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This paper deals with rates of convergence in the CLT for certain types
of dependency. The main idea is to combine a modification of a theorem of
Stein, requiring a coupling construction, with a dynamic set-up provided by
a Markov structure that suggests natural coupling variables. More specif-
ically, given a stationary Markov chain X�t�, and a function U = U�X�t��,
we propose a way to study the proximity of U to a normal random variable
when the state space is large.

We apply the general method to the study of two problems. In the first,
we consider the antivoter chain X�t� = �X�t�

i �i∈� � t = 0�1� � � � � where �
is the vertex set of an n-vertex regular graph, and X

�t�
i = +1 or −1. The

chain evolves from time t to t + 1 by choosing a random vertex i, and a
random neighbor of it j, and setting X

�t+1�
i = −X�t�

j and X
�t+1�
k = X

�t�
k for

all k 	= i. For a stationary antivoter chain, we study the normal approx-
imation of Un = U

�t�
n = ∑

i X
�t�
i for large n and consider some conditions

on sequences of graphs such that Un is asymptotically normal, a problem
posed by Aldous and Fill.

The same approach may also be applied in situations where a Markov
chain does not appear in the original statement of a problem but is con-
structed as an auxiliary device. This is illustrated by considering weighted
U-statistics. In particular we are able to unify and generalize some results
on normal convergence for degenerate weighted U-statistics and provide
rates.

1. Introduction and results.

1.1. Background and motivation. Consider a random quantity X and a
real-valued function of X, W = W�X�. For example, X may be the state of a
particle system, and W may count the number of particles in a given set or
the number of sites having a particular value or the sum of the values in some
or all sites. We are interested in conditions under which the distribution of W
is close to normal. Henceforth we standardize W� assuming that

EW = 0� EW2 = 1�(1.1)
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The main idea of this paper is to combine a suitable version of a theorem of
Stein requiring a coupling construction with a dynamic set-up that suggests
natural coupling variables. We start with Stein’s method. Given a random
variable (r.v.) W, Stein’s framework is based on the construction of another
variable W′ (coupling) such that the pair �W�W′� is exchangeable (i.e., their
joint distribution is symmetric) and

E�W′�W� = �1 − λ�W(1.2)

for some positive λ < 1. Theorem 1.1 shows that a measure of proximity of W
to normality may be provided in terms of this exchangeable pair and λ, with
a good approximation requiring W′ −W to be sufficiently small.

We first quote a slightly modified but equivalent version of a theorem of
Stein [(1986), page 35].

Theorem 1.1. For a function h� R → R, set �h = ∫∞
−∞ h�z���dz� where

� is the standard normal measure. Then for any exchangeable pair �W�W′�
satisfying (1.1), (1.2) and any continuously differentiable bounded function h,

�Eh�W� −�h� ≤ 1
λ
�sup �h−�h��

√
Var�E��W′ −W�2�W��

+ 1
4λ

�sup �h′��E�W′ −W�3�
(1.3)

where h′ is the derivative of h. Also, for all real x,

sup
x

�P�W ≤ x� −��x�� ≤ 2
λ

√
Var�E��W′ −W�2�W��

+ 1
�2π�1/4

√
1
λ
E�W′ −W�3�

(1.4)

In concrete models below, the size or dimension of X is designated by a
number n. For example, n may be the number of sites in a particle system or
the number of summands in a particular sum. In other words, X = X�n� where
n is an integer parameter, and we will consider the asymptotic behavior of
W�X� for large n. Nevertheless, when it does not lead to a misunderstanding,
we may omit n.

Let us turn to the dynamic setup and its relation to coupling construc-
tions. First, consider the case when, for n fixed, the distribution of the quan-
tity X = X�n� is the stationary distribution of an ergodic Markov chain,
say, �X�t�� = �X�t��n��, where t = 0�1� ��� denotes the time variable. In cer-
tain applications, the stationary distribution is not given explicitly, which
seems to make the study of the distribution of W difficult. However, un-
der certain conditions, the combination of the Markov structure and the ap-
proach mentioned leads to a derivation of a normal approximation for W
even without calculating the unknown stationary distribution, by the natu-
ral choice �W�W′� = �W�X�t���W�X�t+1���. Exchangeability of this pair clearly
holds if the chain �X�t�� is stationary and reversible. Another condition for
exchangeability is given in Lemma 1.1. As indicated above, this coupling
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should be expected to yield good rates if for the chain under consideration
the r.v. W�X�t�� does not change much in one step, that is, if the difference
W�X�t+1��−W�X�t�� is small. We will demonstrate this approach by considering
the so-called antivoter particle system [see, e.g., Liggett (1985) and references
therein, and Aldous and Fill (1994) and below for details].

Furthermore, the above approach may also be useful if the original prob-
lem is not described in terms of a Markov chain. In this case, one may try to
construct a suitable Markov chain, and use it as above in defining W′. Con-
structions of this type for certain problems were proposed by Stein (1986),
and Diaconis (1977, 1989 and private communication). We will illustrate this
possibility by considering weighted U-statistics, including the classical case of
nondegenerate U-statistics, as well as certain types of degenerate U-statistics.

Returning to Stein’s method, in Theorem 1.2 below, we will improve Theo-
rem 1.1 in the following directions.

1. The last term in (1.4) may be crude: even when W is the normalized sum
of n independent variables, it leads to a bound of the order n−1/4; see Stein
(1986). We improve this term when �W′ −W� is bounded. The latter condi-
tion holds in many situations in which Stein’s method is useful, for exam-
ple, when W counts vertices, edges or subgraphs having a certain property
determined by some random process on a finite graph.

2. The improved rates apply not only to indicators of half lines as in (1.4) but
to a broad class of nonsmooth functions h.

3. Theorem 1.2 extends the range of applications of this approach by replacing
(1.2) by a weaker condition, allowing (1.2) to hold only approximately. The
discussion of weighted nondegenerate U-statistics demonstrates the utility
of this extension.

1.2. A general theorem. Following Bhattacharya and Ranga Rao (1986),
and Rinott and Rotar (1996) (see both for further references), we define for a
given function h�x�, x ∈ R and ε > 0,

h+
ε �x� = sup�h�x+ y�� �y� ≤ ε�� h−

ε �x� = inf�h�x+ y�� �y� ≤ ε��
h̃�x� ε� = h+

ε �x� − h−
ε �x��

Let � be a class of measurable functions on a real line such that the fol-
lowing hold:

1. All functions in � are uniformly bounded in absolute value by a constant
assumed to be 1 without loss of generality;

2. For any real numbers c and d and for any h ∈ � , the function h�cx + d�
belongs to � ;

3. For any ε > 0 and any h ∈ � , the functions h+
ε , h−

ε are also in � , and∫
h̃�x� ε���dx� ≤ aε(1.5)

for some constant a which depends only on the class � .
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We assume without loss of generality that

a ≥
√

2/π�(1.6)

The indicators of all half lines, or the indicators of all intervals compose classes
which satisfy these conditions (with a = √

2/π and a = 2
√

2/π, respectively).
As a less trivial example one may consider the indicators of finite or countable
unions of disjoint intervals, such that in each union the distance between any
two intervals is not less than a fixed positive constant. (Say, as in the set⋃∞

k=0�2k�2k+ 1�.)

