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INCREASING SEQUENCES OF INDEPENDENT
POINTS ON THE PLANAR LATTICE

BY TIMO SEPPALAINEN¨ ¨
Iowa State University

In 1977 Vershik and Kerov deduced the asymptotic normalized length
of the longest increasing sequence among independent points uniformly
distributed on the unit square. We solve the analogous problem for points
on the planar square lattice that are present independently of each other.

1. The result. The following question is known as Ulam’s problem:
Consider a rate 1 Poisson point process on the plane. Let L be the maximaln

Ž �2number of points on an increasing path of these points in the square 0, n .
Superadditivity and simple moment bounds imply that for some constant c,

1
lim L � c a.s.nnn��

What is the exact value of c? The original problem concerned the longest
increasing subsequence of a random permutation. This reformulation in

� �terms of a planar Poisson point process is due to Hammersley 6 .
� �In 1977 Vershik and Kerov derived the answer c � 2 13 . In the same

� �year, Logan and Shepp independently showed that c � 2 8 . Both proofs are
combinatorial and make use of Young diagrams. Recently two proofs have

Ž � � � �.appeared Aldous and Diaconis 1 and Seppalainen 12 that proceed by¨ ¨
embedding the increasing sequences of points in an interacting particle
system.

� �In this paper we use the approach of 12 to solve the analogous problem on
Ž .the planar square lattice. Fix a parameter p � 0, 1 . For each site of the

2 Ž .lattice Z let a point be present the site is occupied with probability p and
Ž .absent the site is vacant with probability q � 1 � p, independently of all

ŽŽ . Ž ..the other sites. For �� � a � b � � and 0 � s � t, let L a, s , b, t equal
the number of points on a longest strictly increasing path of points in the

Ž � Ž �rectangle a, b � s, t . We emphasize that strictly increasing means the
Ž . Ž . Ž . 2following: an admissible path x , y , x , y , . . . , x , y of points on Z1 1 2 2 m m

satisfies x � x � ��� � x and y � y � ��� � y .1 2 m 1 2 m
We have the obvious deterministic bounds,

� � � � � � � �1.1 0 � L a, s , b , t � min b � a , t � s ,� 4Ž . Ž . Ž .Ž .
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superadditivity,

L a, r , b , s � L b , s , c, t � L a, r , c, tŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
for a � b � c and r � s � t, and independence of points in disjoint sets.

� �Hence by Kingman’s theorem 7 the constant limit

1
1.2 � x , y � lim L 0, 0 , nx , ny a.s.Ž . Ž . Ž . Ž .Ž .

nn��

exists for x, y � 0. Our result is the following exact formula for the limit.

THEOREM 1. The limiting function is given by

x , if x � py,	

y , if y � px ,1.3 � x , y �Ž . Ž .

�1 �1� 'q 2 pxy � p x � y , if py � x � p y.Ž .

Once the exact limit is known, it is not hard to locate the longest paths
asymptotically. The choice of optimizing paths can be cast in the form of an

� � � �extremal problem. Fix a rectangle A � 0, a � 0, b . A nondecreasing curve
Ž . Ž Ž . Ž .. � �in A is a function � s � � s , � s from s � 0, 1 into A, where both �1 2 1

� Ž .and � are nondecreasing. Discontinuities are allowed. The derivatives � s2 1
� Ž .and � s exist a.e. as nonnegative, measurable functions, and it makes sense2

to define
1 � �1.4 J � � � � s , � s ds.Ž . Ž . Ž . Ž .Ž .H 1 2

0

1 Ž .For C -parametrizations, the quantity J � is independent of choice of
Ž .parametrization. This follows from the homogeneity of �. Let U � be a�

�-neighborhood of � in A, in the topology of the plane.

THEOREM 2. For any nondecreasing curve � in A and � � 0,

� Ž .lim P nU � contains a strictly increasing path of at least�
n��1.5Ž .

Ž Ž . . 4n J � � � points � 1.

Ž .If additionally � s is Lipschitz continuous, then for any � � 0 there exists a
� � 0 such that1

� Ž .lim P nU � contains a strictly increasing path of at least�1n��1.6Ž .
Ž Ž . . 4n J � � � points � 0.

