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LARGE-DEVIATIONS ANALYSIS OF THE FLUID APPROXIMATION
FOR A CONTROLLABLE TANDEM QUEUE

BY ALEXANDER GAJRAT,1 ARIE HORDIJK AND AD RIDDER

Vrije Universteit Amsterdam, Leiden University and Vrije Universteit Amsterdam

A fluid approximation gives the main term in the asymptotic expression
of the value function for a controllable stochastic network. The policies that
have the same asymptotic of their value functions as the value function of
the optimal policy are called asymptotically optimal policies. We consider the
problem of finding from this set of asymptotically optimal policies a best one
in the sense that the next term of its asymptotic expression is minimal. The
analysis of this problem is closely connected with large-deviations problems
for a random walk.

1. Introduction. Many problems of optimal control in stochastic queueing
networks or, more generally, in random walks are difficult to solve explicitly
or numerically. One of the reasons may be the large state space that usually is
involved when one applies techniques from Markov decision theory such as policy
improvement or value iteration. However, considering these stochastic models
without control, deterministic models have been developed that approximate them
in some asymptotical sense. A well-known approximative model is the fluid
model. In recent years, this technique of fluid approximation has been applied
to stochastic control problems as well; see, for example, Atkins and Chen (1995),
Avram, Bertsimas and Ricard (1995), Bäuerle and Rieder (2000), Gajrat, Hordijk,
Malyshew and Spieksma (1997), Gajrat and Hordijk (2000), Maglaras (1999),
Maglaras (2000) and Weiss (1999). This approach leads to a so-called fluid control
model or problem.

Generally, the construction of an optimal solution in the fluid control model
is again a difficult task, but some solution methods for specific problems have
been derived, for instance, scheduling problems [Atkins and Chen (1995), Avram,
Bertsimas and Ricard (1995) and Weiss (1995, 1999)] and for service control in
queueing networks [Bäuerle and Rieder (2000) and Gajrat and Hordijk (1999,
2000a)]. Also conditions on the existence of optimal fluid controls have been
studied [Pullan (1995, 1996)]. Having solved the deterministic fluid model, the
next step is to construct a control or policy in the stochastic system in such
a way that its asymptotic behavior corresponds to the optimal solution of the
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deterministic problem. These policies are called asymptotically fluid optimal
(a.f.o.) policies. The translation problem has been studied in the context of the
heavy-traffic approximation of the control of stochastic networks; see Harrison
(1996, 1998), Kelly and Laws (1993), Maglaras (2002) and Bell and Williams
(2001). In Harrison (1996) a general method, called BIGSTEP, is developed. In
Harrison (1998) it is shown for a two-station model that this method leads to
asymptotically optimal policies. The discrete-review policies and tracking policies
in Maglaras (1999, 2000) use similar methods for the fluid approximation.

As soon as one can find a.f.o. policies for a given stochastic system, the problem
is solved from a fluid point of view. However, there are many types of a.f.o.
policies, and some have the same structure and others are different. For example,
the policies may be defined by different switching curves [Gajrat, Hordijk,
Malyshev and Spieksma (1997) and Gajrat and Hordijk (2000a)], discrete-review
policies [Maglaras (1999)] or tracking-policies [Bäuerle (2000) and Maglaras
(2000)]. So the natural question then is: can we find in this set of a.f.o. policies
some policies that are “better” than others, where better means that they dominate
other policies in asymptotic behavior. In this paper, we study and answer this
question for a particular model.

We will consider the fluid approximation of a controllable stochastic tandem
queue, discrete in time and space. The fluid approximation is continuous in
time and space and is used to get the first term of the asymptotic of the value
function of the optimal policy. More precisely, for a linear cost function, the
value function associated with the discrete decision rule a has the form Va(xN) =
N2Fu(x)+o(N2); see Gajrat and Hordijk (2000a). Here, N is a scaling parameter
such that xN/N → x and Fu(x) is the value function of the corresponding fluid
queue associated with the continuous control u. Specifically, this asymptotic holds
for the optimal discrete value function Vopt(xN) and the optimal fluid value
function Fopt(x). The same asymptotic appears for a class of a.f.o. policies that
are characterized by switching curves separating regions with different actions.
Different switching curves give the same first term of the asymptotic of the value
function (see Remark 2).

So we can reformulate the question: Which switching curve gives the smallest
next term in the asymptotic and what is the order of this next term? For our model,
the natural choice (see Remark 5) of the switching curve is given by the function
h(x) = [γ ln x]. We will show that there are two main types of asymptotics for the
value function and that these types depend on either γ being greater or less than
some constant.

Threshold strategies of this type have been considered in Kelly and Laws (1993)
and Harrison (1998) for different two-station models. The threshold or safety stock
they use in the heavy-traffic approximation is r(N) = γ ln N , where N is the time-
scale parameter. If we realize that the fluid optimal control is the optimal policy for
a large initial state xN � Nx, we find an interesting similarity in the shape of the
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asymptotically optimal policy for the heavy-traffic and the fluid approximations.
The model studied in Bell and Williams (2001) is a two-server parallel queue
with control of assigning jobs to available servers. Again, a threshold policy is
asymptotically optimal in the heavy-traffic limit.

While in our paper an a.f.o. policy based on a switching curve is constructed
for a specific tandem network, methods for constructing an a.f.o. policy for a
general stochastic network have been derived in Bäuerle (2000) (tracking policies)
and Maglaras (1999) (discrete-review policies). The advantage of the approaches
in Bäuerle (2000) and Maglaras (1999) is that they do not demand a detailed
description of the space structure for an optimal solution of the fluid model. For
the construction of a switching-curve a.f.o. policy, one needs a more detailed
geometrical description of the optimal solution [explained in Gajrat and Hordijk
(2000b)]. On the other hand, the performance of a switching-curve a.f.o. policy
might be “better” (see Remark 4).