Theorem 1.2. Let �W�W′� be exchangeable and (1.1) hold. Define the r.v.
R = R�W� by

E�W′�W� = �1 − λ�W+R�(1.7)

where λ is a number satisfying 0 < λ < 1. Then

δ �= sup��Eh�W� −�h�� h ∈ � �

≤ 6
λ

√
Var�E��W′ −W�2�W�� + 19

√
ER2

λ
+ 6

√
a

λ
E�W′ −W�3�

(1.8)

where a is the constant from (1.5).
Also, if

�W′ −W� ≤ A(1.9)

for a constant A, then

δ ≤ 12
λ

√
Var�E��W′ −W�2�W�� + 37

√
ER2

λ
+ 48

aA3

λ
+ 8

aA2

√
λ
�(1.10)

Remarks. For differentiable bounded functions h, a bound like (1.3) plus√
ER2/λ with appropriate constants holds, generalizing (1.3) to the case that

R 	= 0.
The constants in (1.8), (1.10) are not the best possible; more careful calcu-

lations would yield better ones. Note also that from (1.1) and (1.7) it follows
that

E�W′ −W�2 = 2λ− 2E�WR�W���(1.11)

The relations (1.11) and (1.9) imply

A2

λ
≥ 2 − 2

E�WR�W��
λ

�(1.12)

and hence the last term in (1.10) is not bigger than the third term plus
16aA2

√�E�WR��/λ. (This is obvious if either A/
√
λ > 1 or

√�E�WR��/√λ ≥
1/2. The latter inequality follows readily from (1.12) if A/

√
λ ≤ 1.) In partic-

ular, if R = 0, the last term influences only the constant at the third one.
The bound (1.8) is a rather direct generalization of (1.4). The proof of (1.10),

to be given in Section 4, is more complicated. It follows the main outline of
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Stein’s approach and makes use of some techniques developed in Rinott and
Rotar (1996).

Let us discuss the conditions of Theorem 1.2. First, consider the ex-
changeability of �W�W′� when the distribution of X coincides with the
stationary distribution of a stationary ergodic Markov chain �X�t��, and
�W�W′� = �W�X�t���W�X�t+1��� in distribution. By stationarity, W�X�t+1��
and W�X�t�� have the same marginal distributions; however, they may not
be exchangeable. In this setup, if W�X�t�� is indeed close to normal when
the size n of X is large, one may expect the pair �W�X�t���W�X�t+1��� to be
close to bivariate normal. The latter distribution implies exchangeability, and
therefore it is natural to expect this property at least asymptotically in n. In
this context, the exchangeability condition appears to be in a sense almost
necessary and certainly natural.

If the original Markov chain �X�t�� is stationary and reversible, then the
pair �W�X�t���W�X�t+1��� is clearly exchangeable. If the chain is not reversible
(e.g, in the case of the antivoter chain; see below), the following simple lemma
may be useful.

Lemma 1.1. Let X�t� be a stationary process, T�X�t�� assume nonnegative
integer values, and suppose T�X�t+1�� − T�X�t�� = +1, 0 or −1. Set W =
f�T�X�t���, W′ = f�T�X�t+1��� where f is a measurable function. Then �W�W′�
is an exchangeable pair.

The proof is given in Section 4. Here note only that although T�X�t�� may
not be a Markov chain, it is sufficiently similar to a birth and death chain,
and the exchangeability of �T�X�t���T�X�t+1��� will be shown to be akin to the
reversibility of birth and death chains.

Next, consider condition (1.7). If the pair �W�W′� is close to bivariate nor-
mal, then the linearity of the conditional expectation as a function of W should
hold approximately, indicating that (1.7) is a natural condition in the present
set-up, and one may expect the remainder term R to be small. In fact, R can
be viewed as a remainder term in the expansion of the conditional expectation
of W′ −W, centered at W.

Finally, we discuss the main term on the right-hand sides of (1.8) and
(1.10) involving Var �E��W′ −W�2�W��. When �W�W′� are jointly nor-
mal, it is easy to verify that E��W′ −W�2�W� = λ2W2 + constant, and
Var �E��W′ −W�2�W�� = λ4 Var�W2�, which implies that the first term in
the bounds of Theorems 1.1 and 1.2 has the order λ. This indicates that λ
should be small, and then, if W is close to normal, one may indeed expect
Var�E��W′ −W�2�W�� to be small.

We turn now to applications.

1.3. The antivoter model. The antivoter model was introduced on infinite
lattices by Matloff (1977); see also Liggett (1985) and references there. Don-
nelly and Welsh (1984) and Aldous and Fill (1994) consider the case of fi-
nite graphs. We describe a discrete time version of the antivoter chain on a
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finite graph, which for our goal reflects all the essential features of the usual
continuous time model.

Consider an n-vertex r-regular graph G. To each vertex i of the graph we
associate at time t a random variable X

�t�
i which takes values +1 or −1. Set

X�t� = �X�t�
i �, and define a Markov chain by the following transition rule: at

each time t, a vertex, say i, is chosen at random (all vertices equally likely),
and then another vertex, say j, is chosen at random from �i, the set of neigh-
bors of i with respect to the graph. Then X

�t+1�
i is set to equal −X�t�

j , and

X
�t+1�
k = X

�t�
k for all k 	= i. In words, the chain evolves by a random ver-

tex looking at a random neighbor, and setting its value to the opposite of its
neighbor.

Henceforth we assume that G is neither bipartite nor an n-cycle. This as-
sumption implies that the set of all 2n−2 configurations in which not all X�t�

i

are identical is irreducible, and the support of the stationary distribution is
that set; see Donnelly and Welsh (1984) and Aldous and Fill (1994). We as-
sume also the chain X�t� to be stationary, so sometimes we will omit the index
t writing Xi for X

�t�
i , and so on.

Set U = Un�X� = ∑n
i=1 Xi, and σ2 = σ2

n = VarUn. In many situations σ2
n

has the order of n. We shall quote some facts about it below and in Section
2, along with a discussion on the asymptotic normality of Un for suitable
sequences of graphs. The latter issue was posed as an open problem by Aldous
and Fill (1994).

Throughout this paper, the letter C stands for any universal constant, per-
haps different in different formulas or on two sides of an inequality.

Let W = Wn = Un/σn. Using the Markov structure of the model for the
coupling construction as described in Section 1.2, we obtain the following
theorem.

Theorem 1.3. For any n-vertex r-regular graph G, and any function h∈� ,

sup��Eh�W� −�h�� h ∈ � � ≤ C

(√
VarQ
rσ2

+ a
n

σ3

)
�(1.13)

where

Q = Qn =
n∑

i=1

∑
j∈�i

XiXj�(1.14)

and a is the constant from (1.5).

So, for regular graphs the problem is reduced to the variance of Q, that
is, to mixed moments of the fourth order under the stationary distribution of
the chain. For some simple graphs, VarQ may be calculated or bounded in a
direct way, leading to a CLT with rates for Wn; see examples below and in
Sections 2.2 and 2.3. However, for more complicated graphs, it may not be
easy to compute good bounds for VarQ. We describe below a bound on VarQ
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for certain graphs. A more detailed discussion will be provided in Section 2.
Our goal here is not to exhaust the subject but rather to demonstrate that, at
least under certain conditions, VarQ and the resulting rate of convergence in
Theorem 1.3 may be tractable.

To simplify notations, assume G to be connected, and denote by ∂�i� j� the
distance between vertices i� j, that is, the number of edges traversed in
the shortest walk joining these vertices. Denote by d the diameter, that is,
the maximal value of the distance function.

Suppose now that G is a distance regular graph, which means the follow-
ing [see, e.g., Brouwer, Cohen and Neumaier (1989), Biggs (1993)]. For all
m = 1� � � � � d and any pair of vertices �i� j� with ∂�i� j� = m, the number of
vertices k ∈ �i for which ∂�k� j� = m − 1, as well as the number of those
for which ∂�k� j� = m+ 1, do not depend on the position of the vertices �i� j�
but only on the distance m. Then, since we always assume the graph is reg-
ular, the number of k ∈ �i for which ∂�k� j� = m also depends only on m.
Denote the last number by am. Note that, if r is the degree of the graph, am/r
is the probability that a random neighbor of i has the same distance to j as
i. Let α = min�am/r� m = 1� � � � � d��

Lemma 1.2. For any G as defined above,

VarQ ≤ C�2/α�dn2r�(1.15)

Theorem 1.3 and Lemma 1.2 easily imply the proposition.

