lim _{u \rightarrow \infty} \frac{P_{\nu_{\rho}}(\tau>u+s)}{P_{\nu_{\rho}}(\tau>u)}=e^{-\lambda_{s}(\rho) s} \\
& \text { with } \lambda_{s}(\rho)=\inf \left\{\frac{-\int f \mathscr{L} f d v_{\rho}}{\int f^{2} d v_{\rho}}: f \in D(\mathcal{L}),\left.f\right|_{\mathscr{A}}=0\right\} \tag{2.9}
\end{align*}
$$

It was established in [4] that, for the symmetric exclusion process, $\lambda_{s}(\rho)>0$ for $d \geq 3$ and that $\lambda_{s}(\rho)=0$ for $d=1$ and $d=2$. Using the classical bound $\lambda(\rho) \geq \lambda_{s}(\rho)$ (see, e.g., [16], Lemma 4.1), we have the following result.

Lemma 2.5. For the exclusion process in $d \geq 3, \lambda(\rho)$ given by (1.4) is positive.

For zero-range processes, we prove in Section 4 the following results.

LEMMA 2.6. For zero-range processes in any dimensions, $\lambda(\rho)>0$.

Moreover, we have the following regularity result.
PROPOSITION 2.7. For zero-range processes in $d \geq 3$, any limit points along a subsequence of $\left\{\bar{v}_{n}\right\}$, say μ_{ρ}, is absolutely continuous with respect to v_{ρ} and $f:=d \mu_{\rho} / d v_{\rho} \in L^{p}\left(v_{\rho}\right)$ for any $p \geq 1$. Thus, f is in the domain of $\overline{\mathcal{L}}^{*}$ and

$$
\begin{equation*}
\overline{\mathcal{L}}^{*} f+\lambda(\rho) f=0 \quad \text { a.s. }-v_{\rho} \tag{2.10}
\end{equation*}
$$

As a consequence of the existence of an eigenvector of (2.10) in $L^{p}\left(v_{\rho}\right)$ for $p \geq 1$, we have estimates for the hitting time.

COROLLARY 2.8. For zero-range processes in $d \geq 3$, let f be a solution of (2.10) and let g be a solution of the adjoint eigenvector equation. Then $\int f g d v_{\rho}$ is finite and positive, and, for any time t,

$$
\begin{equation*}
\exp \left(-H\left(\tilde{v}_{\rho}, v_{\rho}\right)\right) \leq \frac{P_{v_{\rho}}(\tau>t)}{\exp (-\lambda(\rho) t)} \leq 1 \tag{2.11}
\end{equation*}
$$

with

$$
d \tilde{v}_{\rho}=\frac{f g d v_{\rho}}{\int f g d v_{\rho}} \quad \text { and } \quad H\left(\tilde{v}_{\rho}, v_{\rho}\right)=\int \log \left(\frac{d \tilde{\nu}_{\rho}}{d v_{\rho}}\right) d \tilde{v}_{\rho}<\infty
$$

In Section 5, we see, on the totally asymmetric simple exclusion process, why a naive finite-dimensional approximation of our problem yields "wrong" results.

Finally, let us mention some open problems. (i) A result similar to Proposition 2.7 should hold for the asymmetric exclusion process in $d \geq 3$. (ii) For asymmetric misanthrope processes, $\lambda(\rho)$ should be positive in any dimension, although the quasi-stationary measure μ_{ρ} should not be equivalent to ν_{ρ} but in $d \geq 3$. (iii) The Yaglom limit has not been established in the asymmetric case (or in $d=3,4$ for the symmetric simple exclusion [4]), and the existence of a limit for $\exp (\lambda(\rho) t) P_{\nu_{\rho}}(\tau>t)$ has also not been established. (iv) When the particle system is not attractive, the problem of hitting-time estimates and quasi-stationary measures is open (see some existence results in [4] in the self-adjoint case).
3. Existence. We begin with some useful expressions for the iterates $v_{n}:=$ $\Phi^{n}\left(v_{\rho}\right)$. If $\lambda(\rho)>0$, then, $\forall n \in \mathbb{N}, \int_{0}^{\infty} u^{n} P_{\nu_{\rho}}(\tau>u) d u$ is finite, and it follows easily by induction that

$$
\begin{align*}
\int \varphi d v_{n} & =\frac{\int_{0}^{\infty} \cdots \int_{0}^{\infty} \int \bar{S}_{t_{1}+\cdots+t_{n}}(\varphi) d v_{\rho} \prod_{i=1}^{n} d t_{i}}{\int_{0}^{\infty} \cdots \int_{0}^{\infty} \int \bar{S}_{t_{1}+\cdots+t_{n}}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) v_{\rho} \prod_{i=1}^{n} d t_{i}} \\
& =\frac{\int_{0}^{\infty} u^{n-1} \int \bar{S}_{u}(\varphi) d v_{\rho} d u}{\int_{0}^{\infty} u^{n-1} \int \bar{S}_{u}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d v_{\rho} d u} . \tag{3.1}
\end{align*}
$$

Taking $\varphi=\bar{S}_{t}\left(\mathbb{1}_{\mathcal{A}^{c}}\right)$ in (3.1) yields

$$
P_{v_{n}}(\tau>t)=\frac{\int_{0}^{\infty} u^{n-1} P_{v_{\rho}}(\tau>t+u) d u}{\int_{0}^{\infty} u^{n-1} P_{v_{\rho}}(\tau>u) d u}
$$

Integrating over t, we obtain

$$
\begin{equation*}
E_{v_{n}}[\tau]=\frac{1}{n} \frac{\int_{0}^{\infty} u^{n} P_{\nu_{\rho}}(\tau>u) d u}{\int_{0}^{\infty} u^{n-1} P_{\nu_{\rho}}(\tau>u) d u}=\frac{E_{v_{\rho}}\left[\tau^{n+1}\right]}{(n+1) E_{v_{\rho}}\left[\tau^{n}\right]} \tag{3.2}
\end{equation*}
$$

Proof of Lemma 2.2. Let φ be an increasing function in \mathcal{C}_{b}. Then

$$
\int \bar{S}_{u} \varphi d v_{\rho}=\int \mathbb{1}_{\mathcal{A}^{c}} E_{\eta}\left[\varphi\left(\eta_{u}\right) \mathbb{1}_{\{\tau>u\}}\right] d v_{\rho}=\int \varphi(\eta) \bar{S}_{u}^{*}\left(\mathbb{1}_{\mathcal{A}^{c}}\right)(\eta) d v_{\rho}
$$

Now, we note that $\eta \mapsto \bar{S}_{u}^{*} \mathbb{1}_{\mathcal{A}^{c}}(\eta)$ is decreasing. Thus, by FKG's inequality, we have

$$
\int \bar{S}_{u} \varphi d v_{\rho} \leq \int \varphi d v_{\rho} \int \bar{S}_{u}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d v_{\rho}
$$

This implies that $\int \varphi d \nu_{n} \leq \int \varphi d \nu_{\rho}$ by (3.1) as we are assuming that $\lambda(\rho)>0$. Consider now compact subsets of $\mathbb{N}^{\mathbb{Z}^{d}}$ of the type $K_{\left(k_{i}\right)}=\left\{\eta: \forall i \in \mathbb{Z}^{d}, \eta_{i} \leq k_{i}\right\}$. Since these compacts are decreasing, we have $\inf _{n} v_{n}\left(K_{\left(k_{i}\right)}\right) \geq v_{\rho}\left(K_{\left(k_{i}\right)}\right)$. Moreover, for all $\varepsilon>0$, a good choice of the sequence $\left(k_{i}\right)$ ensures that $\nu_{\rho}\left(K_{\left(k_{i}\right)}\right) \geq$ $1-\varepsilon$, and tightness follows.