�1 Ž . Ž .If pb � a � p b, the diagonal � s � as, bs , 0 � s � 1, uniquely maxi-
Ž . Ž .mizes J � over nondecreasing curves in A. If a � pb, J � is maximized by

Ž .the set of nondecreasing curves � � � , � for which � is absolutely continu-1 2 1
Ž . Ž . � Ž . � Ž .ous, � 0 � 0, � 1 � a and � s � p� s a.e. A symmetric statement holds1 1 1 2

for a � p�1 b. In all cases, longest paths of points concentrate around the
Ž .J � -maximizing curves: if U , � � 0, is the �-neighborhood of the set of�
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Ž .J � -maximizers, then

� ŽŽ . Ž ..lim P there is a strictly increasing path of L 0, 0 , na, nb
n��1.7Ž .

4points in nA not wholly contained in nU � 0.�

Of course, unique maximization in the theorem means uniqueness up to
changes in parametrization. Some technical restrictions are necessary for

Ž . Ž .statement 1.6 , for otherwise one could parametrize the diagonal as � s �
Ž Ž . Ž .. �f s , f s where f is the Cantor�Lebesgue function so that f � 0 a.e. and
Ž .J � � 0.

Ž . Ž .Write � x, y for the function in 1.3 when dependence on p is relevant.p
One can recover the rate 1 planar Poisson point process by putting the points
on the lattice p1�2Z2, independently with probability p, and letting p � 0. As
expected,

�1�2 �1�2 'lim � p x , p y � 2 xy ,Ž .p
p�0

which is the limiting function for the increasing paths problem for Poisson
Ž .points. The functional J � also converges to the corresponding functional of

Ž � �.Ulam’s problem see 5 .

Longest common subsequences. We do not assert a rigorous connection
Ž .between the LCS longest common subsequence model and our model of

independent points, but the numerical evidence is intriguing enough to merit
attention here. First, here is a particular version of the LCS model: Fix an

Ž .integer k � 1, and let a , b : i, j � 1 be i.i.d. random variables that takei j
each of the values 1, . . . , k with equal probability 1�k. Put a point at site
Ž . 2 Ž .i, j � N if a � b ; otherwise leave site i, j vacant. The maximal lengthi j
˜ � 4 � 4L of a strictly increasing path of points in 1, . . . , n � 1, . . . , n equals then

Ž .length of the longest common subsequence of the strings a , . . . , a and1 n
Ž .b , . . . , b . Superadditivity gives again the limit1 n

1 ˜c � lim L .k nnn��

� �The constants c , sometimes called the Chvatal�Sankoff constants after 4 ,´k
are not known, but rigorous upper and lower bounds exist. A recent review of

� �topics related to the LCS model and numerous references appear in 9 .
In the LCS model, each site is occupied with probability p � 1�k, but the

Žsites are not independent of each other. However, along any path that moves
.only up and right the sites are independently occupied. Let us compare the

LCS model with our Bernoulli model. The quantity to compare with c isk
Ž .� 1, 1 , the asymptotic length with occupation probability p � 1�k, and1� k
Ž .from 1.3 this is

2
� 1, 1 � .Ž .1� k 1�2k � 1
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TABLE 1
1 2Rigorous upper and lower bounds and Monte Carlo estimates for c , and the valuesk

Ž .of � 1, 1 , for 2 � k � 151� k

Rigorous lower Rigorous upper Monte Carlo
( )k bound for c � 1, 1 bound for c estimate for ck 1����� k k k

2 0.77391 0.82843 0.83763 0.8082
3 0.61538 0.73205 0.76581 0.6855
4 0.54545 0.66667 0.70824 0.6242
5 0.50615 0.61803 0.66443 0.5778
6 0.47169 0.57980 0.62932 0.5332
7 0.44502 0.54858 0.60019 0.5065
8 0.42237 0.52241 0.57541 0.4812
9 0.40321 0.50000 0.55394 0.4593

10 0.38656 0.48051 0.53486 0.4423
11 0.37196 0.46332 0.51785 0.4268
12 0.35899 0.44802 0.50260 0.4126
13 0.34737 0.43426 0.48880 0.4003
14 0.33687 0.42179 0.47620 0.3827
15 0.32732 0.41043 0.46462 0.3712

1 � �From page 134 in 9 .
2 � �From page 314 in 4 .

