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ASYMPTOTIC BEHAVIOR OF SOME INTERACTIVE
POPULATION FLOW MODELS

By Wolfgang Stadje

University of Osnabrück

This paper is concerned with Markov chain models for flows of a fi-
nite population among a set of groups, where the individuals base their
decisions on which group to go next partially on the current frequency
distribution (profile). For a certain class of these models, the transition
matrix of the profile process is analyzed algebraically, leading to surpris-
ingly simple asymptotic results. Furthermore, in a model with after effects,
the absorption probabilities are derived.

1. Introduction. In social science, Markov chains are often used to model
population flows among various “states.” As typical examples of states or cat-
egories which have been considered, we mention occupational or other so-
cial classes, geographical regions, brands, investment allocations of firms, and
political or religious affiliations (see [1] for general background and refer-
ences). In the early models, the transitions of the individuals form indepen-
dent Markov chains so that social interaction is ruled out. However, in many
applications, the effects on the decisions of individuals of imitation, fashion,
popularity, contagion, and so on cannot be ignored. In order to take into ac-
count interactions among individuals, Conlisk [5] introduced the concept of
an interactive Markov chain (IMC) as a framework for stochastic flows of this
kind. In an IMC, the next state of an individual depends on his current state
and on the current frequency distribution of the population among the states.
Basically, the idea can already be found in the analysis of social mobility by
Matras [12] and in the brand choice model of Smallwood [13] (see also [14]).
Regarding other models of consumer choice behavior, we mention [9] and [15]
and the references given there. Conlisk’s original model (which he also studies
in [6, 7, 8]) was a deterministic recursion which was intended to serve as an
approximation for the implied randomly fluctuating process. This underlying
stochastic structure was later called “finite population model” and investigated
by Brumelle and Gerchak [4], Lehoczky [11], Gerchak [10] and Bartholomew
[2, 3]. IMC’s were further discussed in Bartholomew [1] Sections 2.5 and 2.3.

IMC models have the undesirable property that the fluctuating individuals
possess no individual traits, since their movements are all governed by the
same Markovian mechanism; at any time the transition probabilities are as-
sumed to be identical for all individuals residing in the same state. To remedy
this deficiency, one obviously has to allow an individual’s transition rule to

Received September 1995; revised March 1997.
AMS 1991 subject classifications. Primary 60K35; secondary 60J20, 90A40, 60J10.
Key words and phrases. Population flow, interactive Markov chain, profile process, stationary

distribution, absorption probability.

837



838 W. STADJE

depend not only on his current state and the allocation of the entire popula-
tion, but also on the individual himself. An example involving distinguishable
individuals can be found in [5], Section 5, but apparently this idea has not
been investigated any further.

In this paper we study two models incorporating this additional feature.
As a warm-up, let us start with the following Markov chain. The notation
which we now introduce is retained throughout the entire paper. Consider n
individuals moving among m exclusive groups. The variable t = 0�1�2� � � �
denotes discrete time. Then let

ξt�i� ν� =



1� if the ith individual belongs
to the νth group at time t,

0� otherwise,

for t ∈ Z+, i = 1� � � � � n and ν = 1� � � � �m. The �n×m�-random matrix

ξt = �ξt�i� ν� � i = 1� � � � � n� ν = 1� � � � �m�
of 0’s and 1’s describes the allocation of the individuals to groups at time t.
The initial allocation ξ0 = �ξ0�i� ν�� is fixed. Clearly, every ξt has exactly one 1
in every row. Now let �t = σ�ξ0� � � � � ξt� be the σ-field generated by ξ0� � � � � ξt
and suppose that the rows ξ

�i�
t+1 = �ξt+1�i� ν��ν=1�����m of ξt+1 are conditionally

independent, given �t. For ν = 1� � � � �m let eν be the unit row vector with the 1
in νth position; that is, eν = �δν� ν′ �ν′=1�����m, where δν� ν′ = 1 �0� if ν = ν′ �ν 	= ν′�.
We assume that the conditional distribution of ξ�i�t+1 is given by