Proof of Lemma 2.3. The argument follows closely [12] (proofs of Lemma 3.2, Proposition 3.3 and Theorem 4.1), the main difference being that we replace irreducibility by stochastic domination. If $v_{n}=\Phi^{n}\left(v_{\rho}\right)$, then we show in three steps that $\lim E_{v_{n}}[\tau]=1 / \lambda(\rho)$.

STEP 1. We first prove that

$$
\begin{equation*}
\liminf E_{\nu_{n}}[\tau]=1 / \lambda(\rho) \quad \text { and } \quad P_{\nu_{\rho}}(\tau>t) \leq \exp (-\lambda(\rho) t) \tag{3.3}
\end{equation*}
$$

As in Proposition 3.3 of [12], if

$$
\frac{1}{\lambda_{\infty}}=\liminf E_{v_{n}}[\tau] \quad \text { then } \lambda_{\infty} \geq \lambda(\rho)
$$

and there is a subsequence $\left\{n_{k}\right\}$ such that

$$
\forall t>0, \quad \lim _{k \rightarrow \infty} P_{\nu_{n_{k}}}(\tau>t)=\exp \left(-\lambda_{\infty} t\right) .
$$

The inequality $\lambda_{\infty} \leq \lambda(\rho)$ follows after observing that, as $\eta \mapsto P_{\eta}(\tau>t)$ is decreasing and as $v_{n} \prec v_{\rho}$, we have $P_{\nu_{n_{k}}}(\tau>t) \geq P_{\nu_{\rho}}(\tau>t)$. Thus,

$$
\begin{equation*}
\exp (-\lambda \infty t)=\lim _{k \rightarrow \infty} P_{\nu_{n_{k}}}(\tau>t) \geq P_{v_{\rho}}(\tau>t) \tag{3.4}
\end{equation*}
$$

This establishes that $\lambda_{\infty}=\lambda(\rho)$ and (3.3).
Step 2. We show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{E_{v_{\rho}}\left[\tau^{n}\right]}{n!}\right)^{1 / n}=\frac{1}{\lambda(\rho)} \tag{3.5}
\end{equation*}
$$

First, by Step 1,

$$
\begin{align*}
E_{\nu_{\rho}}\left[\tau^{n}\right] & =\int_{0}^{\infty} n u^{n-1} P_{v_{\rho}}(\tau>u) d u \tag{3.6}\\
& \leq \int_{0}^{\infty} n u^{n-1} \exp (-\lambda(\rho) u) d u=\frac{n!}{\lambda(\rho)^{n}} .
\end{align*}
$$

If we set $v_{n}=E_{v_{\rho}}\left[\tau^{n}\right] / n$!, we then have $\lim \sup v_{n}^{1 / n} \leq 1 / \lambda(\rho)$. Now, by (3.2), $E_{v_{n}}[\tau]=v_{n+1} / v_{n}$. Since $\liminf E_{v_{n}}[\tau]=1 / \lambda(\rho)$, it follows that
(3.7) $\forall \varepsilon \in] 0,1 / \lambda(\rho)\left[, \exists n_{0}, \forall n \geq n_{0}, \quad v_{n} \geq v_{n_{0}}\left(\frac{1}{\lambda(\rho)}-\varepsilon\right)^{n-n_{0}}\right.$.

Thus, for any $\varepsilon>0, \liminf v_{n}^{1 / n} \geq 1 / \lambda(\rho)-\varepsilon$, and this concludes Step 2.
STEP 3. We show that $\lim \sup E_{\nu_{n}}[\tau] \leq 1 / \lambda(\rho)$ by following the proof of Theorem 4.1 of [12]. We omit the argument here.

Finally, as in [12], it is now easy to conclude that for any integer $k \geq 1$ and $s>0$,

$$
E_{\nu_{n}}\left[\tau^{k}\right]=k!\prod_{j=1}^{k} E_{{v_{n+j+1}}[\tau] \underset{n \rightarrow \infty}{\longrightarrow} \frac{k!}{\lambda(\rho)^{k}}, \frac{1}{\longrightarrow}}
$$

and

$$
P_{\nu_{n}}(\tau>s) \underset{n \rightarrow \infty}{\longrightarrow} e^{-\lambda(\rho) s}
$$

PROOF OF THEOREM 2.4. For any integer n, set $\bar{v}_{n}=\left(\Phi\left(v_{\rho}\right)+\cdots+\right.$ $\left.\Phi^{n}\left(v_{\rho}\right)\right) / n$. Note that from Lemmas 2.2 and 2.3, we have

$$
\begin{equation*}
\bar{v}_{n} \prec v_{\rho}, \quad E_{\bar{v}_{n}}\left[\tau^{k}\right] \underset{n \rightarrow \infty}{\longrightarrow} \frac{k!}{\lambda(\rho)^{k}}, \quad P_{\bar{v}_{n}}(\tau>t) \underset{n \rightarrow \infty}{\longrightarrow} \exp (-\lambda(\rho) t) \tag{3.8}
\end{equation*}
$$

As $\left\{\bar{v}_{n}\right\}$ is tight, let μ_{ρ} be a limit point along the subsequence $\left\{\bar{v}_{n_{k}}\right\}$. As \mathscr{A}^{c} is local and \bar{S}_{t} preserves $\mathcal{C}_{\mathrm{b}},(3.8)$ implies that

$$
\begin{equation*}
P_{\mu_{\rho}}(\tau>t)=\lim _{k \rightarrow \infty} \bar{S}_{t}\left(\mathbb{1}_{A^{c}}\right) d v_{n_{k}}=\lim _{k \rightarrow \infty} P_{\bar{v}_{n_{k}}}(\tau>t)=e^{-\lambda(\rho) t} . \tag{3.9}
\end{equation*}
$$

We now check that $\Phi\left(\mu_{\rho}\right)=\mu_{\rho}$, or, in other words, that, for $\varphi \in \mathcal{C}_{\mathrm{b}}$,

$$
\begin{equation*}
\lambda(\rho) \int_{0}^{\infty} \int \bar{S}_{t} \varphi d \mu_{\rho} d t=\int \varphi d \mu_{\rho} \tag{3.10}
\end{equation*}
$$

Now, for all $t \geq 0$, the integrable bound

$$
\left|\int \bar{S}_{t} \varphi d \bar{v}_{n_{k}}\right| \leq|\varphi|_{\infty} P_{\bar{v}_{n_{k}}}(\tau>t) \leq|\varphi|_{\infty}\left(1 \wedge \frac{\sup _{n} E_{\bar{v}_{n}}\left[\tau^{2}\right]}{t^{2}}\right) \leq \frac{C|\varphi|_{\infty}}{1+t^{2}}
$$

by (3.8). Thus, $\lim _{k} \int \bar{S}_{t} \varphi d \bar{v}_{n_{k}}=\int \bar{S}_{t} \varphi d \mu_{\rho}$ implies, by dominated convergence, that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{\infty}\left(\int \bar{S}_{t} \varphi d \bar{v}_{n_{k}}\right) d t=\int_{0}^{\infty}\left(\int \bar{S}_{t} \varphi d \mu_{\rho}\right) d t \tag{3.11}
\end{equation*}
$$

However, by definition of the iterates,

$$
\int \varphi d v_{k+1}=\frac{\iint_{0}^{\infty} \bar{S}_{t}(\varphi) d t d v_{k}}{E_{v_{k}}[\tau]}
$$

Thus,

$$
\begin{equation*}
\iint_{0}^{\infty}\left(\bar{S}_{t} \varphi\right) d t d \bar{v}_{n_{k}}=\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} E_{v_{i}}[\tau] \int \varphi d \nu_{i+1} \rightarrow \frac{1}{\lambda(\rho)} \int \varphi d \mu_{\rho} \tag{3.12}
\end{equation*}
$$