The connection we wish to highlight is that for each of the values 2 � k � 15,
Ž .� 1, 1 lies between the best known upper and lower bounds for c . See1� k k

� �Table 1. Furthermore, Sankoff and Mainville 11 have conjectured that
1�2 Ž .k c � 2 as k � �, a property that � 1, 1 satisfies.k 1� k

A percolation model. Theorem 1 can be reformulated to describe the
asymptotic shape of the following directed bond percolation model. Liquid
percolates from the origin into the positive quadrant of the plane along three

Ž . Ž . Ž . Ž . Ž .types of bonds: from i, j to i � 1, j horizontal , from i, j to i, j � 1
Ž . Ž . Ž . Ž .vertical , and from i, j to i � 1, j � 1 diagonal . The horizontal and
vertical bonds have a deterministic cost a , while the diagonal bonds have0
independent random costs with two possible values a � a , the smaller1 2

Ž .value a taken with probability p. Declare that site i � 1, j � 1 contains a1
Ž . Ž .point if the bond i, j � i � 1, j � 1 costs a . Then, if a , a , a are appro-1 0 1 2

Ž . Ž .priately chosen, finding a cost-minimizing bond path from 0, 0 to m, n is
Ž �equivalent to finding a longest strictly increasing paths of points in 0, m �

Ž �0, n . We leave the details of this conversion to the reader.
There is of course a dependent version of this percolation model similarly

� � � �related to the LCS model. For more on this connection, see 2 and 3 .

Nondecreasing instead of strictly increasing paths. The closest variant of
the present model is the one where, instead of requiring that successive

Ž . Ž .points x , y and x , y satisfy x � x and y � y , we allowi i i�1 i�1 i i�1 i i�1
x � x and y � y . The first part of our proof works again: thesei i�1 i i�1
nondecreasing paths can be embedded in a particle system that resembles the
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one we use in the present proof. However, we have not been able to directly
apply the second part of the method of this paper because the steady state
behavior of the new process appears harder to identify.

2. Proof of Theorem 1. As already indicated, we follow the strategy of
� �12 in embedding the points in an interacting particle system. For a � R,
0 � s � Z, and k, t � 0, define an inverse of L by

2.1 � a, s , t , k � inf h � 0: L a, s , a � h , s � t � k .� 4Ž . Ž . Ž . Ž .Ž . Ž .
ŽŽ . .Usually s � 0, and a, t and k are integers. Then � a, 0 , t, k � l means

that there is a strictly increasing path of k points in the sites of the set

� 4 � 4a � 1, a � 2, . . . , a � l � 1, 2, . . . , t

and no such path in the set

� 4 � 4a � 1, a � 2, . . . , a � l � 1 � 1, 2, . . . , t .

ŽŽ . .In particular, the path realizing � a, 0 , t, k ends in a point on the vertical
� 4 � 4line a � l � 1, 2, . . . , t , but may or may not use a point on any particular

horizontal line. In picturing the situation, it is helpful to remember that an
admissible, strictly increasing path never has two points on the same hori-
zontal or vertical line.

Next we construct a totally asymmetric exclusion process on the sites of Z.
Ž .The state of the process is a configuration z � z of labeled particles,i i� Z

satisfying z � ZZ and

2.2 z � z for all i .Ž . i i�1

Ž .The particles move only to the left. Given an initial configuration z , thei
state at time t � 1, 2, 3, . . . is defined by

2.3 z t � inf z � � z , 0 , t , k � i , k � Z.� 4Ž . Ž . Ž .Ž .k i i
i�k

In words: The potential locations of z at time t are computed by following ank
Ž .increasing path of k � i points from z , 0 , for all i � k. Of these potentiali

locations, z chooses the leftmost.k
Some observations follow.

Ž . Ž . Ž .1. Obviously z t � z , so particles move to the left. Also z t � z t , sok k k k�1
Ž .both the exclusion rule and the labeling convention 2.2 are preserved. Let

b � inf j � z � 1: j, 1 is occupied by a point .� 4Ž .k k

Ž .Then an easy argument or picture shows that

� 42.4 z 1 � min z , b for all k ,Ž . Ž .k k k�1

and thus the dynamics is well defined from any initial z � ZZ.
Ž . Ž .2. A semigroup rule holds: if z s and z t , 0 � s � t, are computed by rule

Ž .2.3 , then it is also true that

z t � inf z s � � z s , s , t � s, k � i .Ž . Ž . Ž .� 4Ž .Ž .k i i
i�k
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Ž .From this it follows that z � is a time-homogeneous Markov chain in the
space ZZ.