Concluding, for our specific controlled queueing network (the tandem queue),
a number of switching curves exists, each one yielding an asymptotically fluid op-
timal policy, but the specific logarithmic curve gives a better second-order asymp-
totic. We have considered generalizing such a result to other queueing networks
and found basically two problems when we tried to extend our techniques. The
first problem is that the geometrical description of the space structure of an opti-
mal solution of the fluid model is much more complicated; see Gajrat and Hordijk
(2000b). In general, it looks like a stratification of the multidimensional (the di-
mension is the number of buffers in a network) octant in a set of cones of different
dimensions. And inside each cone the policy is homogeneous (one action is de-
fined). The second problem is more probabilistic. Even when we have a clear geo-
metrical picture of the optimal fluid policy, we should define a corresponding sto-
chastic network. To analyze the asymptotical properties of this stochastic network,
we should have a theory of large deviations for random walks in multidimensional
space with different regions of homogeneity. There are some results [Blinoskii
and Dobrushin (1994), Ignatyuk, Malyshew and Scherbakov (1994) and Ignatyuk
(1998)] in this direction but they should be extended. Thus, a nontrivial generaliza-
tion can appear only from developing a corresponding large-deviations technique.

The paper is organized as follows. In Section 2, we describe the control problem
and we review the first-order fluid asymptotic. Section 3 states the main theorem
concerning the next term of the asymptotic and compares the switching-curve a.f.o.
policy with the tracking a.f.o. policy. Section 4 contains the proof of the theorem,
which turns out to be quite elaborate, and therefore we choose to split up the proof
in a number of lemmas distributed in several sections. The core lies in Sections
4.6 and 4.8, where we deal with the asymptotics for boundary probabilities and
where we apply large deviations for random walks to obtain these asymptotics.
Finally, Section 5 concludes with a numerical example.
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2. Description of the controllable tandem queue. We consider a discrete-
time tandem queueing network of two single-server queues, Bernoulli (λ) arrivals,
Bernoulli (µ1 and µ2) servers and infinite buffers:

The state of the network at time n is ξn = {(ξn
1 , ξn

2 )}n=0,1,2,3,... ∈ Z
2+, where ξn

i is
the number of customers in buffer i. At each moment of time n, a server i can
choose to:

(i) serve a customer from its buffer (if the buffer is nonempty): an
i = 1, or

(ii) be idle: an
i = 0.

The control variables an
i denote the state of the server i; an

i = 1 when the server
is serving and an

i = 0 when it is idle. When the server i is serving a customer, this
customer will be removed from buffer i with probability µi . With probability λ,
a new customer arrives at buffer 1. When a customer is removed from server 1, it
moves to the buffer of the second server. When a customer is removed from the
buffer of the second server, this customer leaves the network.

So the control a = {an}n=0,1,... defines a Markov chain {ξn}n=0,1,... with
dynamics

ξn+1
1 − ξn

1 = ηn
0 − an

1ηn
1 ,

(1)
ξn+1

2 − ξn
2 = an

1ηn
1 − an

2ηn
2 ,

where {ηn
i }n=0,1,..., i = 0,1,2, are i.i.d. Bernoulli processes on {0,1} with

Eηn
0 = λ, Eηn

i = µi , i = 1,2. The three processes are mutually independent.
We are interested in the following optimal control problem for this class of

network. Let TN be some finite time, a = {an} a control and x(N) ∈ Z
2+ a state,

such that TN → ∞, ‖x(N)‖ → ∞. Then the value function of the process under
control a is defined as

Va(x(N)) := Ea
x(N)

TN∑
n=0

ξnc = Ea
x(N)

TN∑
n=0

(ξn
1 c1 + ξn

2 c2),(2)

where Ea
x(N)(·) denotes the expectation given initial state x(N) and control a =

{an} and where ξnc is the inner product of the two vectors: ξnc = ξn
1 c1 + ξn

2 c2.
The discrete optimal control problem is

min
a

Va(x(N)).(3)

By Vopt(·), we denote the value function of an optimal control of this problem.
(There exists an optimal control since we are dealing with a finite-horizon
problem.) The function Vopt cannot be found precisely, but we can try to find
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an asymptotic of this function or we can formulate more simple problems. We
shall investigate an asymptotic expression of the optimal value function. First, we
formulate the corresponding fluid control model of the controllable network.

2.1. The fluid controllable network. Let (xs)s≥0 = (xs
1, x

s
2)s≥0 be a continu-

ous deterministic process on R
2+ with derivatives ẋs satisfying

ẋs
1 = λ − µ1u

s
1,

ẋs
2 = µ1u

s
1 − µ2u

s
2,

0 ≤ ui
s ≤ 1.

Here u = (us)s≥0 = (us
1, u

s
2)s≥0 is a control that regulates continuously the

contents of the fluid buffers. Note that the process (xs) is determined by control u.
Let t be a finite time, u a control and x ∈ R

2+. Then the value function under this
control is

Fu(x) :=
∫ t

0
xsc ds =

∫ t

0
(xs

1c1 + xs
2c2) ds with x0 = x.

The fluid optimal control problem is

min
u

Fu(x).

By Fopt(·), we denote the value function of the optimal control of this problem,
and by (xs

opt), the fluid process or trajectory under the optimal control. We solve
the optimal control problem for the following set of parameters:

µ1 > µ2 > λ > 0, c2 > c1 > 0.(4)

REMARK 1. One can consider also another set of parameters, but for the
purpose of this paper this set of parameters is the most significant one, because
it is the case where one should introduce a nonlinear switching curve.

The optimal solution for the fluid network with the set of parameters (4) is the
following:

while xs
1 > 0 and xs

2 > 0: us
1 = 0, us

2 = 1,

while xs
1 > 0 and xs

2 = 0: us
1 = µ2/µ1, us

2 = 1,

while xs
1 = 0 and xs

2 = 0: us
1 = λ/µ1, us

2 = λ/µ2.

Equivalently, the optimal trajectory satisfies the differential equations

ẋs
opt =




(λ,−µ2), if xs
1 > 0 and xs

2 > 0,

(λ − µ2,0), if xs
1 > 0 and xs

2 = 0,

(0,0), if xs
1 = 0 and xs

2 = 0.

(5)
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In words: suppose (i) that the initial point x0 has positive buffers (x0
1 > 0 and

x0
2 > 0). Then the optimal trajectory empties buffer 2 at a speed of µ2 while filling

buffer 1 at a speed of λ. There is no flow from buffer 1 to buffer 2. This happens
until the second buffer is empty. Now, suppose (ii) that the initial point x0 lies on
the boundary x0

2 = 0, that is, buffer 2 is empty. Then the optimal trajectory empties
buffer 1 at a speed of µ2 −λ while keeping buffer 2 empty by balancing the inflow
and outflow (of buffer 2). This happens until buffer 1 is empty as well, whereafter
the two buffers remain empty by serving at a speed of the inflow rate λ. Only
part (ii) of the optimal trajectory is of interest in our analysis. So, assuming the
initial point x0 has x0

1 > 0 and x0
2 = 0, the optimal trajectory satisfies

xs
opt = x0 + s(λ − µ2,0),

as long as s < x0
1/(µ2 − λ). The optimal value function becomes

Fopt(x
0) =

∫ t

0
c1

(
x0

1 + s(λ − µ2)
)
ds(6)

for t < x0
1/(µ2 − λ).