P
(
ξ
�i�
t+1 = eν � �t

) = n∑
j=1

βi�jξt�j� ν��(1.1)

where the coefficients βi�j satisfy βi�j ≥ 0 and
∑n

j=1 βi�j = 1.
According to (1.1), the individual i goes to group ν with a probability that is

a weighted average of the current allocation; the weights attributed by indi-
vidual i to the different members of the population may vary with i. Clearly,
�ξt�t∈Z+ is a Markov chain with stationary transition probabilities having as
state space the set � of all 0–1-matrices of size n×m with all row sums equal
to 1.

If the matrix �βi�j� is irreducible, eventually all individuals will end up in
one of the groups so that there are m absorbing states. For arbitrary ξ ∈ � ,
let πν�ξ� be the probability that ξ

�1�
t = · · · = ξ

�n�
t = eν for some t ∈ R+ (i.e.,

the probability of absorption in group ν), given that ξ0 = ξ. The following
proposition shows how to compute πν�ξ�.

Proposition 1. Assume that �βi�j� is irreducible and let �σi�i=1�����n be the
corresponding stationary distribution. Then

πν�ξ� =
∑

i� ξ�i� ν�=1

σi�
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Proof. For the Markov chain on the finite state space 1� � � � � n� with tran-
sition probabilities βi�j there is exactly one stationary distribution �σi�i=1�����n,
which is characterized by the relations

σi ≥ 0�
n∑
i=1

σi = 1� σj =
n∑
i=1

σiβi� j�

Let Z�ν�
t = ∑n

i=1 σiξt�i� ν�. Multiplying both sides of (1.1) by σi and summing
over i we find that Z�ν�

t+1 satisfies

E
(
Z

�ν�
t+1 � �t

) = Z
�ν�
t �

Hence Z
�ν�
0 �Z

�ν�
1 �Z

�ν�
2 � � � � � in a martingale. Since 0 ≤ Z

�ν�
t ≤ 1, it is uniformly

integrable. The limit Z�ν� = limt→∞Z
�ν�
t exists almost surely, since ξt�1� ν� =

· · · = ξt�n� ν� a.s. for sufficiently large t (or by the martingale convergence
theorem). Z�ν� only takes the values 0 and 1, and Z�ν� = 1 iff ξt�i� ν� = 1 for
i = 1 � � � � n and all sufficiently large t. As �Z�ν�

t �t∈Z+ is a uniformly integrable
martingale, we obtain

πν�ξ� = P�Z�ν� = 1� = E�Z�ν��

= E�Z�ν�
0 � =

n∑
i=1

σiξ0�i� ν�

= ∑
i� ξ�i� ν�=1

σi�

In this paper we consider two extensions of the above model.
Model 1. If (1.1) holds, each individual is completely subjected to the pre-

vious frequency distribution of the population, only influencing it by assign-
ing possibly different weights to different individuals. A more realistic model
should also include for every participant the possibility of taking decisions
based on individual sources and not on the past. One way to incorporate
this feature is to introduce for any individual i a probability distribution
p�i� = �piν�ν=1�����m on the set of groups and then to replace (1.1) in the above
model by

P
(
ξ
�i�
t+1 = eν � �t

) = λi

n∑
j=1

βi�jξt�j� ν� + �1 − λi�piν�(1.2)

where λi ∈ �0�1�. Thus, with probability λi the next transition of individual
i is governed by the mechanism (1.1) and with probability 1 − λi, his next
group affiliation is determined by using p�i�. Individuals i, for which λi = 1,
may be called “conformists,” while those with λi = 0 act independently of the
rest of the population. The individuals for which λi = 1 and p�i� is a unit
row even have a permanently fixed affiliation. In Sections 3–5 we will study
this model in detail in the case βi�j = 1/n, in which for each individual all
previous affiliations of other individuals carry the same weight.
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Model 2. As another extension, one can allow the conditional probabilities
P�ξ�i�t+1 = eν � �t� to depend not only on ξt, but on ξt� ξt−1� � � � � ξt−c+1 for some
fixed c ∈ N, so that the next affiliation of any individual depends on the last c
distributions of the population. Specifically, we will consider the model