The result follows by (3.11) and (3.12).
4. Positivity of $\lambda(\rho)$ and regularity. Let $\mathfrak{R}_{i}: \Omega \rightarrow \Omega$ with $\Re_{i} \eta(k)=$ $\eta(k)+\delta_{i, k}$, where $\delta_{i, k}=1$ if $i=k$ and $\delta_{i, k}=0$ otherwise. For any $\varphi \in \mathcal{C}_{\mathrm{b}}$, we have

$$
\begin{equation*}
\int g\left(\eta_{i}\right) \varphi d v_{\rho}=\gamma(\rho) \int \Re_{i}(\varphi) d v_{\rho} \tag{4.1}
\end{equation*}
$$

Note also that, as $k \Delta \geq g(k)$, we have

$$
\begin{equation*}
\int \eta_{i} \varphi d v_{\rho} \geq \frac{\gamma(\rho)}{\Delta} \int \mathfrak{R}_{i}(\varphi) d v_{\rho} \tag{4.2}
\end{equation*}
$$

Proof of Lemma 2.6. We prove that $P_{\nu_{\rho}}(\tau>t) \leq \exp (-\lambda t)$ for $\lambda>0$ by showing that

$$
\begin{equation*}
-\frac{d P_{v_{\rho}}(\tau>t)}{d t}=-\int \bar{S}_{t}\left(\overline{\mathcal{L}}_{\mathbb{A}^{c}}\right) d v_{\rho} \geq \lambda \int \bar{S}_{t}\left(\mathbb{1}_{\mathcal{A}^{c}}\right) d v_{\rho} \tag{4.3}
\end{equation*}
$$

Now,

We set $\partial \mathscr{A}:=\left\{\eta: \sum_{\Lambda} \eta(i)=k\right\}$ and note that since $g(0)=0$, for any $i \notin \Lambda$ and any $j \in \Lambda, g\left(\eta_{i}\right) \mathbb{1}_{\{\eta \in \partial \mathcal{A}\}}=g\left(\eta_{i}\right) \mathbb{1}_{\left\{\eta \notin \mathcal{A}, \eta_{j}^{i} \in \mathcal{A}\right\}}$. Hence,

$$
\begin{aligned}
-\int \bar{S}_{t}\left(\overline{\mathscr{L}}_{\mathbb{1}_{\mathscr{A}}}\right) d v_{\rho} & =-\int{\overline{\mathscr{L}} \mathbb{1}_{\mathscr{A}}} P_{\eta}^{*}(\tau>t) d v_{\rho} \\
& =\sum_{i \notin \Lambda, j \in \Lambda} p(i, j) \int_{\partial \mathscr{A}} g\left(\eta_{i}\right) P_{\eta}^{*}(\tau>t) d v_{\rho} \\
& =\gamma(\rho) \sum_{i \notin \Lambda, j \in \Lambda} p(i, j) \int_{\partial \mathscr{A}} P_{\Re_{i} \eta}^{*}(\tau>t) d v_{\rho}
\end{aligned}
$$

where we have used (4.1) and the fact that $\partial \mathcal{A}$ is independent of η_{i} for $i \notin \Lambda$.
Since $\left\{(i, j) \in \Lambda^{c} \times \Lambda\right.$, s.t. $\left.p(i, j)>0\right\}$ is finite, we now have to prove that $\forall i \notin \Lambda, \exists \lambda_{i}>0$ such that

$$
\int_{\partial \mathscr{A}} P_{\Re_{i} \eta}^{*}(\tau>t) d v_{\rho} \geq \lambda_{i} \int P_{\eta}^{*}(\tau>t) d v_{\rho}
$$

This will be done in three steps.
Step 1. We show that, for $i \notin \Lambda$, there is $\varepsilon_{i}>0$ such that

$$
\begin{equation*}
P_{\Re_{i} \eta}^{*}(\tau>t) \geq \varepsilon_{i} P_{\eta}^{*}(\tau>t) \tag{4.5}
\end{equation*}
$$

We need to couple two trajectories, say $\left\{\eta_{t}, \zeta_{t}\right\}$ differing by a particle at i at time 0 , that is, $\zeta_{0}=\Re_{i} \eta_{0}$. We describe a basic coupling. We tag the additional particle at i and call its trajectory $\{X(i, t), t>0\}$. It follows the path $\left\{S_{n}, n \in \mathbb{N}\right\}$ of a
random walk with rates $p(\cdot, \cdot)$ and jumps at the time marks of an η-dependent Poisson clock: at time t, its intensity is $g\left(\eta_{t}(X(i, t))+1\right)-g\left(\eta_{t}(X(i, t))\right)$. With this labeling, the motion of the additional particle does not perturb the η-particles. Thus, we call the additional particle a second-class particle. As $\Delta:=\sup (g(k+$ $1)-g(k))<\infty$, we can couple $\{X(i, t), t>0\}$ with $\{\tilde{X}(i, t), t>0\}$, which follows the same path $\left\{S_{n}, n \in \mathbb{N}\right\}$, but with a Poisson clock of intensity Δ which dominates the clock of $\{X(i, t), t>0\}$. Thus,

$$
\begin{equation*}
S\left(\Lambda^{c}\right)=\inf \{t: X(i, t) \in \Lambda\} \geq \tilde{S}\left(\Lambda^{c}\right)=\inf \{t: \tilde{X}(i, t) \in \Lambda\} \tag{4.6}
\end{equation*}
$$

and under our coupling, we have that $\left\{S\left(\Lambda^{c}\right)<\infty\right\} \subset\left\{\tilde{S}\left(\Lambda^{c}\right)<\infty\right\} \subset\left\{S_{n} \in\right.$ $\Lambda, n \in \mathbb{N}\}$. Therefore,

$$
\begin{align*}
0 \leq P_{\eta}^{*}(\tau>t)-P_{\Re_{i} \eta}^{*}(\tau>t) & =P_{\eta}^{*}(\tau(\eta .)>t, \tau(\zeta .) \leq t) \\
& \leq P_{\eta}^{*}\left(\tau(\eta .)>t, S\left(\Lambda^{c}\right)<\infty\right) \tag{4.7}\\
& \leq P_{\eta}^{*}\left(\tau(\eta .)>t, \tilde{S}\left(\Lambda^{c}\right)<\infty\right) \\
& \leq \mathbb{P}_{i}\left(S_{n} \in \Lambda, n \in \mathbb{N}\right) P_{\eta}^{*}(\tau>t)
\end{align*}
$$

Now, as the walk is transient, $\varepsilon_{i}:=\mathbb{P}_{i}\left(S_{n} \notin \Lambda, \forall n \in \mathbb{N}\right)>0$, so that (4.5) holds.
STEP 2. It now remains to show that $\int_{\partial \mathcal{A}} P_{\eta}^{*}(\tau>t) d v_{\rho} \geq \lambda \int P_{\eta}^{*}(\tau>t) d v_{\rho}$ for some $\lambda>0$. This would be easily done by the FKG's inequality if $\partial \mathcal{A}$ were a decreasing event, which is not the case. However, $\mathcal{A}_{0}:=\left\{\eta: \sum_{i \in \Lambda} \eta(i)=0\right\}$ is a decreasing event, and the idea is to compare $\int_{\partial \mathscr{A}} P_{\eta}^{*}(\tau>t) d v_{\rho}$ with $\int_{\mathcal{A}_{0}} P_{\eta}^{*}(\tau>$ $t) d v_{\rho}$. To this end, we are going to compare $P_{\eta}^{*}(\tau>t)$ for $\eta \in \partial \mathcal{A}$, with $P_{\Re_{j}^{-1} \eta}^{*}(\tau>t)$ for $j \in \Lambda$, so that we consider now the case where the second-class particle is initially in $j \in \Lambda$. We will ensure that, uniformly in $\eta \in \partial \mathcal{A}$, there is a positive probability that the second-class particle escapes Λ within a small time $\delta>0$. If the second-class particle finds itself on a site with k particles, it jumps with rate $\Delta_{k}:=g(k+1)-g(k)$. We have $\Delta_{1}>0$, but could very well have $\Delta_{k}=0$ for $k>1$. Thus, the second-class particle can move for sure only when on an empty site. As in Step 1, we have a coupling ($\eta ., \zeta$.), where $\zeta_{0}=\mathfrak{R}_{j} \eta_{0}$. For convenience, we use the notation $P_{\eta, j}$ instead of P_{ζ}.