2.2. Asymptotics. We shall consider the following version of the value
function (2) in the original optimal control problem (3). We let the time horizon
be TN = tN for some fixed t > 0, and, for some given x ∈ R

2+, we let the starting
point x(N) satisfy limN→∞ x(N)/N = x. The following result relates the values
of the discrete optimal control and the fluid optimal control. For a proof, see Gajrat
and Hordijk (2000a).

THEOREM 1.

Vopt(x(N)) = N2Fopt(x) + o(N2),

where limN→∞ x(N)/N = x.

This result leads naturally to a definition of asymptotically fluid optimal
policies.

DEFINITION 1. Any policy a for which

Va(x(N)) = N2Fopt(x) + o(N2)

is called an asymptotically fluid optimal (a.f.o.) policy.

The problem of finding an a.f.o. policy can be nontrivial, in particular, for the
set of parameters (4). For instance, suppose that we translate the optimal fluid
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control (5) to the following policy in the stochastic network:

whenever ξn
1 > 0 and ξn

2 > 0: an
1 = 0, an

2 = 1,

whenever ξn
1 > 0 and ξn

2 = 0: an
1 = 1, an

2 = 0,

whenever ξn
1 = 0 and ξn

2 = 0: an
1 = 0, an

2 = 0.

(7)

Then the fluid limit of the trajectories satisfies the equations:

ẋs =




(λ,−µ2), if xs
1 > 0 and xs

2 > 0,(
λ − µ1µ2

µ1 + µ2
,0

)
, if xs

1 > 0 and xs
2 = 0,

(0,0), if xs
1 = 0 and xs

2 = 0.

Clearly, this is not the optimal trajectory (5); thus, the policy defined in (7) is not
an a.f.o. policy. However, for this specific queueing model, Gajrat and Hordijk
(2000a) considered the following policy. Let γ > 0 be some positive parameter
and let h(x1) = [γ lnx1] be a function on the x1 boundary of the state space
([x] denotes the largest integer not larger than x). Define (see also Figure 1):

whenever ξn
1 > 0 and ξn

2 > h(ξn
1 ): an

1 = 0, an
2 = 1,

whenever ξn
1 > 0 and ξn

2 ≤ h(ξn
1 ): an

1 = 1, an
2 = 0,

whenever ξn
1 = 0 and ξn

2 = 0: an
1 = 0, an

2 = 0.

(8)

FIG. 1. The setting of a two-dimensional random walk with switching curve.
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So the first server is idle whenever the number of customers in the second
buffer x2 is greater than h(x1). The function h is a switching curve. For the
set of parameters (4), Gajrat and Hordijk (2000a) proved that the policy (8) is
asymptotically fluid optimal and that the random walk {ξn}, when starting in
ξ0 = x(N), satisfies

lim
N→∞ ξNs/N = xs

opt.

REMARK 2. It is not necessary to choose the switching curve h as a
logarithmic function; it can be any smooth (smoothness is convenient only for
technical reasons) sublinear function on R>0, meaning that

lim
x→∞h(x) = ∞,

(9)

lim
x→∞

h(x)

x
= 0.

Any switching curve h(x) satisfying (9) gives an asymptotically optimal policy.
But if we consider the next term in the asymptotic, then the choice of a logarithmic
curve gives the smallest asymptotic (see Remark 5).

For different values of γ > 0, we will have the same first term of the asymptotic
for the value function. In the next section, we will consider how the next term
depends on γ .

3. Next-order approximation. The main result of the paper is the following.

THEOREM 2. Let (4) hold for the parameters, let h(x1) = [γ ln x1] be a
switching curve and let the control a be defined by (8). Let the time horizon of
the random walk be TN = tN for some fixed t > 0 and let the initial state be
x(N) = (x1(N), x2(N)) with

x1(N) = [Nx1], x2(N) = h(x1(N))

for some x1 > t . Then there is a constant

α = ln
µ1(1 − µ2)

µ2(1 − µ1)
> 0

such that the value function Va(x(N)) defined in (2) satisfies

Va(x(N)) = N2Fopt(x) + NN1−αγ+o(1) + c2tγN ln(N) + O(N),

where

x = (x1,0) = lim
n→∞x(N)/N.
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REMARK 3. We use the condition t < x1 just to simplify the proof. It ensures
that the random walk {ξn} never reaches the origin 0.

Hence, we get:

• for γ > 1/α,

lim
N→∞

(
Va(x(N)) − N2Fopt(x)

)
/(N ln(N)) = c2tγ ,

in words, the next term in the asymptotic after N2 is c2tγN ln(N);
• for γ < 1/α,

lim
N→∞ ln

(
Va(x(N)) − N2Fopt(x)

)
/ ln(N) = 2 − αγ,

the next term is N2−αγ No(1).

So, by decreasing the value of the parameter γ [meaning that the switching curve h

lies lower and that the value function Va(x(N)) becomes less] until 1/α, we see a
jump of the asymptotic to very high values.

REMARK 4 (On tracking policies). It is interesting to compare the asymptotic
of the policy defined by h(x) to the asymptotic of a policy that is similar to the
tracking policy defined in Bäuerle (2000). There, the tracking policies are defined
for a class of stochastic networks that differ slightly from our tandem model. They
are continuous in time and have an action set, where it is allowed to change service
rates. But it is not difficult to give a similar construction of such a policy in the
case of our discrete-time tandem model. Let the sequence of initial states x(N)

be the same as in Theorem 2 and let t < x1. In this case, the tracking policy
corresponds to the tandem network with modified probability of serving in the
first buffer µ̃1 = µ1u1 = µ2, u1 = µ2/µ1 and

whenever ξn
2 > 0: an

1 = 1, an
2 = 1,

whenever ξn
2 = 0: an

1 = 1, an
2 = 0.