Ž .We need to understand the steady state of the dynamics z � . Let us focus
on a single time step, from an initial configuration z to a new configuration

� Ž . Ž . Ž .z � z 1 as defined by 2.3 or, equivalently, by 2.4 . Let 	 � z � z andi i i�1
	� � z� � z� be the interparticle distances and x � z � z� the amount zi i i�1 i i i i
jumps. These quantities are connected by

2.5 	� � 	 � x � x .Ž . i i i i�1

Ž .LEMMA 2.1. Suppose the 	 are i.i.d. with common distributioni i� Z

� � n�1 � 42.6 P 	 � n � 1 � r r , n � 1, 2, 3, . . . ,Ž . Ž .i

� . Ž �.for a parameter r � 0, 1 . Then the 	 also have the same distribution.i i� Z

Ž .PROOF. Rule 2.4 implies

n�1q , k � 0,
�P x � k 	 � n �i i n�k�1½ pq , 1 � k � n � 1

Ž .for n � 1. Thus if 	 is distributed as in 2.6 , we geti

�

�� � � �P x � k � P x � k 	 � n P 	 � nÝi i i i
n�1

�11 � rq 1 � r , k � 0,Ž . Ž .
� �1 k½ 1 � rq 1 � r pr , k � 1.Ž . Ž .

2.7Ž .

Ž . Ž .Now assume 	 are i.i.d. Note that, given 	 , x is independent of 	 , xi i i j j j� i
because distinct x are determined by the occupancies of disjoint sets of sites:j

� � � � �P 	 � n , x � k � P 	 � x � x � n , x � ki i i i i�1 i

� �� P 	 � x � n � k , x � ki i�1 i

n�k

�� � � �� P x � n � k � j P 	 � j P x � k 	 � jÝ i�1 i i i
j�1

� � � �� P 	 � n P x � k .i i

The last step above involves algebra and simplification. For example, in the
case k � 1, the second last line becomes

n�k�1 n�k�j1 � r pr 1 � rŽ .
j�1 j�k�1 n�k�1 n�11 � r r pq � 1 � r r pqŽ . Ž .Ý 1 � rq 1 � rqj�k�1

1 � r pr kŽ .
n�1� 1 � r r .Ž .

1 � rq
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This tells us that 	� is distributed like 	 and is independent of x . Byi i i
Ž . Ž � � . Ž Ž .2.5 the quantities 	 , 	 , . . . are computable from x , 	 , x ,i�1 i�2 i i�1 i�1
Ž . . � Ž .	 , x , . . . while 	 is a function of x , 	 , x . Thus, given x ,i�2 i�2 i i�1 i i i
Ž � � . �	 , 	 , . . . and 	 are independent. We now proceed by induction:i�1 i�2 i

� � � � �P 	 � n , 	 � n , . . . , 	 � ni 0 i�1 1 i�l l
�

� � � �� �� P 	 � n , x � k P 	 � n , . . . , 	 � n x � kÝ i 0 i i�1 1 i�l l i
k�0

� � � � � �� P 	 � n P 	 � n , . . . , 	 � ni 0 i�1 1 i�l l

� ���

� � � � � �� P 	 � n P 	 � n ��� P 	 � n .i 0 i�1 1 i�l l

The proof is complete. �

� � ŽIt will be convenient to parametrize the equilibrium by u � E 	 � 1 �i
.�1r . In u-equilibrium, the amount particle z jumps to the left at each timei

step has expectation
�1� �2.8 f u � E x � pu � q pu u � 1 .Ž . Ž . Ž . Ž .i

Ž . � .The function f u is defined for u � 1, � , and strictly convex because
Ž .p � 0, 1 .

Ž .This is all we need about the process z � , so let us return to the increasing
Ž �paths. Given x, y � 0, we can always construct an increasing path in 0, nx

Ž � Ž .� 0, ny with the following trivial strategy: Start at 1, 1 . When you are at
Ž . Ž . Ž . Ž . Ž .i, j , move to i � 1, j � 1 if i, j is occupied, and move to i, j � 1 if i, j
is vacant. In other words, collect along each diagonal as many points as are
available until you meet a vacant site, then take a step up and repeat. Each

Ž .diagonal gives an independent Geom q -distributed number of points, and
Ž . �1forces you to take 1 � Geom q many steps up. Thus with expected q steps

up, pq�1 many points are added to the increasing path, on average. If
y � xp�1 and n is large so that a law of large numbers takes over, this trivial
strategy gives an increasing path of length roughly nx, which is an upper

ŽŽ . Ž .. � Ž .�bound for L 0, 0 , nx, ny recall 1.1 . This argument, which the reader can
Ž . �1easily make rigorous, shows that � x, y � x if y � xp . A symmetric

situation holds with x and y interchanged, and we have derived the first two
Ž .lines of 1.3 .