P
(
ξ
�i�
t+1 = eν � �t

) = n∑
j=1

βi�j

c∑
l=1

γl ξt−l+1�j� ν��(1.3)

where the additional coefficients γl satisfy γl ≥ 0,
∑c

l=1 γl = 1. The γl serve to
weight the l past time instants according to their impact on the next stage,
while βi�j measures the importance of individual j to individual i.

As in the basic model (1.1), also under (1.3) all individuals will eventually
be “absorbed” in one of the groups. As a generalization of Proposition 1, the
probability πν�ξ0� � � � � ξc−1� that all individuals will eventually belong to group
ν, given that the first c allocations are ξ0� � � � � ξc−1, is determined in Section 6.
Section 7, the final section, is devoted to various examples.

2. Description of results for the first model. We describe the flow
between groups in model (1.2) in terms of population profiles, as suggested by
Brumelle and Gerchak [4]. The set of possible population profiles is given by

� = x = �x1� � � � � xm�T ∈ Z
m
+ � � x �= n��

where we set � x �= ∑n
ν=1 �xν�. For the profile process, being in state x ∈ �

means that xν individuals belong to group ν for ν = 1� � � � �m. The number of
profiles is

(
m+n−1

n

)
.

The transition from one profile x to another, say y ∈ � , proceeds as follows.
Let ηx�1� � � � � ηx�n be independent random column vectors such that

P�ηx�i = eT
ν � = λi

xν
n

+ �1 − λi�piν� x ∈ � � i = 1� � � � � n� ν = 1� � � � �m�(2.1)

Then the probability of a (one-step) transition from x to y is given by

q�x�y� = P�ηx�1 + · · · + ηx�n = y�� x� y ∈ � �(2.2)

As explained in the Introduction, individual i determines his probability to go
to group ν in the next step according to his individual convex combination of
the current frequency of that group and his individual fixed preference for ν,
expressed by the probability piν. For (2.1) we assume that λi ∈ �0�1� piν ≥ 0,∑m

ν=1 piν = 1. Note that there may be individuals under the total influence of
the collective opinion (those with λi = 1), while others may take completely
independent decisions �λi = 0�.

Clearly, Q = �q�x�y��x�y∈� is a �card� × card� �-transition matrix
which defines, together with an arbitrary initial distribution on � , a time-
homogeneous Markov chain with state space � . Somewhat surprisingly, it
turns out that rather explicit algebraic results on Q can be obtained.

We need some additional notations. For a ∈ Z and b ∈ Z+, let �a�b = a�a−
1� · · · �a − b + 1�. For x ∈ Z

m and z ∈ Z
m
+ , we set �x�z = ∏m

ν=1�xν�zν and xz =
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∏m
ν=1 x

zν
ν . Furthermore, let � = R

� and denote the elements of � by v =
�vx�x∈� . Next, we set �j = z ∈ Z

m
+ � � z �= j�, j = 0� � � � � n, so that � = �n.

For z ∈ �j we denote by v�z� the column vector v�z� = �v�z�x �x∈� ∈ � whose
components are given by

v
�z�
x = �x�z =

m∏
ν=1

�xν�zν �(2.3)

The vectors v�z�� z ∈ �j� will be seen to be linearly independent for every
j ∈ 0� � � � � n�. These sets are an important tool in the derivation of our main
result.