So, in the interior part of Z
2+, ξn is a homogeneous random walk with zero vertical

drift:

Eξn = (λ − µ2,µ2 − µ2) = (λ − µ2,0).

It is not too difficult to see that for such a policy the asymptotic of the value
function will be

Va(x(N)) = N2Fopt(x) + const ·N1+1/2+o(1)(10)

for the same sequence of x(N) as in Theorem 2. So the theorem shows that a
threshold type of policy gives a better asymptotic than the tracking policies.

We do not give the proof of estimation (10), but the intuition is rather clear. The
vertical component ξn

2 behaves like a random walk with zero drift if ξn
2 > 0 and

reflection in 0. So ξ tN
2 ≈ N1/2 (central limit theorem); hence, the contribution of

this term to the value function for the time interval [0, tN ] will be ≈ N1+1/2.
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4. Proof of Theorem 2. In this section, we assume the following model
parameters:

• The stochastic process of the tandem queue is the random walk {ξ0, ξ1, . . . } ⊂
Z

2≥0.
• The policy a of the tandem queue is defined by (8) in Section 2.2 and is

determined by the switching curve h(t) = [γ ln(t)], t ∈ R>0.
• The initial state of the random walk x(N) = (x1(N), x2(N)) lies on the

switching curve: x1(N) = [x1N ] with x1 ∈ R>0 and x2(N) = h(x1(N)).
• The time horizon is TN = tN , where t is called the scaled time horizon

satisfying t < x1.
• The scaling factor is N = 1,2, . . . .
• The limit point of the sequence (x(N)/N)∞N=1 is x = (x1,0).

In the previous sections, we sub- and superscripted probabilities and expectations
in order to denote explicitly their dependence on the initial state and policy: P a

x(N)
and Ea

x(N). Bearing this in mind, we delete these sub- and superscripts from now
on, except in some proofs where we need them. Also, conveniently, we write x1N

whenever we mean the integer [x1N ].
4.1. The value function. The first thing we do is rewrite the value function

V (x(N)) as a sum of four terms Vi(x(N)), i = 1,2,3,4, whose asymptotic
behaviors we will analyze subsequently. We need the stochastic variables νn,
n = 1,2, . . . , defined as the number of times the process visits the x2-boundary
(until time epoch n):

νn :=
n−1∑
k=0

1(ξk
2 = 0).

LEMMA 1.

V (x(N)) = V1(x(N)) + V2(x(N)) + V3(x(N)) + V4(x(N)),

where

V1(x(N)) =
tN∑
n=0

c1
(
x1(N) + n(λ − µ2)

)
,(11)

V2(x(N)) = c1

tN∑
n=0

(
x2(N) − Eξn

2
)
,(12)

V3(x(N)) = c1µ2

tN∑
n=0

Eνn,(13)

V4(x(N)) = c2

tN∑
n=0

Eξn
2 .(14)



LARGE DEVIATIONS FOR A CONTROLLABLE TANDEM QUEUE 1433

PROOF. The value function is the expected total cost up to time tN . Using the
linear property of expectation,

V (x(N)) = c1

tN∑
n=0

Eξn
1 + c2

tN∑
n=0

Eξn
2 .

Observing the process from its initial state, we have

Eξn
1 = x1(N) +

n−1∑
k=0

E(ξk+1
1 − ξk

1 ),

and when we apply (1):

E(ξk+1
1 − ξk

1 ) = λ − µ1Ea1(ξ
k).

Similarly for the second coordinate:

Eξn
2 = x2(N) +

n−1∑
k=0

E(ξk+1
2 − ξk

2 ),

E(ξk+1
2 − ξk

2 ) = µ1Ea1(ξ
k) − µ2Ea2(ξ

k).

Combining these expressions, we get

n−1∑
k=0

E(ξk+1
1 − ξk

1 ) =
n−1∑
k=0

λ −
n−1∑
k=0

µ1Ea1(ξ
k)

= nλ −
n−1∑
k=0

E(ξk+1
2 − ξk

2 ) −
n−1∑
k=0

µ2Ea2(ξ
k)

= nλ − (
Eξn

2 − x2(N)
) −

n−1∑
k=0

µ2Ea2(ξ
k).

Thus, for each n = 1,2, . . . , the first coordinate of the process satisfies

Eξn
1 = x1(N) + nλ + (

x2(N) − Eξn
2
) −

n−1∑
k=0

µ2Ea2(ξ
k).

Now, we apply the fact that in any state of the process the second server either
works or is idle:

Ea2(ξ
k) + E1(ξk

2 = 0) = 1 for all k = 0,1, . . . .

So,

Eξn
1 = x1(N) + nλ + (

x2(N) − Eξn
2
) −

n−1∑
k=0

µ2
(
1 − E1(ξk

2 = 0)
)

= x1(N) + n(λ − µ2) + (
x2(N) − Eξn

2
) + µ2Eνn.



1434 A. GAJRAT, A. HORDIJK AND A. RIDDER

Multiplying by the cost vector c and adding terms n = 0,1, . . . , tN , we get the
four terms (11)–(14). �

Let us try to describe these four terms of the decomposition of the value
function. The last term is the expected total cost at the second buffer during the
planning horizon; the expected cost at the first buffer is split into three parts
corresponding to the first three terms. The first term is related to the value (6)
of the optimal control in the fluid model (we come back to this); in fact, it is
asymptotically equal to N2Fopt(x). Since the optimal fluid trajectory starts in
the boundary point (x1,0) and moves continuously along the boundary into the
direction of 0 (0,0), this first term takes into account only cost when the random
walk drifts along the boundary to 0. Therefore, we need to supply the expected
total cost at buffer 1 in the other situations of our discrete stochastic model. Being
somewhat disguised, but from the manipulations in the proof of Lemma 1, we
infer that the second term deals with the expected cost at buffer 1 when buffer 2 is
positive and the third term when buffer 2 is empty and remains empty, that is, no
service completion of server 1.

REMARK 5. We give here a heuristic argument as to why we choose a
logarithmic function h(x). Because the drift for the random walk is directed toward
the graph of h(x), the position of ξn will be around h(x), so Ea

xξn
2 ≈ h(N), and

we can expect that Ea
xνtN ≈ N exp(−Ch(N)) (for some C > 0). Hence, h(x)

should be chosen in such a way that both terms Ea
xνn and Ea

x ξn
2 are comparable

so N exp(−Ch(N)) ≈ h(N) or Ch(N) ≈ ln N − ln h(N), but if h(N) is sublinear
then ln h(N) = o(lnN).