Ž .It is easy to see that � x, y is superadditive and homogeneous. From this
Ž . Ž .2it follows that � x, y is concave and consequently continuous on 0, � .

Ž . Ž . � 4 Ž . Ž .Equation 1.1 implies 0 � � x, y � min x, y and � x, 0 � � 0, y � 0, so
� .2in fact � is continuous on 0, � . Let

h x � � x , 1 , x � 0.Ž . Ž .
Ž . Ž . Ž .Then h x is concave, nondecreasing, h 0 � 0, h x � x for x � p, and

Ž . �1h x � 1 for x � p . Concavity implies that h is strictly increasing for
� Ž . 4 �10 � x � a , with a � inf x: h x � 1 � p . Thus there is a well-defined0 0

Ž . �1Ž .inverse g x � h x defined for 0 � x � 1. From the properties of h it
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Ž .follows that g is strictly increasing, convex, continuous, g x � x for x � p,
Ž . Ž .and lim g x � g 1 � a . Extend g to a lower semicontinuous convexx �1 0

� . Ž .function on 0, � by setting g x � � for x � 1. Let

2.9 g� u � sup ux � g x , u � 0,� 4Ž . Ž . Ž .
x�0

Ž � �.be the monotone conjugate of g see page 111 in 10 .
Ž .From the convergence 1.2 and the continuity of g follows that

1 x
2.10 lim � r , 0 , nt , nx � tgŽ . Ž .Ž .n ž /n tn��

�holds in probability for any x, t � 0 and any sequence r � R. Notice that ifn
ŽŽ . . Ž .t � x, � r , 0 , nt, nx � � for large enough n by definition 2.1 , so then

Ž . �convention g � � on 1, � is appropriate.
Ž .It remains to calculate g x for p � x � 1. Fix u � 1 for a moment. Define

Ž . Žan initial configuration z for the process as follows: z � 0, and 	 � z �i 0 i i
. Ž . � �z : i � Z are i.i.d. with distribution 2.6 and expectation E 	 � u. Theni�1 i

by the earlier calculation,

�12.11 E n z nt � �tf uŽ . Ž . Ž .0

Ž .for positive integers n and t. On the other hand, by 2.3 ,

1 1 1
2.12 z nt � inf z � � z , 0 , nt , �i .Ž . Ž . Ž .Ž .0 i i½ 5n n ni�0

LEMMA 2.2. We have

1
�2.13 lim z nt � �tg uŽ . Ž . Ž .0nn��

in probability.

Ž .PROOF. By g ’s lower semicontinuity, the supremum in 2.9 is attained at
� � Ž .some x � �r�t. With i � nr in 2.12 ,

1 1 1
� �z nt � z � � z , 0 , nt , � nr ,Ž . Ž .Ž .0 � nr � � nr �n n n

Ž . �Ž . Ž .and the right-hand side converges to ur � tg �r�t � �tg u , by 2.10 and
Ž .the choice of z .i

For the converse inequality, note first that we only need to consider
� � Ž . Ž .�nt � i � 0 in 2.12 . Now pick a fine enough partition of �t, 0 ,

�t � r � r � ��� � r � 0,0 1 s

Ž .and approximate the right-hand side of 2.12 from below while simultane-
� �ously restricting i to the finitely many points nr , l � 0, . . . , s. The detailsl

� �are exactly the same as those in the proof of Lemma 8.13 in 12 . �
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Ž . Ž .Since z nt is a sum of nt steps, each distributed as �x in 2.7 , a0 0
uniform bound

2�1sup E n z nt � �Ž .Ž .0
n

Ž . Ž .is immediate, and then comparison of 2.11 and 2.13 yields

f u � g� u for u � 1.Ž . Ž .
� �By Theorem 12.4 of 10 ,

g x � g�� x � sup xu � g� u , x � 0.� 4Ž . Ž . Ž .
u�0

Ž . �Ž .However, g x � x for all x implies g u � 0 for 0 � u � 1, and conse-
quently the supremum above need only be taken over u � 1. We conclude
that
2.14 g x � sup xu � f u .� 4Ž . Ž . Ž .

u�1

Ž . Ž . Ž . Ž .Now Theorem 1 is proved: use 2.8 to find g x from 2.14 , then invert g x
Ž . Ž . Ž .to get h x , and finally by homogeneity � x, y � yh x�y .