Proposition 1.1. Let Gn be a sequence of distance regular graphs having
diameters dn, characteristics α = αn, as defined above, and degrees rn. Let
rn → ∞ and for some absolute strictly positive constants d̄� ᾱ� σ̄ ,

dn ≤ d̄� αn ≥ ᾱ� σ2
n ≥ σ̄2n�(1.16)

Then the distribution of Wn converges to the standard normal distribution as
n → ∞.

Example. Consider the Hamming graph which is a graph whose vertices
are the kd d-dimensional vectors with elements from a finite set of size k, two
being adjacent when they differ in just one coordinate [see, e.g., Biggs (1993)].

For d = 2 it can be represented as a k × k matrix of vertices, and two
distinct vertices are neighbors if there is a row or a column containing both.

The graph defined is distance regular with n = kd, r = d�k−1�. Its diameter
equals d, and am = m�k − 2�� m = 1� � � � � d. Thus am/r = m�k − 2�/�d�k −
1�� > 1/�2d� for k ≥ 3. We show in Section 2 that σ2

n has the order of n, and
asymptotic normality of Wn, with n = kd, d fixed and k → ∞, follows from
Proposition 1.1.

Condition (1.16) is not necessary. In Section 2 we will show that (1.16) may
be weakened and consider other examples. In the same section we prove all
assertions concerning the antivoter model.
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1.4. Weighted U-statistics. In this section we consider weighted U-
statistics, including classical U-statistics as a special case. The models below
may serve as an illustration of the second approach mentioned in Section 1.1,
when a Markov chain does not appear in the original statement of a problem
but is constructed as an auxiliary device.

Let X = �X1� � � � �Xn�, where the Xi’s are i.i.d. r.v.’s. Consider the U-
statistic

U = Un�X� = ∑
j

w�j�ψ�Xj1
� � � � �Xjk

��(1.17)

where k is a fixed integer less than or equal to n; the summation is over all
j = �j1� � � � � jk� such that j1 	= · · · 	= jk and 1 ≤ jp ≤ n� for p = 1� � � � � k; the
function ψ is symmetric under permutation of its arguments, and w�j� is a
symmetric nonnegative weight function. Both ψ and the weights w may also
depend on n, but as a rule this will be suppressed in the notations.

For an interesting application of weighted U-statistics, see, for example,
Nowicki and Wierman (1988) who studied the asymptotic distribution of the
number Un of subgraphs of a random n-vertex graph which are isomorphic
to a given graph. For this problem, Barbour, Karoński and Ruciński (1989)
obtained sharp rates of normal convergence of h�Un� for smooth functions h,
using a different variant of Stein’s method.

Set +j = ψ�Xj1
� � � � �Xjk

� and assume throughout this paper that

E+j = 0� E+2
j = 1�(1.18)

The symbol C�k� below denotes a constant, perhaps different in different
formulas, depending only on k.

Let X∗ = �X∗
1� � � � �X

∗
n� be an independent replica of X. Select in X one coor-

dinate, say i, at random, and replace it by X∗
i . Denote the resulting vector by

X′. Formally, X′ = �X1� � � � �XI−1�X
∗
I�XI+1� � � � �Xn�, where I is a r.v. taking

values 1� � � � � n with equal probabilities, and independent of all other r.v.’s. Let
U′ = U′

n = Un�X′�. Sometimes below we omit the index n. The above construc-
tion is similar to a coupling proposed by Stein in certain examples. Note also
that the transition from X to X′ may be viewed as the one-step evolution of
a reversible Markov chain X�t� for which the joint distribution of �X�t��X�t+1��
coincides with that of �X�X′�.

Set W = Wn = Un/σn� and W′ = W′
n = U′

n/σn, where σ2
n = EU2

n�
For an integer i and j � i, denote by +∗

i� j the random variable which is the
result of replacing in ψ�Xj1

� � � � �Xjk
� the r.v. Xi by X∗

i . By construction

E�U′ −U �X�X∗� = 1
n

n∑
i=1

∑
j�i

w�j��+∗
i� j −+j��(1.19)

We will see later that this relation allows us to verify conditions (1.2) or (1.7).
The main result of this section concerns the degenerate case (see below for

details), but first we touch on the following.
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Nondegenerate statistics. This is the case when

P�E�ψ�X1� � � � �Xk� �X1� = 0� < 1�(1.20)

and one may hope for normal convergence without strong conditions on ψ.
First note that (1.20) implies the existence of a b0 > 0 depending on ψ and

the distribution of Xi such that σ2
n ≥ b2

0
∑n

i=1 v
2
i , where vi = v

�n�
i = ∑

j�i w�j�
[see, e.g., Lee (1990)].

As will be shown in Section 3, if (1.20) holds, the condition (1.2) is not
fulfilled, but the version (1.7) with a remainder is true with λ = 1/n and an
R for which

ER2 ≤ C�k�E+2

n2

∑
i�m� i	=m v2

im

b2
0
∑

i v
2
i

�(1.21)

where the r.v. + = ψ�X1� ����Xk�, and vim = v
�n�
im = ∑

j�i�m w�j�� In particular,

for complete statistics, that is, for the case w�j� ≡ 1, one has v
�n�
i ≥ C�k�nk−1,

v
�n�
im ≤ nk−2, and ER2 ≤ C�k�E+2/b2

0n
3� This means that the second term

in (1.7) is smaller in order than the linear part λW� making it possible to
consider U statistics by the method under discussion. As we will see, under
mild conditions the same is true for weighted statistics.

For complete statistics, the CLT in the case (1.20) is well elaborated; see, for
example, the book by Lee (1990), which contains much of the literature on the
subject. To our knowledge, weighted statistics are not as well investigated; in
particular, the accuracy of the normal approximation has not been described
yet. Using the approach of this paper, we will consider in Section 3 the case
of bounded ψ, and will prove the following.

Let v̂n = max1≤i≤n vi, v̄2
n = �1/n�∑n

i=1 v
2
i , and β2

i �n� = �∑n
m=1�m 	=i v

2
im�/

�∑n
m=1�m 	=i vim�2. Note that �1/n� ≤ β2

i �n� ≤ 1, and β2
i �n� = O�1/n� if all vim

have “the same order.”

Proposition 1.2. Let ψ be bounded uniformly in n, and (1.20) hold. Then
for a constant L depending only on ψ, k and the distribution of Xi,

sup��Eh�W� −�h�� h ∈ � � ≤ L

{(∑
1≤i≤n v

2
iβ

2
in∑

1≤i≤n v
2
i

)1/2

+ a
1√
n

(
v̂n
v̄n

)3}
�(1.22)

where a is the same constant as in (1.5).

It is easy to see that, say, for weights such that all vi’s are of the same
order and the same is true for vim’s (which is obviously the case for complete
statistics), the right-hand side of (1.22) is O�1/√n��

Suppose now (1.20) does not hold. In this case, the characteristics R and λ
depend on the “degree of degeneracy.” In particular, if

E�ψ�X1� � � � �Xk� �X1� � � � �Xk−1�� = 0 a.s.�(1.23)
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then E�+∗
i� j �X� = 0, and consequently (1.19) implies (1.2), or in other words

R = 0, with λ = k/n. (The coefficient k arises since in the double sum in (1.19)
each j is counted k times.)

The gap between (1.23) and (1.20) is filled as follows: if for some l ≤
k, one has P�E�ψ�X1� � � � �Xk� �X1� � � � �Xl�� = 0� < 1 but E�ψ�X1� � � � �
Xk� �X1� � � � �Xl−1�� = 0 a.s., then (1.7) holds with λ = l/n and, under mild
conditions, with a “small” R. We omit the details of this intermediate case and
turn to the following.

Degenerate U-statistics. For simplicity, we restrict ourselves to the case
k = 2, and consider the r.v.:

U = Un�X� =
n∑

i=1

n∑
j=1

wijψ�Xi�Xj��(1.24)

where wij are nonnegative weights, wij = wji, wii = 0. Assume

E�ψ�X1�X2� �X2� = 0 a.s.�(1.25)

which, in view of (1.18), implies in particular that σ2
n �= EU2

n = ∑n
i�j=1 w

2
ij.