Thus, we impose on the η-particles starting on Λ the following constraints:
(i) They do not escape from Λ during $[0, \delta]$.
(ii) They empty one "path" joining j with $\partial \Lambda$ during [$0, \delta / 3$], while the second-class particle is frozen.
(iii) They remain still during $[\delta / 3,2 \delta / 3]$, while the second-class particle escapes Λ.
(iv) They go back to their initial configuration during] $2 \delta / 3, \delta]$.

More precisely, we let $\Gamma:=\left\{j_{1}, \ldots, j_{n}\right\}$ be the shortest path linking j to Λ^{c}, that is,

$$
j_{1}=j, j_{2}, \ldots, j_{n-1} \in \Lambda, j_{n} \notin \Lambda, \quad p\left(j_{k}, j_{k+1}\right)>0 \quad \text { for } k<n
$$

We note $i_{j}:=j_{n}$, the end point of Γ, and for a subset A of \mathbb{Z}^{d}, we call $\sigma(A)$ the first time that an η-particle initially in A exits A. Also, let

$$
D_{\Lambda}:=\left\{\eta: \eta\left(j_{k}\right)=0 \text { for } k=1, \ldots, n-1\right\} \cap \partial \mathcal{A} .
$$

Now, we say that $(\eta ., X(j, \cdot)) \in \mathcal{F}_{j, i_{j}}[0, \delta]$ if:
(i) $\sigma(\Lambda)(\eta)>.\delta$;
(ii) on $[0, \delta / 3], X(j, \cdot)=j$ and $\eta_{\delta / 3} \in D_{\Lambda}$;
(iii) on $[\delta / 3,2 \delta / 3],\left.\eta \cdot\right|_{\Lambda}=\left.\eta_{\delta / 3}\right|_{\Lambda}$ and $X(j, \cdot)$ reaches i_{j} before $2 \delta / 3$ along Γ and stays still;
(iv) on $[2 \delta / 3, \delta], X(j, \cdot)=i_{j}$ and $\left.\eta \cdot\right|_{\Lambda}=\left.\eta_{\delta-t}\right|_{\Lambda}$.

We call $\tilde{\mathcal{F}}_{i_{j}, j}[0, \delta]$ the time-reversed event

$$
\left\{(\eta ., X(i, \cdot)) \in \tilde{\mathcal{F}}_{i_{j}, j}[0, \delta]\right\}:=\left\{\left(\eta_{\delta-.}, X(j, \delta-\cdot)\right) \in \mathcal{F}_{j, i_{j}}[0, \delta]\right\} .
$$

It is plain that

$$
\begin{equation*}
\lambda_{1}:=\inf _{\eta: \sum_{i \in \Lambda} \eta(i) \leq k} \inf _{j \in \Lambda} P_{\eta, j}^{*}\left(\mathcal{F}_{j, i_{j}}[0, \delta]\right)>0 . \tag{4.8}
\end{equation*}
$$

We prove in this step that there is $\lambda_{2}>0$ such that, for η such that $\sum_{i \in \Lambda} \eta(i) \leq$ $k-1$,

$$
\begin{align*}
P_{\Re_{j} \eta}^{*}(\tau>t) & =P_{\eta, j}^{*}(\tau(\zeta .)>t) \tag{4.9}\\
& \geq \lambda_{2} P_{\eta, j}^{*}\left(\tau(\eta .)>t, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right) .
\end{align*}
$$

From the time δ on, we couple through our basic coupling, the second-class particle with a random walk whose Poisson clock has intensity Δ, so that

$$
\begin{equation*}
\left\{\tilde{S}\left(\Lambda^{c}\right) \circ \theta_{\delta}=\infty\right\} \subset\left\{S\left(\Lambda^{c}\right) \circ \theta_{\delta}=\infty\right\} \tag{4.10}
\end{equation*}
$$

Note that if particles from outside Λ do not enter Λ during time $[0, \delta]$, if the second-class particle exits Λ before δ, not to ever enter again, and if $\{\tau(\eta)>t$.$\} ,$ then $\{\tau(\zeta)>t$.$\} . In other words,$
(4.11) $\{\tau(\eta)>t.\} \cap\left\{\sigma\left(\Lambda^{c}\right)>\delta\right\} \cap \mathcal{F}_{j, i_{j}}[0, \delta] \cap\left\{S\left(\Lambda^{c}\right) \circ \theta_{\delta}=\infty\right\} \subset\{\tau(\zeta)>t$.$\} .$

Thus, by conditioning on $\sigma\left\{\zeta_{s}, s \leq \delta\right\}$,

$$
\begin{aligned}
P_{\eta, j}^{*}(\tau(\zeta .)>t) \geq & P_{\eta, j}^{*}\left(\tau(\eta .)>t, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta], S\left(\Lambda^{c}\right) \circ \theta_{\delta}=\infty\right) \\
\geq & P_{\eta, j}^{*}\left(\tau \circ \theta_{\delta}(\eta .)>t, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta], \tilde{S}\left(\Lambda^{c}\right) \circ \theta_{\delta}=\infty\right) \\
\geq & E_{\eta, j}^{*}\left[\mathbb{1}_{\left\{\sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right\}} P_{\eta_{\delta}, i_{j}}^{*}\left(\tau(\eta .)>t-\delta, \tilde{S}\left(\Lambda^{c}\right)=\infty\right)\right] \\
\geq & \mathbb{P}_{i_{j}}\left(S_{n} \notin \Lambda, \forall n \in \mathbb{N}\right) \\
& \times P_{\eta, j}^{*}\left(\tau(\eta .) \circ \theta_{\delta}>t-\delta, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right) .
\end{aligned}
$$

Under $\left\{\sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right\}$, no η-particle enters or leaves Λ during time δ so that

$$
\begin{aligned}
P_{\eta, j}^{*} & \left(\tau(\eta .) \circ \theta_{\delta}>t-\delta, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right) \\
& =P_{\eta, j}^{*}\left(\tau(\eta .)>t, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right),
\end{aligned}
$$

and (4.9) follows once we recall that $\left\{S_{n}\right\}$ is transient and that $\left\{i_{j} ; j \in \Lambda\right\}$ is finite.
STEP 3. We prove the result inductively. We fix one configuration in $\partial \mathcal{A}$: let $\left\{k_{j}, j \in \Lambda\right\}$ be integers such that

$$
\begin{equation*}
\sum_{j \in \Lambda} k_{j}=k \quad \text { and } \quad \mathcal{B}:=\left\{\eta: \eta_{j}=k_{j}, j \in \Lambda\right\} . \tag{4.12}
\end{equation*}
$$

Let j be such that $k_{j}>0$. Then, using (4.2),

$$
\begin{aligned}
\int_{\partial \mathcal{A}} P_{\eta}^{*}(\tau>t) d v_{\rho} & \geq \int_{\mathcal{B}} P_{\eta}^{*}(\tau>t) d v_{\rho} \\
& =\int_{\mathcal{B}} \frac{\eta_{j}}{k_{j}} P_{\eta}^{*}(\tau>t) d v_{\rho}(\eta) \\
& \geq \frac{\gamma(\rho)}{\Delta k_{j}} \int_{\mathfrak{R}_{j}^{-1} \mathcal{B}} P_{\mathfrak{R}_{j} \eta}^{*}(\tau>t) d v_{\rho}(\eta) \\
& \geq \frac{\lambda_{2} \gamma(\rho)}{\Delta k_{j}} \int_{\mathfrak{R}_{j}^{-1} \mathcal{B}} P_{\eta, j}^{*}\left(\tau(\eta .)>t, \sigma\left(\Lambda^{c}\right)>\delta, \mathcal{F}_{j, i_{j}}[0, \delta]\right) d v_{\rho}
\end{aligned}
$$