The way to continue is by finding asymptotics of each of the terms (11)–(14).
As mentioned above, from the first term we get the fluid value. The fourth term
is asymptotically equal to c2tNγ ln(N), which we might explain heuristically as
follows. The random walk ξn starts off at the switching curve with the drift of
the process being toward and along the switching curve. This curve is flat for
states lying far off 0 while we assume that the process never reaches 0 by taking
the time horizon small enough. So we get ξn

2 ≈ h(x1N) = γ ln(x1) + γ ln(N)

for n = 1,2, . . . , tN , in which case the second term dominates and leads to the
claimed asymptotics. With this asymptotics, the second term (12) disappears,
leaving the third term. That is the hard part and we will describe it in more detail
in Sections 4.5 and 4.6.

4.2. Term 1: the fluid value. Notice that

tN∑
n=0

x1(N) =
tN∑
n=0

x1N = x1tN
2 = N2

∫ t

0
x1 ds
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and
tN∑
n=0

n =
∫ t

0
N [sN ]ds = N2

∫ t

0
[sN ]/N ds = N2

(∫ t

0
s ds + O(1/N)

)
,

when N → ∞. Since the optimal fluid value is Fopt(x) = ∫ t
0 c1(x1 + s(λ−µ2)) ds,

we clearly get

V1(x(N)) = N2Fopt(x) + O(N).(15)

4.3. Term 4: the switching curve. The asymptotic of the fourth term (14)
follows from the following lemma.

LEMMA 2.
tN∑
n=0

Eξn
2 = tNγ ln(N) + O(N).

PROOF. Consider the process ζ n = ξn
2 − h(ξn

1 ). If ζ n < 0, then

E(ζn+1 − ζ n|ζ n) = E
(
h(ξn

1 ) − h(ξn+1
1 )

∣∣ζ n
)

+ E
(
ξn+1

2 − ξn
2

∣∣a1(ξ
n) = 1, a2(ξ

n) = 1
)

= µ1 − µ2 + h(ξn
1 )E

(
ln

(
1 + (ξn+1

1 − ξn
1 )/ξn

1
)∣∣ζ n)

= µ1 − µ2 + o(1) > 0.

If ζ n > 0, then

E(ζn+1 − ζ n|ζ n) = −µ2 + o(1) < 0.

Hence,

P
(|h(ξn

1 ) − ξn
2 | > K

) ≤ C1 exp(−C2 ∗ K)(16)

for some C1,C2 > 0. Rewrite
tN∑
n=0

Eξn
2 = N

∫ t

0
Eξ

[sN]
2 ds.

From (16), we get that, for all s ∈ [0, t],
Eξ

[sN]
2 = Eh

(
ξ

[sN]
1

) + O(1),

where ξ
[sN]
1 ∈ [(x1 − s)N, (x1 + s)N ]. Thus, we conclude that Eξ

[sN]
2 = h(N) +

O(1) for all s, or

N

∫ t

0
Eξ

[sN]
2 ds = tNγ ln(N) + O(N). �

The resulting asymptotic of the value function term reads as

V4(x(N)) = c2tNγ ln(N) + O(N).(17)



1436 A. GAJRAT, A. HORDIJK AND A. RIDDER

4.4. Term 2: the vanishing part. This one is easy. The expression (12) of the
second term is

V2(x(N)) = c1

tN∑
n=0

x2(N) − c1

tN∑
n=0

Eξn
2 .

Now, simply use x2(N) = h(x1N) = γ ln(N) + O(1) and apply the asymptotics
of the previous section to get

V2(x(N)) = O(N).(18)

4.5. Term 3: the {x2 = 0}-boundary. The third term (13) of the decomposition
of the value function is the most important one. It gives us the “next-order
asymptotics.” Here is what it is all about.

LEMMA 3.
tN∑
n=0

Eνn = N2−αγ+o(1),

with

α = ln
µ1(1 − µ2)

µ2(1 − µ1)
.

PROOF. We start off doing some calculus manipulations:

tN∑
n=0

Eνn =
tN∑
n=0

n−1∑
k=0

P (ξk
2 = 0)

=
tN−1∑
k=0

tN∑
n=k+1

P (ξk
2 = 0)

=
tN−1∑
k=0

(tN − k)P (ξk
2 = 0)

(19)

= N

∫ t−(1/N)

0
(tN − [sN ])P (

ξ
[sN]
2 = 0

)
ds

= N2
∫ t−(1/N)

0
(t − [sN ]/N)P

(
ξ

[sN]
2 = 0

)
ds

= N2
∫ t

0
(t − s)P

(
ξ

[sN]
2 = 0

)
ds + O(N).

All we have to do now is to find asymptotics for P (ξ
[sN]
2 = 0) and that will be the

subject of the next section. Here we just state the results from Lemmas 4 and 5
(forthcoming):
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• For s > t − ε (with ε > 0 arbitrary but small),

P
(
ξ

[sN]
2 = 0

) ≥ N−αγ+o(1).

• For s > rh(x1N)/N [with r > 0 arbitrary but less than tN/h(x1N)],

P
(
ξ

[sN]
2 = 0

) ≤ N−αγ+o(1).

Thus, we can bound the integral in (19):
∫ t

0
(t − s)P

(
ξ

[sN]
2 = 0

)
ds ≥

∫ t

t−ε
(t − s)P

(
ξ

[sN]
2 = 0

)
ds

≥ N−αγ+o(1)

and ∫ t

0
(t − s)P

(
ξ

[sN]
2 = 0

)
ds ≤

∫ t

rh(x1N)/N
(t − s)P

(
ξ

[sN]
2 = 0

)
ds

+
∫ rh(x1N)/N

0
(t − s) ds

≤ N−αγ+o(1) + O
(
ln(N)/N

)
.

So,

N2
∫ t

0
(t − s)P

(
ξ

[sN]
2 = 0

)
ds = N2−αγ+o(1). �

Thus, the resulting asymptotic of the third term of the value function is

V3(x(N)) = N2−αγ+o(1) + O(N).(20)

The asymptotics (15), (17), (18) and (20) of the separate terms of the value function
add up to the result claimed in Theorem 2.