In the case (1.25), Un may be asymptotically normal for either of the fol-
lowing reasons: the weights wij are different for different �i� j� in a way that
ensures a weak dependence between the summands in (1.24) or ψ = ψn de-
pends on n in a specific way (see below for details).

The former factor was investigated in many papers; see, for example, Janson
(1984), O’Neil and Redner (1993), and references there. In particular, O’Neil
and Redner (1993) showed the following.

Let the weight function wij be uniformly bounded, and Hn be the maximum
number of nonzero weights in each collection wi1� � � � �win. Suppose there are
constants k�K, and α, 0 ≤ α < 1, such that

0 < kn1+α ≤ σ2
n and Hn ≤ Knα�(1.26)

Then Un is asymptotically normal.
The latter of the mentioned factors was considered in Hall (1984) where

for complete statistics, that is, for the case wij ≡ 1, the following assertion
was proved. Let ψ = ψn and γn�x�y� = E�ψn�X1� x�ψn�X1� y��. Set +n =
ψn�X1�X2�, 6n = γn�X1�X2�� Then Un is asymptotically normal under the
condition

n−1E+4
n +E62

n → 0�(1.27)

Below we unify both factors and provide some rates of convergence. To this
end, set wi = �wi1� � � � �win�, and define

Dn =
∑n

k�l=1�wk·wl�2

�∑n
k=1 �wk�2�2

�

where � · � and · denote length and dot product, respectively. The character-
istic Dn plays an essential role in an assertion below. One may say that Dn
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measures the extent to which the summands in (1.24) are dependent. For a
complete statistic, that is, when wij ≡ 1, one has Dn = 1, while, say, in the
case (1.26) Dn → 0� This will be proved in the end of Section 3.

First, consider a corollary of Theorem 1.4. This corollary is informative if
the quantities �wi� do not differ much in order of magnitude, or in other words
if the statistic is not “too asymmetric.” Set Mn = �maxi≤n �wi��/�mini≤n �wi���

Proposition 1.3. There exists an absolute constant C such that

δn �= sup��Eh�Wn� −�h�� h ∈ � � ≤ CM3/2
n

(
a
E+4

n√
n

+DnE62
n

)1/2

�(1.28)

In particular, if Mn and E+4
n are uniformly bounded, for Wn to be asymp-

totically normal it is sufficient that DnE62
n → 0. The last condition reflects

the influence of both mentioned factors.
Proposition 1.3 is a corollary of the following more precise but somewhat

less transparent assertion. Let

Fn =
∑n

i=1 �wi�4
�∑n

i=1 �wi�2�2
�

Note that n−1 ≤ Fn ≤ 1, and Fn ≤ M4
n/n, so if Mn is uniformly bounded,

Fn = O�1/n��

Theorem 1.4. There exists an absolute constant C such that

δn ≤ C
(
aE+4

n�nF3
n�1/4 +DnE62

n

)1/2
�(1.29)

In the case (1.26), we have Dn = o�1� as mentioned above, and it is easy to
verify that Fn = O�1/n�. Therefore, the above-mentioned result of O’Neil and
Redner (1993) follows from Theorem 1.4 save that, in order to obtain rates, we
require the finiteness of the fourth moments. The bound (1.29) includes the
same characteristic E62

n as in (1.27); however, Hall’s result does not follow
completely from (1.29) due to the first term in the brackets in (1.29), which
for complete statistics has the order n−1/2E+4

n. This may be connected with
the fact that we deal with rates; providing rates leads to some crudeness in
calculations.

Hall applied his theorem to prove the asymptotic normality of the squared
error of some nonparametric density estimators with certain bandwidths. Our
result provides rates for this problem.

The rest of the paper is structured as follows. In Section 2 we prove Theorem
1.3 and other results from Section 1.3 and consider distance regular graphs in
more detail. Section 3 contains the proofs of assertions concerning U-statistics.
In Section 4 we prove Theorem 1.2 and Lemma 1.1.

2. The antivoter model: proofs and additional examples. In this sec-
tion we elaborate on and prove the results presented in Section 1.3 and discuss
some conditions on sequences of graphs for asymptotic normality of Wn.
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2.1. Proof of Theorem 1.3. For a fixed time t, set X = X�t� and X′ = X�t+1�.
We apply Theorem 1.2 to the pair �W�W′� = �W�X��W�X′��. In the present
case, the Markov chain X�t� is not reversible. However, exchangeability of the
pair �W�W′� follows from Lemma 1.1 and the relation U�X� = 2T�X� − n,
where T = T�X� counts the number of vertices i where Xi = 1.

Next we verify (1.7). Set

a�X� = the number of edges �i� j� with Xi = Xj = 1�

b�X� = the number of edges �i� j� with Xi = Xj = −1�

c�X� = the number of edges �i� j� with Xi 	= Xj�

Observe that for a regular graph of a degree r

T�X� = �2a�X� + c�X��/r� n−T�X� = �2b�X� + c�X��/r�
Instead of W and W′, we consider the corresponding unstandardized variables
U and U′. It is not hard to see that

P�U′ −U = −2 �X� = 2a�X�/�rn�� P�U′ −U = 2 �X� = 2b�X�/�rn��(2.1)

Therefore

E��U′ −U� �X� = 4b�X�/�rn� − 4a�X�/�rn� = 2�n− 2T�/n = −2U/n�

Dividing through by σn and taking expectation conditioned on W, (1.7) follows
with λ = 2/n and R = 0. Also, (1.9) holds with A = 2/σn, since for any n,
�U′ − U� takes one of the values 2 or 0 only. It follows from the discussion
after (1.10) that apart from the first term on the right-hand side of (1.10), the
remaining terms do not exceed aCn/σ3

n.
We now compute the first term on the r.h.s. of (1.10). By (2.1) we have

E��U′ −U�2 �X� = 4�2a�X�/�rn� + 2b�X�/�rn���
Next, note the relations

2a�X� + 2b�X� + 2c�X� = rn� Q = 2a�X� + 2b�X� − 2c�X��
which imply

4�a�X� + b�X�� = Q+ rn�(2.2)

It follows readily that E��U′ −U�2 �X� = 2�Q+ rn�/�rn� and

VarE��W′ −W�2 �X� = CVar
[

Q

rnσ2
n

]
= C

�rn�2σ4
n

VarQ�

Since W is a function of X, VarE��W′ −W�2 �W� ≤ VarE��W′ −W�2 �X�, and
(1.13) follows. ✷

We obtained (1.13) from Theorem 1.2. Obviously, it applies to step functions
h. If σ2

n ≥ Cn, which is the case for many graphs, the right-hand side of (1.13)
becomes �C/rn�

√
VarQ+C/

√
n. Note that for step functions, (1.4) would only

imply the bound �C/rn�
√

VarQ+Cn−1/4.
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2.2. Bounds on VarQ. The bound (1.13) contains two quantities: σn and
VarQ. For the former we will use the following lemma from Aldous and Fill
(1994) concerning r-regular graphs.

Lemma 2.1. For a set of vertices A, let κ̄�A� be the number of edges with
either both ends in A or both in Ac, and set κ = infA κ̄�A�, where the infimum
is taken over all subsets of vertices. Then

2κ
r

≤ σ2
n ≤ n�

The main aim of the discussion below is to suggest ways to compute VarQ
(or upper bounds for it) for certain graphs and find conditions for asymptotic
normality of W for natural sequences of graphs.