Using the stationarity of v_{ρ} and reversing time on the interval $[0, \delta]$, the last integral becomes

$$
\int P_{\eta, i_{j}}\left(\tilde{\mathcal{F}}_{i_{j}, j}[0, \delta], \eta_{\delta} \in \mathfrak{R}_{j}^{-1} \mathscr{B}, \sigma\left(\Lambda^{c}\right)>\delta\right) P_{\eta}^{*}(\tau>t-\delta) d v_{\rho}(\eta) .
$$

Note that in $\left\{\tilde{\mathcal{F}}_{i_{j}, j}[0, \delta], \eta_{\delta} \in \mathfrak{R}_{j}^{-1} \mathscr{B}, \sigma\left(\Lambda^{c}\right)>\delta\right\}$ the particles from inside and outside Λ do not interact and that $\tilde{\mathcal{F}}_{i, j}[0, \delta]$ imposes the same initial and final configuration for the η-particles in Λ, so that

$$
\begin{aligned}
P_{\eta, i_{j}} & \left(\tilde{\mathcal{F}}_{i_{j}, j}[0, \delta], \eta_{\delta} \in \mathfrak{R}_{j}^{-1} \mathscr{B}, \sigma\left(\Lambda^{c}\right)>\delta\right) \\
& =\mathbb{1}_{\mathcal{B}}\left(\Re_{j}(\eta)\right) P_{\eta, j}^{*}\left(\tilde{\mathcal{F}}_{j, i_{j}}[0, \delta]\right) P_{\eta}\left(\sigma\left(\Lambda^{c}\right)>\delta\right) .
\end{aligned}
$$

Thus, from (4.8), there is $\tilde{\varepsilon}>0$ such that

$$
\begin{equation*}
\int_{\mathcal{B}} P_{\eta}^{*}(\tau>t) d v_{\rho} \geq \tilde{\varepsilon} \int_{\mathfrak{R}_{j}^{-1} \mathcal{B}} P_{\eta}\left(\sigma\left(\Lambda^{c}\right)>\delta\right) P_{\eta}^{*}(\tau>t-\delta) d v_{\rho}(\eta) \tag{4.13}
\end{equation*}
$$

We iterate the same procedure k times and end up with $\varepsilon>0$ such that

$$
\begin{align*}
& \int_{\mathcal{B}} P_{\eta}^{*}(\tau>t) d v_{\rho} \tag{4.14}\\
& \quad \geq \varepsilon \int_{\prod_{j \in \Lambda} \Re_{j}^{-k}{ }_{\mathcal{B}}} P_{\eta}\left(\sigma\left(\Lambda^{c}\right)>k \delta\right) P_{\eta}^{*}(\tau>t-k \delta) d v_{\rho}(\eta) .
\end{align*}
$$

Finally, we note that

$$
\begin{aligned}
& \eta \mapsto \mathbb{1}_{\Pi_{j \in \Lambda} \Re_{j}^{-k_{j}}}=\mathbb{1}_{\{\eta: \eta(j)=0, j \in \Lambda\}}, \\
& \eta \mapsto P_{\eta}\left(\sigma\left(\Lambda^{c}\right)>k \delta\right), \quad \eta \mapsto P_{\eta}^{*}(\tau>t-k \delta)
\end{aligned}
$$

are decreasing functions. Thus, by the FKG's inequality,

$$
\begin{align*}
& \int_{\mathcal{B}} P_{\eta}^{*}(\tau>t) d v_{\rho} \tag{4.15}\\
& \quad \geq \varepsilon v_{\rho}(\{\eta: \eta(j)=0, j \in \Lambda\}) P_{\nu_{\rho}}\left(\sigma\left(\Lambda^{c}\right)>k \delta\right) P_{\nu_{\rho}}(\tau>t)
\end{align*}
$$

As $\mathscr{B} \subset \partial \mathcal{A}$, this step is concluded.
We establish in the next lemma that $P_{\nu_{\rho}}\left(\sigma\left(\Lambda^{c}\right)>k \delta\right)>0$, which concludes the proof.

Lemma 4.1. Let $\sigma\left(\Lambda^{c}\right)$ be the first time one particle starting outside Λ enters Λ. Then, for any $\kappa>0, P_{\nu_{\rho}}\left(\sigma\left(\Lambda^{c}\right)>\kappa\right)>0$.

Proof. We use the coupling described in Section 2. Thus, if $\tilde{\sigma}\left(\Lambda^{c}\right)$ is the stopping time corresponding to the coupled independent random walks, we have $\tilde{\sigma}\left(\Lambda^{c}\right) \leq \sigma\left(\Lambda^{c}\right)$. Thus,

$$
\begin{align*}
& P_{\nu_{\rho}}\left(\sigma\left(\Lambda^{c}\right)>\kappa\right) \geq P_{\nu_{\rho}}\left(\tilde{\sigma}\left(\Lambda^{c}\right)>\kappa\right) \\
& \quad=\int \prod_{i \notin \Lambda} \mathbb{P}(X(i, t) \notin \Lambda, \forall t \leq \kappa)^{\eta(i)} d v_{\rho}=\prod_{i \notin \Lambda} \frac{Z\left(\gamma\left(1-\delta_{i}\right)\right)}{Z(\gamma)}, \tag{4.16}
\end{align*}
$$

with $\delta_{i}=\mathbb{P}(X(i, t) \in \Lambda, t \leq \kappa)$. Now, by Jensen's inequality,

$$
\frac{Z(\gamma(1-\delta))}{Z(\gamma)} \geq(1-\delta)^{\rho}
$$

Thus,

$$
\begin{equation*}
P_{\nu_{\rho}}\left(\sigma\left(\Lambda^{c}\right)>\kappa\right) \geq\left(\prod_{i \notin \Lambda}\left(1-\delta_{i}\right)\right)^{\rho}>0 \quad \Longleftrightarrow \quad \sum_{i \in \mathbb{Z}^{d}} \delta_{i}<\infty . \tag{4.17}
\end{equation*}
$$

Now, a particle starting on i reaches Λ within time κ if it makes at least $d(i, \Lambda) / R$ jumps within time κ (recall that R is the range of p). Thus, if $d(i)$ is the integer part of $d(i, \Lambda) / R$,

$$
\begin{equation*}
\mathbb{P}(X(i, t) \in \Lambda, t \leq \kappa) \leq \sum_{n \geq d(i)} e^{-\Delta \kappa} \frac{(\Delta \kappa)^{n}}{n!} \leq \frac{(\Delta \kappa)^{d(i)}}{d(i)!} \tag{4.18}
\end{equation*}
$$

Hence, the series in (4.17) is converging.
Proof of Proposition 2.7. The proof follows the same arguments as in the proof of Theorem 3(c) of [4] once inequality (4.5) is established with $\varepsilon_{i}=\mathbb{P}_{i}\left(S_{n} \notin \Lambda, \forall n \in \mathbb{N}\right)$. It goes as follows. Let v_{ε} be the product measure

$$
d \nu_{\varepsilon}(\eta)=\prod_{i \in \Lambda} d \theta_{\gamma(\rho)}\left(\eta_{i}\right) \prod_{i \notin \Lambda} d \theta_{\varepsilon_{i} \gamma(\rho)}\left(\eta_{i}\right)
$$

Let $\Lambda_{n}:=[-n ; n]^{d}$ and let g_{n} be the σ-algebra $\sigma\left(\eta_{i} ; i \in \Lambda_{n}\right)$. Then

$$
\begin{array}{ll}
v_{\rho} \text { p.s. } & \left.\frac{d v_{\varepsilon}}{d v_{\rho}}\right|_{g_{n}}=\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} \frac{\varepsilon_{i}^{\eta_{i}} Z(\gamma)}{Z\left(\varepsilon_{i} \gamma\right)}, \tag{4.19}\\
v_{\varepsilon} \text { p.s. } & \left.\frac{d v_{\rho}}{d v_{\varepsilon}}\right|_{g_{n}}=\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} \frac{\varepsilon_{i}^{-\eta_{i}} Z\left(\varepsilon_{i} \gamma\right)}{Z(\gamma)} .
\end{array}
$$