Theorem 1. The matrix Q is diagonalizable. Its eigenvalues are

µ0 = 1�

µj = n−jj!
∑

1≤i1<···<ij≤n
λi1

· · ·λij� j = 1� � � � � n�

The multiplicity of µj is
(
m+j−2

j

)
; if some µj’s are equal, these multiplicities

have to be added. It follows that Q = ADA−1, where D is the diagonal matrix
with diagonal entries µj, each one repeated according to its multiplicity, and
A is a matrix of corresponding linearly independent eigenvectors.

The next two sections are devoted to a proof of these statements.

3. Preliminaries. In this section we collect some auxiliary results for the
proof of Theorem 1. Let ζ1� ζ2� � � � � ζn be independent, 0�1�-valued random
variables satisfying P�ζi = 1� = 1 −P�ζi = 0� = λi� i = 1� � � � � n. We have to
consider the factorial moments mj = E��ζ�j� of their sum ζ = ∑n

i=1 ζi.

Lemma 1. For � ⊂ 1� � � � � n� let P� = �∏i∈� λi��
∏

i∈1�����n�\� �1 − λi��.
Then for j = 1� � � � � n,

mj = ∑
� ⊂1�����n�

�card� �jP� = j!
∑

1≤i1<···<ij≤n
λi1

· · ·λij = njµj�(3.1)

Proof. The first equation in (3.1) is obvious. To see the second, note that
mj = �djf/duj��1�, where f�u� = E�uζ�, u ∈ R, is the generating function of
ζ. If we set

g�u� =
n∏
i=1

�1 + λiu��(3.2)

then g�u� = f�1+u�; therefore �djf/duj��1� = �djg/duj��0� is the coefficient
of uj in the expansion of the product in (3.2) in ascending powers of u. ✷
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Lemma 2. Let k0 be the number of indices i ∈ 1� � � � � n� satisfying λi 	= 0.
Then

1 = m0 ≥ n−1m1 > n−2m2 > · · · > n−k0mk0
> 0 = mj� j > k0�(3.3)

Furthermore, n−1m1 = 1 if and only if λi = 1 for all i ∈ 1� � � � � n�.

Proof. By (3.1),

n−j−1mj+1 = n−j−1 ∑
�

�card� �j+1P�

= n−j∑
�

�card� �j
card� − j

n
P� ≤ n−jmj

and, clearly, strict inequality holds if mj+1 > 0. As P�ζ = k0� > 0 = P�ζ > k0�,
it is obvious that mk0+1 = E��ζ�k0+1� = 0 < E��ζ�k0

� = mk0
. Finally, note that

1 = n−1m1 = n−1 ∑n
i=1 λi is equivalent to λ1 = · · · = λn = 1. ✷

Lemma 3. For every j ∈ 0� � � � � n� the set

Bj = v�z� � z ∈ �j�
is linearly independent in � .

Proof. We carry out a backward induction on j. First, let j = n. If z ∈
�j = � and x ∈ � ,

�x�z =
{ �x�x 	= 0� if z = x�

0� if z 	= x�

Thus, exactly the component v�z�z of v�z� is not equal to zero. It follows that Bn

is a basis of � .
For the induction step we need the following relation. If x = �x1� � � � � xm�T ∈

� and z = �z1� � � � � zm�T ∈ �j−1, then

�n− j+ 1��x�z =
m∑
ν=1

�x�z�xν − zν� =
m∑
ν=1

�x�z+eT
ν
�(3.4)

Now suppose that Bj is linearly independent for some j ∈ 1� � � � � n�. For
every z ∈ �j−1 we have, by (3.4),

v�z� = �n− j+ 1�−1
m∑
ν=1

v�z+e
T
ν ��

Therefore, a linear relationship of the form
∑

z∈�j−1
czv

�z� = 0 for certain coef-
ficients cz ∈ R implies that

m∑
ν=1

∑
z∈�j−1

cz
n− j+ 1

v�z+e
T
ν � = 0�
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so that all cz must be zero by the induction hypothesis. Hence Bj−1 is also
linearly independent. ✷

4. Proof of Theorem 1. The transition from a state x to a state y ac-
cording to (2.1) and (2.2) can be considered as carried out in two stages. First,
the set of individuals is randomly split into two disjoint sets,

1� � � � � n� = � ∪�� � ∩� = ��

where � denotes the set of “conformists” and � the set of “nonconformists.”
The random set � is chosen with probability P� = �∏i∈� λi��

∏
i∈��1 − λi��.