Donnelly and Welsh (1984) computed correlations of the type needed here
in terms of the following dual process, called the annihilating random walk.
Assume that particles are located at some of the vertices of the graph G. Let
B denote the set of vertices which are initially occupied by particles. At times
t = 1�2� � � � � a random particle is selected, and it moves to a randomly chosen
neighboring vertex. If the latter vertex is already occupied, the two particles
are annihilated, and the vertex becomes empty. For a set B of even cardinality,
let τ�B� denote the total number of steps taken by all particles until all are
annihilated, and as before, let Xi denote the value at vertex i in a stationary
antivoter chain on G. We need the following fact, which is a special case of
Theorem 1 of Donnelly and Welsh (1984); see also Griffeath (1979).

Lemma 2.2. We have

P�XiXj = 1� = P�τ��i� j�� is even��
P�XiXjXkXl = 1� = P�τ��i� j� k� l�� is even�

(2.3)

for any distinct vertices i� j� k� l.

Assume now that G is distance regular, with degree r, and diameter d. In
addition to the notations of Section 1.3, for each pair of vertices �i� j� with
∂�i� j� = m, let

bm be the number of vertices k in �i which satisfy ∂�k� j� = m+ 1;
cm be the number of vertices k in �i which satisfy ∂�k� j� = m− 1.

The number am is defined as in Section 1.3.
The numbers �am� bm� cm� in some arrangement, sometimes as a matrix,

are called the intersection array of G; see Biggs (1993), Brouwer, Cohen and
Neumaier (1989) for details. The latter book is devoted to distance regular
graphs and provides a host of examples.

Note that for any distance regular graph, τ��i� j�� will have the same dis-
tribution if we allow only the particle initially at i to move and count the
number of steps until it reaches j. Also, a walk from i to j can be viewed
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as a sequence of steps; each step brings the particle a unit distance closer, or
farther away, or maintains the distance to its target at j. It is easy to see that
for a distance regular graph, the probability of such a particular sequence de-
pends only on ∂�i� j�, and therefore the distribution of τ��i� j�� depends only
on ∂�i� j�.

Set pm = P�τ��i� j�� is even) where m = ∂�i� j�, m = 1� � � � � d, and εm =
�pm − 1/2�. Then by Lemma 2.2, �E�XiXj�� = �2pm − 1� = 2εm. Observe now
that

εm ≤ ε1�(2.4)

Indeed, for a particle moving from i to j with ∂�i� j� = m, let P be the proba-
bility that, when entering the neighborhood of j for the first time, the particle
has already made an even number of steps. Then pm = p1P+�1−p1��1−P�,
which easily implies (2.4). Thus for i 	= j,

�E�XiXj�� ≤ 2ε1�(2.5)

Next, consider an annihilating random walk with four initial particles.
Since the particles move one at a time, after annihilation of the first pair,
the second pair will be at some positive distance and considerations similar
to the above imply that

�E�XiXjXkXl�� = �2P�τ��i� j� k� l�� is even� − 1� ≤ 2ε1�(2.6)

From (2.5) and (2.6) we have

VarQ ≤ EQ2 ≤ C�nr+ n2r2ε1��(2.7)

where C is an absolute constant. So, it remains to provide an appropriate
bound for ε1. The following lemma gives such a bound in terms of the inter-
section array matrix

L = 1
r




a1 b1 0 � � � � � � 0 0

c2 a2 b2 0 0 � � � 0

0 c3 a3 b3 0 � � � 0
���

���

0 0 � � � � � � 0 cd ad



�(2.8)

Lemma 2.3.

ε1 = 1
2r

∣∣�I+L�−1
11

∣∣�(2.9)

Proof. By the formula of total probability, we readily obtain pm = �cm�1−
pm−1�+am�1−pm�+bm�1−pm+1��/r, m = 1� � � � d, where p0 = 1 and pd+1 = 0.
Note that cm + am + bm = r, m = 1� � � � � d (where bd = 0), and in particular
a1 + b1 = r − 1, since c1 = 1. In matrix notation we then have �I + L�p = v,
where p is the d-vector whose components are p1� � � � � pd, and v is a d-vector
whose first entry is 1−1/r and the remaining entries are equal to 1. It follows
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that �I + L��u − p� = s, where u is a d-vector with all entries equal to 1/2,
and the entries of s are all 0 save the first entry which is 1/�2r�. The matrix
L is strictly substochastic, hence its spectral radius is strictly smaller than 1
and thus �I+L� is invertible. We have u − p = �I+L�−1s, and in particular
1/2 − p1 = �1/2r��I+L�−1

11 . ✷

We remark briefly that a similar approach may be attempted with weaker
assumptions on the graph. In more general cases, the matrix L should be
replaced by the adjacency matrix of the graph. See Donnelly and Welsh (1984)
for such results.

For certain graphs the right-hand side of (2.9) may be estimated directly,
yielding a bound on VarQ.

Example. The complete k-partite graph is a union of k subgraphs, such
that there are no edges between pairs of vertices in the same subgraph, and
all other pairs of vertices are connected. If each subgraph has l vertices, this is
a distance regular graph with the number of vertices n = kl, diameter d = 2,
and degree r = �k − 1�l. The intersection array is determined by b1 = l − 1,
c2 = r, and hence a2 = 0.

Direct calculation shows that for any k ≥ 3, the absolute value of the deter-
minant of I+L is bounded below by 1, and also ��I+L�−1

11 � ≤ 1. So, by Lemma
2.3 and (2.7), VarQ ≤ Cn2r�

To evaluate σn, we apply Lemma 2.1. Let k ≥ 3, and A = A1 ∪A2 ∪· · ·∪Ak,
where Ai is a set of vertices from the ith subgraph, i = 1� � � � � k. The number
of edges with either both ends in A or both in Ac equals

∑
1≤i<j≤k��Ai� · �Aj�+

�l − �Ai���l − �Aj���, and it is easy to see that each term in the latter sum is
bounded below by l2/2. It follows that κ̄�A� ≥ (

k
2

)�l2/2�, and by Lemma 2.1 we
obtain σ2

n ≥ n/2.
The above bounds and Theorem 1.3 imply that, as k → ∞, or l → ∞ (or

both), Wn converges to normal in distribution.

The following lemma may be useful when ��I+L�−1
11 � cannot be calculated

explicitly.

Lemma 2.4. If ai/r ≥ α for all i = 1� � � � � d and some α > 0, then ��I +
L�−1

11 � ≤ �2/α�d.

Proof. We can write I + L = �α + 1�I + D where D is a tridiagonal
substochastic matrix. The eigenvalues of such a D (and L) are real and their
absolute values are no larger than 1 [see, e.g., Horn and Johnson (1985), Prob-
lem 8.3.7 and Theorem 8.1.22]. Therefore the eigenvalues of I + L are all in
the interval �α�2�. The same applies to every principal submatrix of I + L.
This shows that αd is a positive lower bound on the determinant of I+L, and
2d−1 is an upper bound on any principal minor of order d− 1. It follows that
��I+L�−1

11 � ≤ 2d−1α−d. ✷
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Lemmas 2.4 and 2.3 and inequality (2.7) imply Lemma 1.2 from Section 1.3,
and hence Proposition 1.1. We applied Proposition 1.1 in that section to the
Hamming graph. To complete the discussion of that example, it remains to
show that σ2

n ≥ σ̄2n for some σ̄ > 0. To this end, one may again apply Lemma
2.1.We omit the calculations, which are similar to those used for the previous
example.

Next we supplement the above conditions on the graph structure by one
more which is different in nature.

2.3. A simple condition on the graph structure. For the complete graph,
direct calculations yield the bounds VarQ ≤ Cn3 and σ2

n ≥ cn where C and c
are universal constants. Together with (1.13) this leads to the rate O�1/√n�
in the CLT for Wn.

The condition discussed below applies to graphs which are in some sense
close to being complete but need not be distance regular. We consider rather
simple graphs; however, even for those, the stationary distribution does not
seem to be computable explicitly.

Consider a regular graph of a degree r, and set µ�j� = ∑
i∈�j

���i −
�j��?��j −�i���� where �i −�j� is the set of all vertices in �i except for the
vertex j, ? denotes symmetric difference of sets and � · � their cardinality.