Let $h(\alpha)$ denote the Laplace transform of θ_{γ}, that is, $h(\alpha)=Z\left(e^{\alpha} \gamma\right) / Z(\gamma)$. Note that h is defined for any α such that $e^{\alpha} \gamma<\sup g(k)$, and h is analytic in this domain. In particular, h is analytic in a neighborhood of 0 . For all $i \notin \Lambda$, let α_{i} be defined by $e^{-\alpha_{i}}=\varepsilon_{i}$. A simple computation then yields, for all $p \geq 1$,

$$
\begin{align*}
\int\left(\left.\frac{d v_{\varepsilon}}{d v_{\rho}}\right|_{g_{n}}\right)^{p} d v_{\rho} & =\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} \frac{Z\left(\varepsilon_{i}^{p} \gamma\right)}{Z(\gamma)} \frac{Z(\gamma)^{p}}{Z\left(\varepsilon_{i} \gamma\right)^{p}}=\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} \frac{h\left(-p \alpha_{i}\right)}{h\left(-\alpha_{i}\right)^{p}} \\
\int\left(\left.\frac{d v_{\rho}}{d v_{\varepsilon}}\right|_{g_{n}}\right)^{p} d v_{\varepsilon} & =\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} \frac{Z\left(\varepsilon_{i}^{-(p-1)} \gamma\right)}{Z(\gamma)} \frac{Z\left(\varepsilon_{i} \gamma\right)^{p-1}}{Z(\gamma)^{p-1}} \tag{4.20}\\
& =\prod_{i \in \Lambda^{c} \cap \Lambda_{n}} h\left(\alpha_{i}(p-1)\right) h\left(-\alpha_{i}\right)^{p-1} .
\end{align*}
$$

The functions $m_{p}: \alpha \mapsto h(-p \alpha) / h(-\alpha)^{p}$ and $n_{p}: \alpha \mapsto h(\alpha(p-1)) h(-\alpha)^{p-1}$ are analytic in a neighborhood of 0 and satisfy $m_{p}(0)=n_{p}(0)=1, m_{p}^{\prime}(0)=$ $n_{p}^{\prime}(0)=0, m_{p}^{\prime \prime}(0)=n_{p}^{\prime \prime}(0)>0$ for $p>1$. Therefore, the products in (4.20) have finite limits when $n \rightarrow \infty$, as soon as $\sum_{i \in \Lambda^{c}}\left(1-\varepsilon_{i}\right)^{2}<+\infty$. In the asymmetric case, the Fourier transform of the Green function has a singularity at 0 , which is square integrable as soon as $d \geq 3$, so that the above series is convergent. Thus, for $d \geq 3, d \nu_{\varepsilon} / d \nu_{\rho} \mid g_{n}$ is a $\left(P_{\nu_{\rho}},\left\{g_{n}\right\}\right)$ martingale, which is uniformly bounded
in $L^{p}\left(v_{\rho}\right)$ for all $p \geq 1$. It follows from the martingale convergence theorem that v_{ε} is absolutely continuous with respect to v_{ρ}, with $d v_{\varepsilon} / d v_{\rho} \in L^{p}\left(v_{\rho}\right)$. In the same way, v_{ρ} is absolutely continuous with respect to v_{ε}, and $d v_{\rho} / d v_{\varepsilon} \in L^{p}\left(v_{\varepsilon}\right)$.

Following [4], we prove that this yields uniform $L^{p}\left(d v_{\rho}\right)$-estimates of $f_{t}:=$ $d T_{t}\left(v_{\rho}\right) / d v_{\rho}$ for $p \geq 1$. First of all, let us express the density of $v_{t}:=T_{t}\left(v_{\rho}\right)$ with respect to v_{ρ}. For φ continuous and bounded,

$$
\int \varphi d T_{t}\left(v_{\rho}\right)=\frac{\int \bar{S}_{t}(\varphi) \mathbb{1}_{\mathcal{A}^{c}} d v_{\rho}}{\int \bar{S}_{t}\left(\mathbb{1}_{\left.\mathcal{A}^{c}\right)} \mathbb{1}_{\mathcal{A}^{c}} d v_{\rho}\right.}=\int \varphi \frac{\bar{S}_{t}^{*}\left(\mathbb{1}_{\mathcal{A}^{c}}\right)}{P_{v_{\rho}}^{*}(\tau>t)} d v_{\rho}
$$

so that v_{ρ}-a.s. $f_{t}=P_{\eta}^{*}(\tau>t) / P_{\nu_{\rho}}^{*}(\tau>t)$.
Let $\mathcal{A}_{0}=\left\{\eta ; \forall i \in \Lambda, \eta_{i}=0\right\}$. We prove now that, for any increasing function φ,

$$
\begin{equation*}
\int_{\mathcal{A}_{0}} \varphi d v_{t} \geq \frac{v_{t}\left(\mathcal{A}_{0}\right)}{v_{\rho}\left(\mathcal{A}_{0}\right)} \int_{\mathcal{A}_{0}} \varphi d v_{\varepsilon} \tag{4.21}
\end{equation*}
$$

To this end, let us write $\eta=\left(\eta_{\Lambda}, \eta_{\Lambda^{c}}\right)$ for the decomposition of $\mathbb{N}^{\mathbb{Z}^{d}}$ in $\mathbb{N}^{\Lambda} \times \mathbb{N}^{\Lambda^{c}}$. Moreover, if μ is a probability measure on $\mathbb{N}^{\mathbb{Z}^{d}}$, let $\pi_{\Lambda^{c}}(\mu)$ denote its projection on $\sigma\left(\eta_{i}, i \in \Lambda^{c}\right)$. We have

$$
\int_{\mathcal{A}_{0}} \varphi d v_{t}=v_{\rho}\left(\mathcal{A}_{0}\right) \int \varphi\left(0, \eta_{\Lambda^{c}}\right) f_{t}\left(0, \eta_{\Lambda^{c}}\right) \frac{d v_{\rho}}{d v_{\varepsilon}}\left(\eta_{\Lambda^{c}}\right) d \pi_{\Lambda^{c}}\left(v_{\varepsilon}\right)
$$

$\operatorname{By}(4.5), \forall i \notin \Lambda, \Re_{i} f_{t}\left(0, \eta_{\Lambda^{c}}\right) \geq \varepsilon_{i} f_{t}\left(0, \eta_{\Lambda^{c}}\right)$ and

$$
\mathfrak{R}_{i} \frac{d \nu_{\rho}}{d \nu_{\varepsilon}}=\frac{1}{\varepsilon_{i}} \frac{d \nu_{\rho}}{d \nu_{\varepsilon}}
$$