4.6. Asymptotics for boundary probabilities. We give an asymptotic of
P (ξ

[sN]
2 = 0) for large N based on large deviations. For notational convenience,

we write (ξσN )σ≥0 to mean the random walk {ξn}n=0,1,... by assuming that σ takes
values in the scaled integers {0,1/N,2/N, . . .}. Let us first sketch the idea of the
proof (see also Figure 2). Consider trajectories that reach the {x2 = 0}-boundary at
time sN . During the first part of the trajectory, the random walk wanders around
the switching curve in a neighborhood of the starting point. The switching curve
is quite flat there; thus, the second coordinate ξσN

2 remains approximately equal to
the original level h(x1N). At a particular time t̃N , the walk starts to move down-
ward to the boundary, and therefore the statistical law of the vertical movement
(i.e., the second coordinate) of the random walk is most relevant. The probabil-
ities that the random walk goes up or down are exactly µ̃1 := µ1(1 − µ2) and
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FIG. 2. The random walk until hitting the boundary at time sN .

µ̃2 := µ2(1 − µ1), respectively. Notice that µ̃1 > µ̃2 because µ1 > µ2, and that
this again says that the random walk tends to jump toward the switching curve
whenever it resorts below it. The mean time for the random walk to cross from the
{x2 = 0}-boundary to the switching curve is h(x1N)/(µ̃1 − µ̃2) (just following the
drift). Applying large-deviations theory for random walks, it turns out that exactly
the same time is most likely to occur when the random walk jumps in the opposite
direction (from the curve to the boundary). That is, the last visit to the switching
curve is most likely at time sN − h(x1N)/(µ̃1 − µ̃2). In the proofs of the as-
ymptotics, we will see this number occurring. We will discuss the large-deviations
material in Section 4.8.

Partition Z
2+ into two regions: A+ := {(x1, x2) ∈ Z

2+ :x2 ≥ h(x1)}, the set of all
points on and above the switching curve, and A− := {(x1, x2) ∈ Z

2+ :x2 < h(x1)},
the set of points below the switching curve. We make the observation that in order
for the random walk (ξσN)σ≥0 to reach the {x2 = 0}-boundary at time sN , it must
have walked through the set A− during a time interval (τN, sN ]. Here, τN is
the (random) time epoch of the last visit to the set A+. Suppose τ = t̃ and let
x̃(N) ∈ A+ be the last state visited; hence, x̃(N) = (x̃1N,h(x̃1N)) lies on the
switching curve. Since we assume the scaled horizon t to be small relative to x1
of the starting state (x1N,h(x1N)), the second coordinate of these points satisfies
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h(x̃1N) ≈ h(x1N). This means that the remaining time (s − t̃ )N that is left for
the random walk to go all the way down to the boundary takes at least h(x1N)

time units. In other words, the exit time should satisfy τN ≤ sN − h(x1N). Also,
it means that P (ξsN

2 = 0) = 0 for all sN ≤ h(x1N). Now, the idea is to find the
asymptotic of P (ξsN

2 = 0) by lower and upper bounding it.
Let us restate some notation:

• The random walk is {ξσN :σ = 0,1/N,2/N, . . .}.
• The initial point x(N) = (x1N,h(x1N)) lies on the switching curve.
• The planning horizon is tN with t < x1.
• τN is the last time that the random walk visits the area on or above the switching

curve. We call the random variable τ the scaled exit time.
• Realizations of τ are denoted by t̃ . Realizations of the last state visited on or

above the switching curve are denoted by x̃(N), from where the random walk
starts moving downward to approach the boundary.

• µ̃1 = µ1(1 − µ2) and µ̃2 = µ2(1 − µ1). These are the probabilities that in the
tandem queue server 1 serves and server 2 does not, and, respectively, server 2
serves and server 1 does not.

• The “speed” at which the random walk moves upward is µ = 1/(µ̃1 − µ̃2).
Notice that µ > 1.

• α = ln(µ̃1/µ̃2).

The two bounding statements are as follows.

LEMMA 4. Let ε > 0 small. Then, for s > t − ε,

P (ξsN
2 = 0) ≥ N−αγ+o(1).

LEMMA 5. Let r > µ, r < tN/h(x1N). Then, for s > rh(x1N)/N ,

P (ξsN
2 = 0) ≤ N−αγ+o(1).

PROOF OF LEMMA 4. Let s ∈ (t − ε, t) and consider the time t̃ = s −
h(x1N)µ/N . We obtain a lower bound of the probability by restricting the scaled
exit time τ to realize only this specific t̃ :

P (ξsN
2 = 0) ≥ P (ξsN

2 = 0; τ = t̃ ).

We partition the right-hand side into all possible exit states on the curve. At exit
time t̃N , the random walk is at some (random) state ξ t̃N on the switching curve.
Since the random walk makes jumps of size 1, we know that the first coordinate
ξ t̃N

1 ∈ [x1 − t̃ , x1 + t̃]N with probability 1. We denote by x̃(N) = (x̃1N,h(x̃1N))

these possible states on the switching curve. Hence,

P (ξsN
2 = 0; τ = t̃ ) =

x1+t̃∑
x̃1=x1−t̃

P
(
ξ sN

2 = 0; τ = t̃; ξ t̃N = x̃(N)
)
.
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The summands on the right-hand side may be rewritten using the Markov property
of the random walk:

Px(N)

(
ξ sN

2 = 0; τ = t̃; ξ t̃N = x̃(N)
)

= Px(N)

(
ξ t̃N = x̃(N)

)
Px̃(N)

(
ξ

(s−t̃ )N
2 = 0; τ = 0

)
.

The following asymptotic will be proved in Lemma 6(ii). For any x̃(N) with
x̃1 ∈ [x1 − t̃ , x1 + t̃ ],

Px̃(N)

(
ξ

(s−t̃ )N
2 = 0; τ = 0

) ≥ N−αγ+o(1)

[notice that (s − t̃ )N = µh(x1N)]. Hence,

Px(N)(ξ
sN
2 = 0) ≥ N−αγ+o(1)

x1+t̃∑
x̃1=x1−t̃

Px(N)

(
ξ t̃N = x̃(N)

)

= N−αγ+o(1)Px(N)

(
ξ t̃N

2 = [h(ξ t̃N
1 )]).

The following asymptotic will be proved in Lemma 7:

Px(N)

(
ξ t̃N

2 = [h(ξ t̃N
1 )]) = O(1).