Note that for any complete graph, as well as for any collection of noncon-
nected complete subgraphs, µ�j� = 0 for all j� In general, �µ�j�� < 2r2�

Lemma 2.5. For any regular graph of degree r,∣∣∣∣EQ+ nr

2r− 1

∣∣∣∣ ≤ 1
2r− 1

n∑
j=1

µ�j�� Var�Q� ≤ 16nr2 + 2n
n∑

j=1

µ�j��(2.10)

Example. Consider a collection of k nonconnected complete subgraphs
each of degree r (i.e., each having r + 1 vertices). In each subgraph, choose
a pair of vertices and disconnect them; call one vertex chosen “left”, and the
other “right.” Starting with the first subgraph, we connect each right vertex
with the left vertex of the next subgraph, and the right vertex of the last
subgraph with the left vertex of the first subgraph, obtaining a “cycle” of sub-
graphs.

It is easy to calculate that for the graph constructed, any “chosen” vertex j
has �µ�j�� ≤ �r − 1� + �r − 1� + 2�r − 1� = 4�r − 1�, and for any “nonchosen”
vertex µ�j� ≤ 2. Thus

∑n
j=1 µ�j� ≤ 2k�4r− 4�+k�r− 1�2 ≤ 10kr < 10n, since

n = k�r+ 1�.
So, in this case Var�Q� ≤ 16nr2 + 20n2�
Similarly, for any regular graph of degree r , which may be divided into

subgraphs such that in each subgraph no more than d0 vertices have connec-
tions with vertices from the other subgraphs, and apart from these vertices
all others are connected with each vertex of the same subgraph,

Var�Q� ≤ C�d0��nr2 + n2��
where the constant C�d0� depends only on d0.
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The above bounds together with Theorem 1.3 again imply asymptotic nor-
mality of Wn with the rate O�1/√n+1/r�, provided σ2

n ≥ σ̄2n and r = rn → ∞�

Remark. Instead of the numbers µ�j�, consider the random variables
ν�j� = ∑

i∈�j

∑
k∈�i−�j�Xk − �r− 1�∑i∈�j

Xi� It can be shown with some ele-
mentary calculations that �ν�j�� ≤ µ�j� everywhere, and therefore E�ν�j�� ≤
µ�j�� The bounds in (2.10) remain valid if µ�j� is replaced by E�ν�j�� for all
j. Such bounds are less explicit but essentially more precise. Below we prove
this last version.

Proof of Lemma 2.5. Let �X�t�� be the Markov chain described in Sec-
tion 1.3, and a pair of vectors �X�Y� have the same joint distribution as
�X�t��X�t+1��. Observe that

E�YiYj�X� = 1
nr

∑
k∈�i

�−XkXj� +
1
nr

∑
k∈�j

�−XkXi� +
n− 2
n

XiXj�(2.11)

Therefore

EQ = E
n∑

i=1

∑
j∈�i

E�YiYj�X� = − 2
nr

E
n∑

i=1

∑
j∈�i

∑
k∈�j

XkXi +
n− 2
n

EQ�

This leads to

EQ = −1
r
E

n∑
i=1

∑
j∈�i

∑
k∈�j

XkXi = −1
r
E

n∑
i=1

∑
j∈�i

(
1 + ∑

k∈�j−�i�
XkXi

)

= −n−E
n∑

i=1

Xi

(
1
r

∑
j∈�i

∑
k∈�j−�i�

Xk

)

= −n− r− 1
r

n∑
i=1

∑
j∈�i

E�XiXj� −
1
r

n∑
i=1

E�Xiν�i��

= −n− r− 1
r

EQ− 1
r

n∑
i=1

E�Xiν�i���

which easily implies the first bound in (2.10).
The computation of EQ2 is similar but more tiresome. We provide only a

sketch. If the numbers i1� i2� i3� i4 are all distinct,

E�Yi1
Yi2

Yi3
Yi4

�X�

= 1
nr

( ∑
k∈�i1

�−XkXi2
Xi3

Xi4
� + ∑

k∈�i2

�−XkXi1
Xi3

Xi4
�
)

+ 1
nr

( ∑
k∈�i3

�−XkXi1
Xi2

Xi4
� + ∑

k∈�i4

�−XkXi1
Xi2

Xi3
�
)

+ n− 4
n

�Xi1
Xi2

Xi3
Xi4

��

(2.12)
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Let B′ = ∑n
i=1

∑
j∈�i

∑
m∈�i�m 	=j� and let B′′ be the sum over all pairs �i� j�,

�m� l� such that j ∈ �i, l ∈ �m� and all indices are distinct. We have EQ2 =
2nr+ 4B′E�YjYm� + B′′E�YiYjYmYl��

Noting that �B′E�YjYm�� ≤ nr2� and using (2.12) and the last expression
for EQ2, one can conclude by calculations similar to the above for EQ, that
B′′E�XiXjXmXl� ≤ −�n−2�EQ+10nr2 −��r− 1�/r�EQ2 +n

∑n
m=1 E�ν�m���

The last inequality implies EQ2 ≤ �r/�2r− 1���16nr2 + n
∑n

m=1 E�ν�m��� +
�2r/�2r− 1��EQ− �nr/�2r− 1��EQ� and therefore, since EQ < 0 (see below)
and �EQ� ≤ nr,

Var�Q� ≤ 16nr2 + n
n∑

m=1

E�ν�m�� + �EQ�
∣∣∣ nr

2r− 1
+EQ

∣∣∣ �
The second bound in (2.10) now follows from the first. ✷

The relation EQ < 0 follows from n/2 > VarU = 2E�a�X� + b�X��/r =
�EQ + rn�/�2r�, where the first two facts can be found in Aldous and Fill
(1994) and the third follows from (2.2).

2.4. Some additional remarks on dependency structures. In the antivoter
model, the largest among the covariances Cov�Xi�Xj� tends to occur when i
and j are neighbors with respect to the graph. These correlations are negative;
see Donnelly and Welsh (1984). However there is no reason to expect that in
general a stronger notion of negative dependence, such as negative association
as defined by Joag-Dev and Proschan (1983), holds.

In a more general context, consider X�n� = �Xi�n��i∈V, a real-valued sta-
tionary process (so that time is not indicated), where � is the vertex set of
a graph G with n vertices, (e.g., a spin system on a graph, the antivoter
model, etc.). Let U�n� = ∑n

i=1 Xi�n�, and σ2
n = VarU�n�. Conditions for

asymptotic normality of U�n� assuming positive or negative association of
�Xi�n�� and related, somewhat weaker, assumptions can be found in New-
man (1984); see also references therein. For example, one may derive from
these results that if the system X�n� is positively or negatively associated and
if

∑n
i=1 E�Xi�n��3/�

∑n
i=1 VarXi�n��3/2 → 0, then the distribution of �U�n� −

EU�n��/σn converges to a normal distribution, provided

lim
n→∞

1
σ2
n

n∑
i=1

∑
j�j 	=i

Cov�Xi�n��Xj�n�� = 0�(2.13)

Newman applied results of this type to the Ising model under conditions which
guarantee the required association property.

Returning to the antivoter model, note that if σ2
n is of order larger than n2/3,

Theorem 1.3 shows that asymptotic normality of W as n → ∞ holds provided
�
√

VarQ/rσ2
n� → 0. The latter condition is equivalent to

lim
n→∞

1
r2σ4

n

∑
i

∑
j∈�i

∑
k

∑
l∈�k

Cov�Xi�n�Xj�n��Xk�n�Xl�n�� = 0�(2.14)
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Since in this case association does not hold, it is not surprising that moments
of order higher than 2 appear. Here, and in other examples, moments of order
4 arise.

Preliminary calculations show that our approach may be applicable to cer-
tain particle systems. The present approach may yield results (and rates) for
such systems when association (or the FKG condition) does not hold.