Therefore, $f_{t}\left(0, \eta_{\Lambda^{c}}\right)\left(d v_{\rho} / d v_{\varepsilon}\right)\left(\eta_{\Lambda^{c}}\right)$ is an increasing function of $\eta_{\Lambda^{c}}$. Because $\pi_{\Lambda^{c}}\left(v_{\varepsilon}\right)$ is a product measure, it follows from FKG's inequality that

$$
\int_{\mathcal{A}_{0}} \varphi d v_{t} \geq v_{\rho}\left(\mathcal{A}_{0}\right) \int \varphi\left(0, \eta_{\Lambda^{c}}\right) d \pi_{\Lambda^{c}}\left(v_{\varepsilon}\right) \int f_{t}\left(0, \eta_{\Lambda^{c}}\right) \frac{d v_{\rho}}{d v_{\varepsilon}}\left(\eta_{\Lambda^{c}}\right) d \pi_{\Lambda^{c}}\left(v_{\varepsilon}\right)
$$

which is just (4.21).
We now apply (4.21) to the decreasing function $f_{t}^{p-1}\left(d \nu_{\varepsilon} / d \nu_{\rho}\right)^{r}, p \geq 1, r \geq 0$. We obtain

$$
\begin{aligned}
\int_{\mathcal{A}_{0}} f_{t}^{p}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{r} d v_{\rho} & =\int_{\mathcal{A}_{0}} f_{t}^{p-1}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{r} d v_{t} \\
& \leq \frac{v_{t}\left(\mathcal{A}_{0}\right)}{v_{\rho}\left(\mathscr{A}_{0}\right)} \int_{\mathcal{A}_{0}} f_{t}^{p-1}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{r} d v_{\varepsilon} \\
& \leq \frac{v_{t}\left(\mathcal{A}_{0}\right)}{v_{\rho}\left(\mathscr{A}_{0}\right)} \int_{\mathcal{A}_{0}} f_{t}^{p-1}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{r+1} d v_{\rho}
\end{aligned}
$$

It follows by induction that, $\forall p, r \geq 0$,

$$
\int_{\mathcal{A}_{0}} f_{t}^{p}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{r} d v_{\rho} \leq\left(\frac{v_{t}\left(\mathcal{A}_{0}\right)}{v_{\rho}\left(\mathcal{A}_{0}\right)}\right)^{p} \int_{\mathcal{A}_{0}}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{p+r} d v_{\rho}
$$

Taking $r=0$ and applying once more FKG's inequality to the decreasing functions $\mathbb{1}_{\mathcal{A}_{0}}$ and f_{t}^{p}, we get, $\forall p \geq 1$,

$$
v_{\rho}\left(\mathscr{A}_{0}\right) \int f_{t}^{p} d v_{\rho} \leq \int_{\mathcal{A}_{0}} f_{t}^{p} d v_{\rho} \leq\left(\frac{v_{t}\left(\mathscr{A}_{0}\right)}{v_{\rho}\left(\mathscr{A}_{0}\right)}\right)^{p} \int_{\mathcal{A}_{0}}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{p} d v_{\rho},
$$

so that, $\forall p \geq 1$,

$$
\begin{equation*}
\sup _{t} \int f_{t}^{p} d v_{\rho} \leq \frac{1}{v_{\rho}\left(\mathcal{A}_{0}\right)^{p+1}} \int_{\mathcal{A}_{0}}\left(\frac{d v_{\varepsilon}}{d v_{\rho}}\right)^{p} d v_{\rho} \tag{4.22}
\end{equation*}
$$

This, in turn, implies uniform $L^{p}\left(v_{\rho}\right)$-estimates for $d \Phi^{n}\left(v_{\rho}\right) / d v_{\rho}$. Indeed, using expression (3.1), if we define

$$
\begin{align*}
d m_{n}(t) & =\frac{P_{v_{\rho}}(\tau>t) t^{n} d t}{\int_{0}^{\infty} P_{v_{\rho}}(\tau>t) t^{n} d t}, \quad \text { then } \tag{4.23}\\
\frac{d \Phi^{n}\left(v_{\rho}\right)}{d v_{\rho}} & =\int_{0}^{\infty} \frac{d T_{t}\left(v_{\rho}\right)}{d v_{\rho}} d m_{n-1}(t)
\end{align*}
$$

Thus, using Hölder's inequality for $p \geq 1$,

$$
\begin{equation*}
\sup _{t>0} \int\left(\frac{d T_{t}\left(v_{\rho}\right)}{d v_{\rho}}\right)^{p} d v_{\rho} \leq C \Longrightarrow \sup _{n} \int\left(\frac{d \Phi^{n}\left(v_{\rho}\right)}{d v_{\rho}}\right)^{p} d v_{\rho} \leq C \tag{4.24}
\end{equation*}
$$

Moreover, we obtain the same uniform bounds for the Cesaro limit, and Proposition 2.7 follows.

Proof of Corollary 2.8. We define the map Φ_{*} associated to the timereversed dynamics. If v is such that $E_{v}^{*}[\tau]<\infty$, then

$$
\int \varphi d \Phi_{*}(\nu)=\frac{1}{E_{v}^{*}[\tau]} \int_{0}^{\infty} \int \bar{S}_{t}^{*}(\varphi) d v d t
$$

Our previous result (Proposition 2.7) holds equally for $\bar{v}_{n}^{*}:=(1 / n)\left(\Phi_{*}\left(v_{\rho}\right)+\cdots+\right.$ $\left.\Phi_{*}^{n}\left(v_{\rho}\right)\right)$, with the consequences that $\left\{\bar{v}_{n}^{*}, n \in \mathbb{N}\right\}$ is tight and $g_{n}:=d \bar{v}_{n}^{*} / d v_{\rho}$ is uniformly in $L^{p}\left(v_{\rho}\right)$ for any $p \geq 1$ in dimensions $d \geq 3$. Let f_{n} be the density of \bar{v}_{n} with respect to v_{ρ} and assume that $\left\{f_{n}\right\}$ converge along a subsequence $\left\{n_{k}\right\}$ to the f solution of (2.10) and that $\left\{g_{n}\right\}$ converge along a subsequence $\left\{m_{i}\right\}$ to the g solution to the adjoint equation to (2.10). We can also assume that these convergences hold in weak $L^{2}\left(v_{\rho}\right)$. As f_{n} and g_{n} are decreasing functions, we have, by FKG's inequality,

$$
\int f_{n_{k}} g_{m_{i}} d v_{\rho} \geq \int f_{n_{k}} d v_{\rho} \int g_{m_{i}} d v_{\rho}=1
$$

After taking first the limit in k, and then in i, we obtain $\int f g d v_{\rho} \geq 1$. Also, this integral is finite by Cauchy-Schwarz. Thus, we can define $d \tilde{\nu}_{\rho}=$ $f g d v_{\rho} /\left(\int f g d v_{\rho}\right)$. Let $d Q_{t}(\eta$.) be the probability measure on paths, defined by

$$
\begin{equation*}
d Q_{t}(\eta .):=\frac{e^{\lambda(\rho) t} g\left(\eta_{t}\right) f\left(\eta_{0}\right)}{\int f g d v_{\rho}} \mathbb{1}_{\tau>t} d P_{v_{\rho}}(\eta .) \tag{4.25}
\end{equation*}
$$

For φ such that $\varphi g \in L^{2}\left(v_{\rho}\right)$, we obtain, using (2.10),

$$
\begin{aligned}
\int \varphi\left(\eta_{t}\right) d Q_{t}(\eta .) & =\frac{\int E_{\eta}\left[\varphi\left(\eta_{t}\right) g\left(\eta_{t}\right) \mathbb{1}_{\tau>t}\right] f(\eta) e^{\lambda(\rho) t} d v_{\rho}(\eta)}{\int f g d v_{\rho}} \\
& =\frac{\int \bar{S}_{t}(\varphi g) f e^{\lambda(\rho) t} d v_{\rho}}{\int f g d v_{\rho}} \\
& =\frac{\int \varphi g \bar{S}_{t}^{*}(f) e^{\lambda(\rho) t} d v_{\rho}}{\int f g d v_{\rho}}=\int \varphi d \tilde{v}_{\rho} .
\end{aligned}
$$

Also, if φ is such that $\varphi f \in L^{2}\left(v_{\rho}\right)$,

$$
\int \varphi\left(\eta_{0}\right) d Q_{t}(\eta .)=\frac{\int \bar{S}_{t}(g) \varphi f e^{\lambda(\rho) t} d v_{\rho}}{\int f g d v_{\rho}}=\int \varphi d \tilde{v}_{\rho}
$$