Putting it all together, we get

Px(N)(ξ
sN
2 = 0) ≥ N−αγ+o(1). �

PROOF OF LEMMA 5. Let r > µ and s > rh(x1N)/N . Then, by decomposi-
tion to the values of the exit time,

P (ξsN
2 = 0) = P

(
ξ sN

2 = 0; τN ≤ sN − rh(x1N)
)

(21) + P
(
ξ sN

2 = 0 ; τN > sN − rh(x1N)
)
.

Because the random walk wanders below the switching curve after the exit time,
the first term is bounded by

P
(
ξ sN

2 = 0; τN ≤ sN − rh(x1N)
)

≤ P
(
ξσN

2 < h(ξσN
1 ) for all σN > sN − rh(x1N)

)
.

Using the same argument as in the proof of Lemma 2, we have

P
(
ξσN

2 < h(ξσN
1 ) for all σN > sN − rh(x1N)

)
≤ C1 exp

(−C2rh(x1N)
) = C1N

−rγC2

for some constants C1,C2 > 0. So, choosing r sufficiently large, we can make
this term arbitrarily small. Notice that this is possible because we require r <

tN/h(x1N), which diverges to ∞ when N → ∞.
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For the second term on the right-hand side of (21), we have, by partitioning and
the Markov property,

Px(N)

(
ξ sN

2 = 0 ; τN > sN − rh(x1N)
)

= N

∫ s

s−rh(x1N)/N

x1+t̃∑
x̃1=x1−t̃

Px̃(N)

(
ξ

(s−t̃ )N
2 = 0; τ = 0

)

× Px(N)

(
ξ t̃N = x̃(N)

)
dt̃.

The following asymptotic will be proved in Lemma 6(i). For any t̃ > rh(x1N)/N

and x̃(N) with x̃1 ∈ [x1 − s, x1 + s],
Px̃(N)

(
ξ

(s−t̃ )N
2 = 0; τ = 0

) ≤ N−αγ+o(1)

[notice that (s − t̃ )N < rh(x1N)]. Hence,

Px(N)

(
ξ sN

2 = 0; τN > sN − rh(x1N)
)

≤ NN−αγ+o(1)
∫ s

s−rh(x1N)/N

x1+t̃∑
x̃1=x1−t̃

Px(N)

(
ξ t̃N = x̃(N)

)
dt̃

= NN−αγ+o(1)
∫ s

s−rh(x1N)/N
Px(N)

(
ξ t̃N

1 = h(ξ t̃N
1 )

)
dt̃

≤ rh(x1N)N−αγ+o(1).

Putting it all together and noticing that ln(N) = No(1), we get

P (ξsN
2 = 0) ≤ N−αγ+o(1). �

4.7. More asymptotics to prove. In this section, we prove the results that were
applied in the proofs of Lemmas 4 and 5. The assumptions and notation are the
same as listed in Section 4.6. Recall that x̃(N) = (x̃1N,h(x̃1N)) is a state on the
switching curve from where the random walk starts moving downward to approach
the boundary, indicated by τ = 0. Because we assumed the time horizon tN to be
so small relative to the starting point x(N) that the {x1 = 0}-boundary will not be
reached, we know t < x1, and thus x̃1 ∈ [x1 − t, x1 + t].

LEMMA 6. (i) Let r > µ. For σN < rh(x1N),

Px̃(N)(ξ
σN
2 = 0; τ = 0) ≤ N−αγ+o(1).

(ii) For σN = µh(x1N),

Px̃(N)(ξ
σN
2 = 0; τ = 0) ≥ N−αγ+o(1).
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PROOF. We first show the asymptotics when σN = ρh(x̃1N) for arbitrary
ρ ∈ (0, r).

Consider a policy ã with control variables ãn
i = 1 for all states. That is, the

switching curve has been removed: both servers service always. However, we
consider events where the state of the random walk stays below the curve. Thus,

P a
x̃(N)(ξ

σN
2 = 0, τ = 0) = P ã

x̃(N)(ξ
σN
2 = 0, τ = 0).

Let ε > 0. We will apply large-deviations asymptotics for events involving |ξn
2 −

h(x̃1N)| < εn, n = 1,2, . . . . Figure 3 shows that

P ã
x̃(N)(ξ

σN
2 = 0, τ = 0)

= P ã
x̃(N)(ξ

σN
2 = 0, ξn ∈ A ∪ B ∪ C, n = 1,2, . . . , σN),

P ã
x̃(N)(ξ

σN
2 = 0, ξn

2 < h(x̃1N) − εn, n = 1,2, . . . , σN)

= P ã
x̃(N)(ξ

σN
2 = 0, ξn ∈ A, n = 1,2, . . . , σN),

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) + εn,n = 1,2, . . . , σN

)

= P ã
x̃(N)(ξ

σN
2 = 0, ξn ∈ A ∪ B ∪ C ∪ D ∪ E, n = 1,2, . . . , σN).

A geometrical argument (see Figure 3) shows the inequalities

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) − εn,n = 1,2, . . . , σN

)

≤ P ã
x̃(N)(ξ

σN
2 = 0, τ = 0)(22)

≤ P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) + εn,n = 1,2, . . . , σN

)
.(23)

Now, we claim that the upper bound (23) is upper bounded asymptotically:

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) + εn,n = 1,2, . . . , σN

) ≤ N−αγ+o(1)(24)

for any σN = ρh(x̃1N). And the lower bound (22) is asymptotically equal to

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) − εn,n = 1,2, . . . , σN

) = N−αγ+o(1),(25)

when σN = µh(x̃1N). We will prove these two claims in Section 4.8.
Finally, the question is whether it is necessary to replace h(x̃1N) by h(x1N).

The answer is no, since h(x̃1N) − h(x1N) = o(ln(N)). �

LEMMA 7. For any t̃ < x1,

P
(
ξ t̃N

2 = h(ξ t̃N
1 )

) = O(1).