3. U-statistics: proofs. We start with the general scheme. As in Section
1.4, denote by I a r.v. taking values 1� � � � � n with equal probabilities and
independent of all other r.v.’s. Then

U′ −U = ∑
j�I

w�j��+∗
I� j −+j��(3.1)

Note that (3.1) implies (1.19).
To arrive at (1.7), we use the Hoeffding (1948) representation (more pre-

cisely H-projection) and define the functions g�x� = Eψ�X1�X2� � � � �Xk−1� x�
and θ�x1� � � � � xk�=ψ�x1� � � � � xk�−g�x1�−· · ·−g�xk�. Set Fj = θ�Xj1

� � � � �Xjk
�

for j=�j1� � � � � jk�, and for i ∈ j denote by F∗
i� j the random variable which is

the result of replacing in θ�Xj1
� � � � �Xjk

� the r.v. Xi by X∗
i . Proceeding from

(1.19) it is straightforward to calculate that

E�U′ −U �X�X∗�

= − 1
n
U+ 1

n

{ n∑
i=1

∑
j�i

w�j�F∗
i� j − �k− 1�∑

j

w�j�Fj

+
n∑

i=1

∑
j�i

w�j�g�X∗
i�
}
�

(3.2)

Since E�g�X∗
i� �X� = 0, (3.2) implies (1.7) with λ = 1/n and

R = 1
nσn

E

{ n∑
i=1

∑
j�i

w�j�F∗
i� j − �k− 1�∑

j

w�j�Fj � U
}
�(3.3)

Proof of Proposition 1.2. Considering this to be a preliminary result,
we give only a sketch of the proof.

As was noted in Section 1.4 in the case (1.20), σ2
n ≥ b2

0
∑n

i=1 v
2
i for a b0 > 0.

Furthermore, if the sets of indices j and j′ do not have more than one common
index, Fj and Fj′ are uncorrelated. The same also holds for pairs �F∗

i� j�F
∗
i′� j′ �

and �F∗
i� j�Fj′ �. Note also that �EF∗

i� jF
∗
i′� j′ � ≤ CE+2, and the same holds for the

products of the other r.v.’s mentioned above. This implies that for a constant
C�k�,

ER2 ≤ C�k� 1
n2σ2

n

∑
i�m� i	=m

∑
j�i�m

∑
j′�i�m

w�j�w�j′�E+2 = C�k�E+2

n2σ2
n

∑
i�m� i	=m

v2
im

and (1.21) follows.



A CLT FOR DEPENDENT SUMMANDS 1099

Let now �ψ� ≤ b for some b > 0. Then, by (3.1),

�W′ −W� ≤ 2bmax1≤i≤n vi
σn

≤ 2bmax1≤i≤n vi

b0

√∑
1≤i≤n v

2
i

�(3.4)

To apply Theorem 1.2, it remains to estimate Var�E�W′ − W�2 �W��. Let
ηi� j = +∗

i� j −+j. Then

Var�E�W′ −W�2 �W�� ≤ Var�E�W′ −W�2 �X�X∗�� ≤ 1
n2σ4

n

VarK�(3.5)

where K = ∑
i�
∑

j�i w�j�ηi� j�2�
The calculation of VarK is somewhat tiresome but straightforward. For the

case k = 2, similar calculations will be provided in the proof of Theorem 1.4 be-
low. So, we omit the details, noting only that the leading term in the expansion
for EK2 happens to be less than the square of the leading term in EK, and
the remaining leading term is less than C�k�b4�∑1≤i�m≤n� i	=m v2

im��
∑

1≤i≤n v
2
i �.

Combining all bounds above and Theorem 1.2, one easily comes to (1.22). ✷

Proof of Theorem 1.4. Let ηij = ηijn = ψn�X∗
i �Xj�−ψn�Xi�Xj�. In this

particular case, (3.1) takes the form

U′ −U = 2
n∑

j=1�j 	=I
wIjηIj�(3.6)

and therefore

E�U′ −U �X�X∗� = 2
n

n∑
i=1

n∑
j=1� j 	=i

wijηij�(3.7)

In view of (1.25) this implies

E�U′ −U �U� = − 2
n
U�

Thus in this case, R = 0 and λ = 2/n.
Observe now that Eη4

12 ≤ CE+4
n and by (1.18), σ2

n = ∑n
i�j=1 w

2
ij = ∑n

i=1 �wi�2.
Making use of these relations, (3.6) and (1.25), we have

E�W′ −W�4 = 16
nσ4

n

E
n∑

i=1

( n∑
j=1

wijηij

)4

= 16
nσ4

n

n∑
i=1

( n∑
j=1

w4
ijEη4

ij +
n∑

j� k=1�k 	=j
w2

ijw
2
ikEη2

ijη
2
ik

)

≤ 16
nσ4

n

Eη4
12

n∑
i�j�k=1

w2
ijw

2
ik ≤ C

nσ4
n

E+4
n

n∑
i=1

�wi�4 = CE+4
n

n
Fn�

(3.8)

We get from (3.8) for the last term in (1.8) that√
E�W′ −W��3/λ ≤ C�E+4

n�3/8�nF3
n�1/8�(3.9)
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Furthermore, by (3.6),

Var�E�W′ −W�2 �X�X∗�� ≤ 16
n2σ4

n

VarK�(3.10)

where

K =
n∑

i=1

( n∑
j=1

wijηij

)2

�

In order to compute VarK note first that in the present degenerate case,

EK =
n∑

i=1

n∑
j=1

w2
ijEη2

ij = �Eη2
12�σ2

n�(3.11)

Next consider EK2. In the bound below we replace fourth order moments such
as E�η2

12η
2
13�, or E�η2

12η13η23� and similar ones by Eη4
12. Similar moments,

in which there is an index of η which appears only once, always vanish in the
degenerate case. We obtain readily

EK2 ≤ �Eη2
12�2

( ∑
i� j� k� l�k 	=i� j� l	=i� j

w2
ijw

2
kl

)

+CEη4
12

( ∑
i� j� k�k 	=i� j

w2
ijwikwjk

)

+C�E�η13η14η23η24��
( ∑

i� j� k� l

wikwilwjkwjl

)
�

(3.12)

The first term is less than the square of (3.11). The second is bounded by

CEψ4
n�X1�X2�

∑
i

∑
j

w2
ij

(∑
k

wikwjk

)

≤ CE+4
n

(∑
i

∑
j

w4
ij

)1/2(∑
i

∑
j

(
wi · wj

)2
)1/2

≤ CE+4
n

(∑
i

∑
j

w4
ij

)1/2(∑
i

�wi�2
)

= CE+4
n

(∑
i

∑
j

w4
ij

)1/2

σ2
n = CE+4

nF
1/2
1n σ4

n�

where the last equality defines F1n.
The third term in (3.12) does not exceed

CEγ2
n�X1�X2�

n∑
k=1

n∑
l=1

�wk·wl�2�
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Combining all these bounds, for the first term in (1.8), we have

1
λ

√
Var�E�W′ −W�2 �W�� ≤ 1

λ

√
Var�E�W′ −W�2 �X�X∗��

≤ C
{
DnE62

n +F
1/2
1n E+4

n

}1/2
�

Note that for wij ≡ 1 in the brackets in the right-hand side, we have exactly
the expression from (1.27), but we should also take into account the bound in
(3.9). It remains to apply (1.8) and to compare all the terms in the final bound.
When doing this, one should use that F1n ≤ Fn and Fn ≥ 1/n. We omit simple
calculations. ✷

In conclusion we prove that Dn → 0 under condition (1.26). Indeed, setting
w̄ = maxi� j wij, we have �wk·wl� ≤ w̄2Knα and

∑
k 	=l

�wk·wl�2 ≤ w̄2Knα
∑
k� l

∑
j

wkjwlj = w̄2Knα
∑
l�j

wlj

(∑
k

wjk

)

≤ w̄3�Knα�2 ∑
l� j

wlj = w̄3�Knα�2 ∑
l

(∑
j

wlj

)

≤ w̄4�Knα�3n = w̄4K3n1+3α�

Hence, Dn = O�nα−1� = o�1� for α < 1.