Ž . Ž .3. Proof of Theorem 2. First we prove 1.5 assuming � s is continu-
Ž .ous. Let 
 � 0 be arbitrary. Given the neighborhood U � , use the uniform�

Ž .continuity of � s to pick m large enough so that if s � i�m, each rectanglei

R � � s , � s � � s , � s , i � 0, . . . , m � 1,Ž . Ž . Ž . Ž .i 1 i 1 i�1 2 i 2 i�1

Ž .lies inside U � . Write � s � s � s � 1�m. Set� i�1 i

m�1 � s � � s � s � � sŽ . Ž . Ž . Ž .1 i�1 1 i 2 i�1 2 i
f s � I s � , .Ž . Ž .Ým � s , s .i i�1 ž /� s � si�0

Ž . Ž � Ž . � Ž ..By the a.e. differentiability of � and � , f s � � � s , � s as m � �1 2 m 1 2
for a.e. s. By Fatou’s lemma, we may increase m further so that

1
f s ds � J � � ��3.Ž . Ž .H m

0

Having fixed m, pick n large enough so that each rectangle nR has a strictlyi
increasing path of at least

n� � s � � s , � s � � s � n�� 3mŽ . Ž . Ž . Ž . Ž .Ž .1 i�1 1 i 2 i�1 2 i

points, with probability at least 1 � 
�m. Join together the paths in the
Ž .rectangles, and then nU � has a path of at least�

m�1

n � � s � � s , � s � � s � n��3Ž . Ž . Ž . Ž .Ž .Ý 1 i�1 1 i 2 i�1 2 i
i�0

1
� n f s ds � n��3Ž .H m

0

� n J � � 2��3Ž .Ž .
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points, and this happens with probability at least 1 � 
 . This proves state-
Ž . Ž .ment 1.5 for continuous � s .

Ž . Ž .Before completing the proof of 1.5 , we argue 1.6 . The additional assump-
tion of Lipschitz continuity implies that we may use dominated convergence
instead of Fatou’s lemma to get

1
lim f s ds � J � .Ž . Ž .H m

m�� 0

Thus m can be fixed so that the quantity
m�1

1
f s ds � � � s � � s , � s � � sŽ . Ž . Ž . Ž . Ž .Ž .ÝH m 1 i�1 1 i 2 i�1 2 i

0 i�0

Ž . � � �is within ��4 of J � . Next, pick a slightly larger rectangle S � a , a �i i i
� � �b , b that contains a neighborhood of R , i � 0, . . . , m � 1, but so thati i i

m�1
� �

� a � a , b � bŽ .Ý i i i i
i�0

Ž .is within ��2 of J � . Pick � � 0 small enough to have1

m�1

U � 
 S .Ž . �� i1
i�0

Ž .Given 
 � 0, the limit 1.2 guarantees that for large enough n, any nS hasi
Ž � � . Ž .a strictly increasing path exceeding n� a � a , b � b � n�� 4m pointsi i i i

Ž .with probability at most 
�m. Add these numbers up to see that nU � has�1
Ž Ž . .a path exceeding n J � � 3��4 with probability at most 
 . We have proved

Ž .1.6 .
Ž . Ž .Now return to 1.5 , this time for a discontinuous � s . Monotonicity

Ž . � 4implies that � s has at most countably many discontinuities s . Define ai
new curve � by connecting the components of the image of � with horizontal
and vertical line segments. Specifically, for each discontinuity s , let 
 be thei i

Ž Ž . Ž .. Ž Ž .curve that first travels horizontally from � s � , � s � to � s � ,1 i 2 i 1 i
Ž .. Ž Ž . Ž .. Ž Ž . Ž ..� s � , then vertically from � s � , � s � to � s � , � s � . Patch2 i 1 i 2 i 1 i 2 i

the segments together in the nondecreasing order, with continuous pieces of �
alternating with successive 
 ’s, and the parametrization switching betweeni
the parametrization of � and a parametrization of the 
 ’s by arc length. Thisi

� � � �gives a continuous curve parametrized by 0, 1 � S where S � 0, a � b is
the sum of the lengths of the 
 ’s. Normalize the parametrization by dividingi

Ž . Ž �Ž ..by 1 � S, and let this curve be � s . Note that � 
 s � 0 so the new piecesi
Ž . Ž . Ž .do not contribute to J � , and consequently J � � J � .