Now, by applying Jensen's inequality and recalling that $f, g \in L^{p}\left(v_{\rho}\right)$ for $p \geq 1$,

$$
\begin{aligned}
\log \left(P_{\nu_{\rho}}(\tau>t)\right)= & \log \left(\int f g d v_{\rho}\right)+\log \left(\int \frac{e^{-\lambda(\rho) t}}{g\left(\eta_{t}\right) f\left(\eta_{0}\right)} d Q_{t}(\eta .)\right) \\
\geq & \log \left(\int f g d v_{\rho}\right)-\int \log \left(g\left(\eta_{t}\right)\right) d Q_{t}(\eta .) \\
& -\int \log \left(f\left(\eta_{0}\right)\right) d Q_{t}(\eta .)-\lambda(\rho) t \\
\geq & \log \left(\int f g d v_{\rho}\right)-\int \log (f g) d \tilde{v}_{\rho}-\lambda(\rho) t .
\end{aligned}
$$

This concludes the proof of the corollary.
5. Example. Let us consider the totally asymmetric simple exclusion in one dimension. Thus,

$$
\forall i \in \mathbb{Z}, \quad p(i, i+1)=1 \quad \text { and } \quad p(i, j)=0 \quad \text { if } j \neq i+1
$$

Let τ be the first time the origin is occupied. Let $\chi(\eta):=\inf \{k \geq 0: \eta(-k)=1\}$ and let N_{t} be a Poisson process of intensity 1 . A simple computation yields

$$
\begin{align*}
P_{v_{\rho}}(\tau>t) & =\int \mathbb{P}\left(N_{t}<\chi(\eta)\right) d v_{\rho}(\eta) \tag{5.1}\\
& =\sum_{k=1}^{\infty} \rho(1-\rho)^{k} \mathbb{P}\left(N_{t}<k\right)=(1-\rho) e^{-\rho t}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\frac{P_{\nu_{\rho}}(\tau>t+s)}{P_{\nu_{\rho}}(\tau>t)}=e^{-\rho s} \quad \text { and } \quad \lambda(\rho):=\lim _{t}-\frac{1}{t} \log \left(P_{\nu_{\rho}}(\tau>t)\right)=\rho \tag{5.2}
\end{equation*}
$$

Following the approach of the proof of Theorem 3(c) of [4], it is easy to establish that the Yaglom limit exists and is

$$
\begin{equation*}
d \mu_{\rho}(\eta)=\prod_{i<0} d \mathscr{B}_{\rho}\left(\eta_{i}\right) \prod_{i \geq 0} d \mathscr{B}_{0}\left(\eta_{i}\right) \tag{5.3}
\end{equation*}
$$

where \mathscr{B}_{ρ} is the Bernoulli probability of parameter ρ. Can we approximate μ_{ρ} and $\lambda(\rho)$ by the corresponding quantities for the process on a large circle? The answer is no, as we shall see.

Let $\mathcal{C}_{N}=\{0,1, \ldots, N\}$, where sites N and 0 are identified, and consider the generator

$$
\begin{equation*}
\mathcal{L}_{N} \varphi=\sum_{i=0}^{N-1} \eta(i)(1-\eta(i+1))\left(\varphi\left(\eta_{i+1}^{i}\right)-\varphi(\eta)\right) \tag{5.4}
\end{equation*}
$$

with as invariant measure v_{N}, which is the uniform measure on all configurations with [ρN] particles on \mathcal{C}_{N}.

Let $P_{\eta, N}$ be the law of the process generated by \mathscr{L}_{N} and let η be in the support of v_{N}. Then

$$
\begin{equation*}
P_{\eta, N}(\tau>t)=e^{-t} \sum_{k=1}^{\chi(\eta)-1} \frac{t^{k}}{k!} \tag{5.5}
\end{equation*}
$$

Thus, for a polynomial Q_{N} of degree at most N,

$$
\begin{align*}
P_{\nu_{N}, N}(\tau>t) & =e^{-t} Q_{N}(t) \Longrightarrow \\
\lambda_{N}(\rho) & :=\lim _{t}-\frac{1}{t} \log \left(P_{\nu_{N}, N}(\tau>t)\right)=1 . \tag{5.6}
\end{align*}
$$

Also, it is an easy computation that yields

$$
\begin{gather*}
\lim _{t} \frac{P_{\eta, N}^{*}(\tau>t)}{P_{\nu_{N}, N}^{*}(\tau>t)}=\binom{N}{[\rho N]} \prod_{i=1}^{[\rho N]} \eta(-i) \quad \text { and } \tag{5.7}\\
\lim _{t} \frac{P_{\nu_{N}, N}(\tau>t+s)}{P_{\nu_{N}, N}(\tau>t)}=e^{-s}
\end{gather*}
$$

Thus, as in [4], one concludes the existence of a Yaglom limit μ_{N} concentrated on the configurations with particles occupying all $[\rho N]$ sites to the "left" of 0 . Thus, μ_{N} and $\lambda_{N}(\rho)$ do converge, but to μ_{1} and 1, respectively, and this approach misses all the μ_{ρ} with $\rho<1$.

REFERENCES

[1] Andjel, E. (1982). Invariant measures for the zero range process. Ann. Probab. 10 525-547.
[2] Arratia, R. (1985). Symmetric exclusion processes: A comparison inequality and a large deviation result. Ann. Probab. 13 53-61.
[3] AsSELAH, A. and Dai Pra, P. (2000). First occurrence time of a large density fluctuation for a system of independent random walks. Ann. Inst. H. Poincaré Probab. Statist. 36 367-393.
[4] Asselah, A. and Dai Pra, P. (2001). Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Probab. 29 1733-1754.
[5] Asselah, A. and Ferrari, P. (2003). Regularity of quasi-stationary measures for SSEP in $d \geq 5$. Ann. Probab. To appear.
[6] Bahadoran, C. (1997). Hydrodynamique des processus misanthropes spatialement hétérogènes. Thesis, Ecole Polytechnique.
[7] Cocozza-Thivent, C. (1985). Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 509-523.
[8] Collet, P., Martínez, S. and Maume-Deschamps, V. (2000). On the existence of conditionally invariant probability measures in dynamical systems. Nonlinearity 13 1263-1274.
[9] Collet, P., Martínez, S. and San Martín, J. (1999). Ratio limit theorems for a Brownian motion killed at the boundary of a Benedicks domain. Ann. Probab. 27 1160-1182.
[10] Donsker, M. D. and Varadhan, S. R. S. (1976). On the principal eigenvalue of secondorder elliptic differential operators. Commun. Pure Appl. Math. 29 595-621.
[11] Ferrari, P. A., Kesten, H. and Martínez, S. (1996). R-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata. Ann. Appl. Probab. 6 577-616.
[12] Ferrari, P. A., Kesten, H., Martínez, S. and Picco, P. (1995). Existence of quasistationary distributions: A renewal dynamical approach. Ann. Probab. 23 501-521.
[13] Kesten, H. (1995). A ratio limit theorem for (sub) Markov chains on $\{1,2, \ldots\}$ with bounded jumps. Adv. in Appl. Probab. 27 652-691.
[14] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
[15] Pianigiani, G. and Yorke, J. A. (1979). Expanding maps on sets which are almost invariant: Decay and chaos. Trans. Amer. Math. Soc. 252 351-366.
[16] Rezakhanlou, F. (1994). Propagation of chaos for symmetric simple exclusions. Comm. Pure Appl. Math. 47 943-957.
[17] Sethuraman, S. (2001). On extremal measures for conservative particle systems. Ann. Inst. H. Poincaré Probab. Statist. 37 139-154.
[18] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching stochastic processes. Dokl. Akad. Nauk SSSR 56 797-798.

Laboratoire d'Analyse, Topologie et Probabilités
CNRS UMR 6632
C.M.I., Université de Provence

39 Rue Joliot-Curie
F-13453 Marseille Cedex 13
France
E-MAIL: asselah@gyptis.univ-mrs.fr castel1@gyptis.univ-mrs.fr