4. Proofs of Theorem 1.2 and Lemma 1.1.

Proof of Theorem 1.2.

Lemma 4.1. Let P be a probability measure on R. For any bounded mea-
surable function h and t ∈ �0�1�, define

ht�x� =
∫
h�x+ ty���dy��

Then

sup
{∣∣∣∣
∫
hd�P−��

∣∣∣∣� h∈�

}
≤2�8 sup

{∣∣∣∣
∫
htd�P−��

∣∣∣∣� h∈�

}
+4�7at�(4.1)

where a is the same as in (1.5).

This lemma is close to Lemma 2.11 in Götze (1991). To prove (4.1) it suffices
to apply a standard smoothing inequality [see Bhattacharya and Ranga Rao
(1986), Lemma 11.4, page 95] and to use the closure property of � w.r.t. the
operations h+

ε � h
−
ε , and the fact that for any signed measure µ,∫

hd�µ ∗�t� =
∫
ht dµ�

where �t�x� = ��x/t�. We omit the details. ✷
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Fix for now t ∈ �0�1� and set

f�x� = 1
φ�x�

∫ x

−∞
�ht�u� −�ht�φ�u�du�(4.2)

where φ�·� is the standard normal density. Differentiation of f yields the well-
known relation [Stein (1972), (1986)]

f′�x� − xf�x� = ht�x� −�ht�(4.3)

Exchangeability of �W�W′� and (1.7) imply

0 = E��W′ −W��f�W′� + f�W���
= 2E�f�W��W′ −W��

+E��W′ −W��f�W′� − f�W���
= −2λE�Wf�W�� + 2E�f�W�R�W�� +E��W′ −W��f�W′� − f�W����

and hence

E�Wf�W�� = E��W′ −W��f�W′� − f�W���
2λ

+ E�f�W�R�W��
λ

�(4.4)

Together with (4.3) this implies

Eht�W� −�ht = Ef′�W� − E��W′ −W��f�W′� − f�W���
2λ

− E�f�W�R�W��
λ

= 1
2λ

E�f′�W��2λ− 2E�WR�W�� − �W′ −W�2��

+ 1
λ
E�f′�W�E�WR�W�� − f�W�R�W��

− 1
2λ

E��W′ −W��f�W′� − f�W� − �W′ −W�f′�W���
�= J1 +J2 +J3�

Since �h� ≤ 1,

�f� ≤
√

2π ≤ 2�6� �f′� ≤ 4(4.5)

[see, e.g., Stein (1986)].
From (4.5) and (1.11) it follows that

�J1� ≤
2
λ
E�E�2λ− 2E�WR�W�� − �W′ −W�2 �W��

≤ 2
λ

√
E�2λ− 2E�WR�W�� −E��W′ −W�2 �W��2

= 2
λ

√
Var�E��W′ −W�2�W���

(4.6)
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In view of (4.5) and (1.1),

�J2� ≤
4
λ
E�WR�W�� + 2�6

λ
E�R�W��

≤ 1
λ

[
4
√
EW2ER2�W� + 2�6

√
ER2�W�

]
= 6�6

λ

√
ER2�W��

(4.7)

When providing (4.8) below, we again use (4.5), take into account that, in
view of (4.3), f′′�x� = f�x� + xf′�x� + h′

t�x� and denote by τ a r.v. which is
uniformly distributed on [0,1] and independent of all other r.v.’s under consid-
eration. Setting V = W′ −W we have

�2λJ3� = �E��W′ −W��f�W′� − f�W� − �W′ −W�f′�W����
= �E�V3�1 − τ�f′′�W+ τV���
= �E�V3�1− τ��f�W+ τV�+ �W+ τV�f′�W+ τV�+h′

t�W+ τV����
≤ 1�3E�V�3 + 2E�V3��W� + �W′��� + �E�V3�1 − τ�h′

t�W+ τV���
≤ 5�3A3 + �E�V3�1 − τ�h′

t�W+ τV����

(4.8)

[In the last inequality we used (1.9) and (1.1).]
Using h′

t�x� = −�1/t� ∫ h�x+ ty�φ′�y�dy� and
∫
φ′�x�dx = 0, we have

�E�V3�1 − τ�h′
t�W+ τV���

= 1
t

∣∣∣∣E
{
V3�1 − τ�

∫
h�W+ τV+ ty�φ′�y�dy

}∣∣∣∣
= 1

t

∣∣∣∣E
{
V3�1 − τ�

∫
�h�W+ τV+ ty� − h�W+ τV��φ′�y�dy

}∣∣∣∣
≤ A3

t

∫
E��1 − τ��h�W+ τV+ ty� − h�W+ τV����φ′�y��dy

≤ A3

t

∫
E��1 − τ��h+

A+t�y��W� − h−
A+t�y��W����φ′�y��dy

= A3

2t

∫
Eh̃�W�A+ t�y���φ′�y��dy�

Set δ = sup��Eh�W� − �h�� h ∈ � �, and denote by Z a standard normal
random variable. From the last inequality, the closure property of � w.r.t. the
operations h+

ε , h−
ε and (1.5), it follows that

�E�V3�1 − τ�h′
t�W+ τV���

≤ A3

2t

{∫ [
Eh̃�W�A+ t�y�� −Eh̃�Z�A+ t�y��]�φ′�y��dy

+
∫
Eh̃�Z�A+ t�y���φ′�y��dy

}

≤ A3

2t

{
2δ

∫
�φ′�y��dy+

∫
a�A+ t�y���φ′�y��dy

}

≤ A3

2t
�2δ+ aA� + aA3

2
�

(4.9)
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Denoting sup��Eht�W� −�ht�� h ∈ � � by δt, and collecting (4.6)–(4.9), we
obtain

δt ≤
2
λ

√
Var�E��W′ −W�2�W�� + 6�6

λ

√
ER2�W�

+ 5�3
2λ

A3 + 1
4λ

aA3 + 1
4λ

�2δ+ aA�A3

t
�

(4.10)

From (4.1) we have

δ ≤ 2�8δt + 4�7at�

It remains to substitute (4.10) in the last inequality and minimize the right-
hand side of the resulting inequality in t. Eventually, using in particular, (1.6),
we obtain

δ ≤ 5�6
λ

√
Var�E��W′ −W�2�W�� + 18�5

λ

√
ER2�W�

+ 10
aA3

λ
+ 3�7

aA2

√
λ

+ 5�2

√
aδA3

λ
�

(4.11)

The latter inequality can be solved in δ to yield (1.10). We again omit
straightforward calculations. ✷

Proof of Lemma 1.1. The lemma can be restated as follows: Let �T�t��
be a stationary nonnegative, integer valued process satisfying T�t+1� − T�t� =
+1, 0 or −1. Then �T�t��T�t+1�� is an exchangeable pair. In particular, for any
measurable f, if W = f�T�t���W′ = f�T�t+1��, then �W�W′� is an exchangeable
pair.

For integers i� j in the range of T�t�, set πi = P�T�t� = i� and pij =
P�T�t+1� = j �T�t� = i�. These probabilities do not depend on t. Let � denote
the row vector whose components are πi, and let P denote the matrix whose
entries are pij; � and P may have an infinite dimension. By stationarity the
equation �P = � holds (although T�t� need not be a Markov chain). The same
equation arises in birth and death chains, and it is well known that if it has a
solution, then it is unique, it can be written explicitly and it satisfies πipij =
πjpji (which implies reversibility for birth and death chains). Here, the latter
relation is equivalent to P�T�t� = i� T�t+1� = j� = P�T�t� = j� T�t+1� = i�,
implying that �T�t��T�t+1�� is an exchangeable pair. ✷
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