Ž .Given 
 � 0 and � � 0, we need to show that for large enough n, nU ��

Ž Ž . .has a path of at least n J � � � points with probability at least 1 � 
 . Let
Ž .0 � � � ��3. There are only finitely many 
 ’s that do not satisfy U 
 �1 i � i1

Ž .U � . Let these be 
 , . . . , 
 , after a suitable relabeling. Each 
 is Lip-� 1 m i
Ž .schitz, so by 1.6 we can shrink � further and pick n large enough so that1

Ž . Ž .longest increasing paths in nU 
 , . . . , nU 
 together have at most� 1 � m1 1



¨ ¨T. SEPPALAINEN896

n��2 points with probability at least 1 � 
�2. Increase n further so that, by
Ž . Ž .the continuous case of 1.5 proved above, nU � contains a path of at least�1

Ž Ž . .n J � � � points with probability at least 1 � 
�2. Now put everything1
Ž . Ž .together. To get a path in nU � , we need remove from a path in nU � no� �1

Ž . Ž . � 4more than the subpaths in nU 
 , . . . , nU 
 because for i � 1, . . . , m� 1 � m1 1
Ž . Ž . Ž Ž . .nU 
 lies inside nU � . Thus we get a path of at least n J � � � � n��2� i � 11

Ž . Ž .points in nU � with probability at least 1 � 
�2 � 
�2. Statement 1.5 is�

now proved for all nondecreasing curves � .
Ž . Ž . � � � � � �Let � s � as, bs , s � 0, 1 , be the diagonal in A � 0, a � 0, b as in

the statement of the theorem, and let � be an arbitrary nondecreasing curve
in A.

1 1� �J � � � � s ds � � � s dsŽ . Ž . Ž .Ž .H Hž /0 0

� � � 1 � � 0 � � a, bŽ . Ž . Ž .Ž .
3.1Ž .

� J � .Ž .
The first inequality above follows from Jensen’s inequality and the concavity
of �. The second comes from the fact that for a general nondecreasing

Ž .function f s ,

1 �3.2 f s ds � f 1 � f 0Ž . Ž . Ž . Ž .H
0

Ž .with equality if and only if f is absolutely continuous. Equation 3.1 tells us
Ž . Ž .that the supremum of J � over nondecreasing curves is � a, b and that

this value is achieved at � � �.
�1 Ž . Ž . Ž . Ž .Now assume pb � a � p b and that J � � J � . By 1.3 , � x, y �

Ž . Ž . Ž . Ž .� a, b if a, b � x, y � A, so equality in the last two inequalities in 3.1
forces

1 �3.3 � s ds � � 1 � � 0 � a, b .Ž . Ž . Ž . Ž . Ž .H
0

Concavity and homogeneity of � give
� �

� � s � � a, b � �� a, b � s � a, bŽ . Ž . Ž . Ž . Ž .Ž .
� �� a, b � � s .Ž . Ž .

Ž .Equality in 3.1 forces equality above for a.e. s, so that

3.4 � � s � W � x , y : � x , y � �� a, b x , y for a.e. s.� 4Ž . Ž . Ž . Ž . Ž . Ž .
If pb � a � p�1 b, explicit manipulations with � show that W equals the ray

Ž .through the origin spanned by a, b , so � must be some parametrization of
�Ž . 4 Ž . Ž .the diagonal. If a � pb, then W � x, y : 0 � x � py , and 3.3 and 3.4

imply
1 1� �a � � s ds � p � s ds � pb.Ž . Ž .H H1 2

0 0
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� Ž . � Ž .Then a � pb forces � s � p� s for a.e. s, and again � is the diagonal. A1 2
similar argument works for a � p�1 b.

Ž . � �In the case a � pb, � x, b is strictly increasing in x � 0, a . By the
Ž .second and third inequalities in 3.1 , a maximizing � must have

1 �� s ds � � 1 � � 0 � a � � a, b .Ž . Ž . Ž . Ž .H 1 1 1
0

Ž .To have equality in 3.2 for f � � , the � -coordinate must be absolutely1 1
Ž . Ž .continuous. Note that the last line of 1.3 can be written � x, y � x �

�1 2'Ž .'q x � py . Then

J � � � � s dsŽ . Ž .H 1� �
� �p�1 2

2� � ��1� � s � q � s � p� s ds' 'Ž . Ž . Ž .H ž /1 1 2� � �p� �� �� �p2 1 2

� � � s dsŽ .H 2� �
� �� �p1 2

2� ��1� � a, b � q � s � p� s ds' 'Ž . Ž . Ž .H ž /1 2� � �p� �� �� �p2 1 2

� � � s � � � s ds,Ž . Ž .Ž .H 1 2� �
� �� �p1 2

which shows that a maximizing � must also have � � � p� � a.e.1 2
Ž .Finally, to prove 1.7 , first observe that, given � � 0, there are 
 � 0 and1

� � 0 such that2

� a, b � � x � 
�2, y � 
�2Ž . Ž .
� � a � x � 
�2, b � y � 
�2 � �Ž . 2

3.5Ž .