PROOF. Using (16), we can find K > 0 such that

P
(|ξσN

2 − h(ξσN
1 )| < K

) ≥ 1/2
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FIG. 3. The geometric argument.

for any σ < x1. We choose a particular σ to get

P
(
ξ t̃N

2 = h(ξ t̃N
1 )

) ≥ P
(|ξ t̃N−K

2 − h(ξ t̃N−K
1 )| < K

)

× P
(
ξ t̃N

2 = h(ξ t̃N
1 )

∣∣|ξ t̃N−K
2 − h(ξ t̃N−K

1 )| < K
)

≥ 1/2ρK

for some ρ < 1. �

4.8. Large-deviations leftovers. Finally, we show the two remaining (in)equa-
lities (24) and (25). Some of the notation is as before:

• probabilities µ̃1 and µ̃2 with 1 > µ̃1 > µ̃2 > 0;
• an arbitrary number x̃1 > 0;
• µ = 1/(µ̃1 − µ̃2).

Consider a one-dimensional random walk Y := {Yn :n = 0,1, . . . } on Z≥0 with
the following jumps and jump probabilities:
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(i) When the current state y ≥ 1:

jump 0 with probability 1 − µ̃1 − µ̃2,

jump 1 with probability µ̃1,

jump −1 with probability µ̃2.

(ii) When the current state y = 0:

jump 0 with probability 1 − µ̃1,

jump 1 with probability µ̃1.

One may view this random walk as moving along a vertical in the plane. The
height at time n is given by Yn. The random walk has drift µ̃1 − µ̃2 = 1/µ

(in the positive states). Such a process satisfies the large-deviations principle;
see, for example, Section 5.1 in Dembo and Zeitouni (1996) or Section 7.2 in
Shwartz and Weiss (1995). The jump probabilities are homogeneous, except for
the single boundary {0}. The boundary can be taken care of by a reflection map
[cf. Section 11.4 in Shwartz and Weiss (1995)]. We apply the large-deviations
asymptotic for a special event and by scaling with a special sequence. The scaling
sequence is {aN : N = 1,2, . . . } with aN = ln(x̃1N). The event is{

YρaN < δaN, 0 ≤ Yn < yaN − εn, n = 1,2, . . . , ρaN

}
,

where ρ, δ, ε > 0 and yaN is the initial state of the random walk. In words (see
Figure 4): starting from yaN , the random walk stays below the line l (through yaN ,
with slope −ε) and ends after ρaN time units at (or close by) the 0-boundary. Since
the most likely behavior of the random walk is upward (µ̃1 > µ̃2), the probability
of this event satisfies a large-deviations asymptotic:

lim
δ↓0

lim
N→∞

1

aN

log PyaN
(Y ρaN < δaN, 0 ≤ Yn < yaN − εn,n = 1,2, . . . , ρaN)

=: −J (ρ, y, ε).

To determine the rate function J (ρ, y, ε), we apply the sample path large
deviations as treated in Chapter 11 of Shwartz and Weiss (1995). A path is an
absolute continuous function f : [0, ρ] → R. The considered event involves paths
f ∈ U such that

f (0) = y, f (ρ) = 0, 0 ≤ f (t) < y − εt for all 0 < t < ρ.

Then

J (ρ, y, ε) = inf
f ∈U

∫ ρ

0
I
(
f (t), f ′(t)

)
dt,

where I (·, ·) is the local rate function. When ε < y/ρ, this variational program is
solved for f being a straight line with slope −y/ρ (ε < y/ρ means that f lies
below the line with slope −ε). The rate function J (ρ, y, ε) is convex unimodal
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FIG. 4. Random walk Yn staying below line l.

as a function of ρ. The unique minimum is attained at ρ = µy (the slope of the
optimal f is µ̃1 − µ̃2). The optimal rate equals

J (µ,y, ε) = y ln
µ̃1

µ̃2
.

Summarizing, we have [with α := ln(µ̃1/µ̃2)]

PyaN
(Y ρaN = 0 , 0 ≤ Yn < yaN − εn,n = 1,2, . . . , ρaN)

= exp
(−aNJ (ρ, y, ε) + o(aN)

)
(26)

≤ exp
(−αyaN + o(aN)

)
,

with equality for ρ = µy.
The same conclusion can be drawn for the event{

YρaN < δaN, 0 ≤ Yn < yaN + εn,n = 1,2, . . . , ρaN

}
,

where δ ↓ 0. Hence,

PyaN
(Y ρaN = 0 , 0 ≤ Yn < yaN + εn,n = 1,2, . . . , ρaN)

(27) ≤ exp
(−αyaN + o(aN)

)
.
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Now, let us relate these asymptotics to our problem and show the inequalities (24)
and (25). The random walk Yn stands for the second coordinate ξn

2 of the tandem
queue process when policy ã is applied; that is, the servers always serve. Then we
set h(x̃1N) = γ aN and σN = ρaN to get

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) − εn,n = 1,2, . . . , σN

)
= PγaN

(Y ρaN = 0, Y n < γ aN − εn,n = 1,2, . . . , ρaN),

P ã
x̃(N)

(
ξσN

2 = 0, ξn
2 < h(x̃1N) + εn,n = 1,2, . . . , σN

)
= PγaN

(Y ρaN = 0 , Y n < γ aN + εn,n = 1,2, . . . , ρaN).

Finally, the asymptotics (27) and (26) yield the inequalities (24) and (25),
respectively.

5. Optimal switching curve. In this section, we give some computational
results (using the value iteration algorithm) for computing an optimal policy
of the problem min

∑τ
t=0 ξ tc, where τ = min{t : ξ t = (0,0)}. This problem is

slightly different from the problem of the previous sections, but the same type of
asymptotic result can be proved for it. The optimal switching curve C is depicted
in Figure 5. The parameters are λ = 0.1, µ1 = 0.22, µ2 = 0.2, c1 = 1, c2 = 2. If
we denote by ln the x1-coordinate where C hits the level n, then according to our
asymptotically best policy with logarithmic switching curve, we would have

lim
n→∞ ln/ ln−1 = exp(α) = µ1(1 − µ2)/

(
µ2(1 − µ1)

) = 1.12821.

The computation gives the following numbers:

{ln}22
n=5 = {7,13,20,29,40,53,69,88,109,135,

164,197,236,279,329,385,450,525}
and

{ln/ ln−1}22
n=6 = {1.8571,1.5385,1.45,1.3793,1.325,1.3019,

1.2754,1.2386,1.2385,1.2148,1.2012,

1.198,1.1822,1.1792,1.1702,1.1688,1.1667}.

FIG. 5. The optimal switching curve.
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This seems to indicate that the asymptotic of the switching curve is close to a
logarithmic function.

Acknowledgment. The authors thank an anonymous referee for valuable
remarks that have improved the paper.
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