Ž .for all x, y � A � U . Next, note that if there is a longest path of points that�1
Ž .does not lie in nU , then for some smaller � � 0 and some x, y � A � U ,� 1 �1

L 0, 0 , nx � n
�2, ny � n
�2Ž . Ž .Ž .
�L nx � n
�2, ny � n
�2 , na, nbŽ . Ž .Ž .3.6Ž .

� L 0, 0 , na, nb .Ž . Ž .Ž .
Ž . Ž . Ž .By 3.5 , the probability of 3.6 happening for fixed x, y vanishes as n � �.

Ž . Ž .The event in 1.7 is contained in a finite union of events 3.6 , indexed by
Ž .x, y ranging over the centers of a partitioning of A � U in 
 � 
 rectan-�

Ž .gles. This partitioning does not change with n, hence we get the limit in 1.7 .

Acknowledgment. I thank the referee for a thorough reading of the
manuscript and for pointing out errors in the original version.



¨ ¨T. SEPPALAINEN898

REFERENCES
� � Ž .1 ALDOUS, D. and DIACONIS, P. 1995 . Hammersley’s interacting particle process and longest

increasing subsequences. Probab. Theory Related Fields 103 199�213.
� � Ž .2 ALEXANDER, K. S. 1997 . Approximation of subadditive functions and convergence rates in

limiting-shape results. Ann. Probab. 25 30�55.
� � Ž .3 ARRATIA, R. and WATERMAN, M. S. 1994 . A phase transition for the score in matching

random sequences allowing deletions. Ann. Appl. Probab. 4 200�225.
� � Ž .4 CHVATAL, V. and SANKOFF, D. 1975 . Longest common subsequences of two random se-´

quences. J. Appl. Probab. 12 306�315.
� � Ž .5 DEUSCHEL, J.-D. and ZEITOUNI, O. 1995 . Limiting curves for i.i.d. records. Ann. Probab. 23

852�878.
� � Ž .6 HAMMERSLEY, J. M. 1972 . A few seedlings of research. Proc. Sixth Berkeley Symp. Math.

Statist. Probab. 1 345�394. Univ. California Press, Berkeley.
� � Ž .7 KINGMAN, J. F. C. 1968 . The ergodic theory of subadditive stochastic processes. J. Roy.

Statist. Soc. Ser. B 30 499�510.
� � Ž .8 LOGAN, B. F. and SHEPP, L. A. 1977 . A variational problem for random Young tableaux.

Adv. Math. 26 206�222.
� � Ž .9 PATERSON, M. and DANCIK, V. 1994 . Longest common subsequences. Lectures Notes inˇ́

Comput. Sci. 841 127�142. Springer, New York.
� � Ž .10 ROCKAFELLAR, R. T. 1970 . Convex Analysis. Princeton Univ.
� � Ž .11 SANKOFF, D. and MAINVILLE, S. 1983 . Common subsequences and monotone subsequences.

In Time Warps, String Edits, and Macromolecules: The Theory and Practice of
Ž .Sequence Comparison D. Sankoff and J. B. Kruskal, eds. 363�365. Addison-Wesley,

Reading, MA.
� � Ž .12 SEPPALAINEN, T. 1996 . A microscopic model for the Burgers equation and longest increas-¨ ¨

ing subsequences. Electronic J. Probab. 1 1�51.
� � Ž .13 VERSHIK, A. M. and KEROV, S. V. 1977 . Asymptotics of the Plancherel measure of the

symmetric group and the limiting form of Young tables. Dokl. Akad. Nauk. SSSR 233
Ž .1024�1027. Soviet Math. Dokl. 18 527�531.

DEPARTMENT OF MATHEMATICS

IOWA STATE UNIVERSITY

AMES, IOWA 50011
E-MAIL: seppalai@iastate.edu