In the second stage every individual selects his group. Conformists follow the
collective preference structure displayed in the preceding time period, while
nonconformists do not take into account the decisions of other people. This
means that for 1 = 1� � � � � n and ν = 1 � � � �m,

P�ηx� i = eT
ν � i ∈ � � = xν/n�

P�ηx� i = eT
ν � i ∈ �� = piν�

Let ηx�� = ∑
i∈� ηx� i� ηx�� = ∑

i∈� ηx� i. For any z ∈ Z
m
+ it is clear that

the conditional probability that ηx�� = z, given that � is the current set of
conformists, is of the multinomial form

P�ηx�� = z � � � =
(

card�

z1� � � � � zm

)
xz

n��z�� �

(Of course this probability is 0 if card� 	= ��z���� Let π��� z� = P�ηx�� = z �
�� be the corresponding probability for the nonconformists. Also we define,
for x ∈ Z

m
+ , the factorial product ϕ�x� = x1! � � � xm!; if x ∈ Z

m has at least one
negative component, we set 1/ϕ�x� = 0. Then we obtain

q�x�y� = ∑
� +�=1�����n�

z∈Z
m
+

P� π��� z�P�ηx�� = y− z � � �

= ∑
z∈Z

m
+

α�z� xy−z

ϕ�y− z� �

where

α�z� = �n− ��z���!
nn−��z��

∑
� +�=1�����n�

P� π��� z��

We want to derive an identity of the form
∑
y∈�

q�x�y��y�z =
∑

z′∈Z
m
+

γ�z� z′��x�z′� x ∈ � � z ∈ Z
m
+
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for certain coefficients γ�z� z′�. For this some more notations and a few com-
binatorial equations are required. Let b�z� z′� = �z�z′/ϕ�z′� = ∏m

i=1

( zi
z′i

)
for

z� z′ ∈ Z
m
+ . We need the easily established Vandermonde type convolution

�y�z =
∑

z′′∈R
m
+

b�z� z′′��y− z′�z′′ �z′�z−z′′(4.1)

for y ∈ � , z� z′ ∈ Z
m
+ ; the summand in (4.1) is zero unless y ≥ z′ +z′′ ≥ z ≥ z′′.

Furthermore, the following three simple identities have to be applied:

�y− z′�z′′/ϕ�y− z′� = ϕ�y− z′ − z′′��(4.2)

∑
y∈�

xy−z
′−z′′

ϕ�y− z′ − z′′� = nn−��z′ ��−��z′′ ��

�n− ��z′�� − ��z′′���! �(4.3)

xz
′′ = ∑

z′∈Z
m
+

s�z′′� z′��x�z′ �(4.4)

In (4.4) we use the Stirling numbers s�l� k�, l� k ∈ Z+, of the second kind,
given by their generating function

∞∑
k=0

s�l� k��u�k = ul� u ∈ R�

The term s�z′′� z′� is defined by

s�z′′� z′� =
m∏
i=1

s�z′′i � z′i��

Using (4.1)–(4.3) we find that

∑
y∈�

q�x�y��y�z =
∑
y∈�

∑
z′∈Z

m
+

α�z′� xy−z
′

ϕ�y− z′� �y�z

= ∑
y∈�

∑
z′∈Z

m
+

∑
z′′∈Z

m
+

α�z′� xy−z
′

ϕ�y− z′�b�z� z
′′��y− z′�z′′ �z′�z−z′′

= ∑
z′∈Z

m
+

∑
z′′∈Z

m
+

∑
y∈�

α�z′�b�z� z′′� xy−z
′−z′′

ϕ�y− z′ − z′′�x
z′′ �z′�z−z′′

= ∑
z′� z′′

α�z′�b�z� z′′� nn−��z′ ��−��z′′ ��

�n− ��z′�� − ��z′′���!x
z′′ �z′�z−z′′ �

Thus, setting

β�z� z′′� = b�z� z′′� ∑
z′∈Z

m
+

α�z′��z′�z−z′′
nn−��z′ ��−��z′′ ��

�n− ��z′�� − ��z′′���!(4.5)
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we obtain
∑
y∈�

q�x�y��y�z =
∑

z′′∈Z
m
+

β�z� z′′�xz′′ �(4.6)

Note that β�z� z′′� 	= 0 implies that b�z� z′′� 	= 0 and thus z ≥ z′′. Using (4.1)
we can also write

β�z� z′′� = b�z� z′′�n−��z′′ �� ∑
� +�=1�����n�

z′∈Z
m
+

�n− ��z′�����z′′ �����z′���z−z′′P� π��� z′��(4.7)

In particular, for z = z′′ this yields

β�z� z� = n−��z�� ∑
� +�=1�����n�

z′∈Z
m
+

�n− ��z′�����z��P� π��� z′�

= n−��z�� ∑
� +�=1�����n�

�card� ���z��P�

∑
z′
π��� z′�

= n−��z��m��z���

(4.8)

In (4.8) we used that b�z� z� = 1, that π��� z′� 	= 0 entails ��z′�� = card� and
that

∑
z′ π��� z′� = 1. Now define γ�z� z′� by

γ�z� z′� = ∑
z′′∈Z

m
+

β�z� z′′�s�z′′� z′��(4.9)

The summands in (4.9) are not zero only for values of z′′ satisfying z′ ≤ z′′ ≤ z.
In particular, γ�z� z′� 	= 0 implies that z′ ≤ z. For z′ = z we find that

γ�z� z� = β�z� z�s�z� z� = β�z� z� = n−��z��m��z���

By (4.4), it can now be seen that
∑

z′′∈Z
m
+

β�z� z′′�xz′′ = ∑
z′′∈Z

m
+

β�z� z′′� ∑
z′∈Z

m
+

s�z′′� z′��x�z′

= ∑
z′∈Z

m
+

γ�z� z′��x�z′ �
(4.10)

It follows from (4.6) and (4.10) that
∑
y∈�

q�x�y��y�z =
∑

z′∈Z
m
+

γ�z� z′��x�z′� x ∈ � � z ∈ Z
m
+ �(4.11)

On the right-hand side of (4.11) we need only sum over z′ ≤ z, as γ�z� z′� = 0
otherwise.

Relation (4.11) can also be written in vector form as

Qv�z� = n−��z��m��z��v
�z� + ∑

��z′ ��<��z��
γ�z� z′�v�z′�� z ∈ Z

m
+ �(4.12)
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Thus, if we consider Q as a linear mapping from � to itself and denote by Id
the identity mapping on � (and also the corresponding matrix), we obtain

�Q− n−��z��m��z��Id�v�z� =
∑

��z′ ��<��z��
γ�z� z′�v�z′��(4.13)

For j = 0� � � � � n� let �j ⊂ � be the linear subspace having Bj as its basis.
Using Lemma 3 and (4.13) we have the following:

1. �0 ⊂ �1 ⊂ · · · ⊂ �n = � ;
2. dim �j = (

m+j−1
j

)
� j = 0� � � � � n;

3. the linear mapping gj = �Q − n−jmj Id� ��j satisfies Imgj ⊂ �j−1, j =
1� � � � � n.

From the dimension formula

dim kergj + dim Imgj = dim �j =
(
m+ j− 1

j

)

and the inequality

dim Imgj ≤ dim �j−1 =
(
m+ j− 2

j− 1

)
�

we find that

dim kergj ≥
(
m+ j− 1

j

)
−

(
m+ j− 2

j− 1

)
=

(
m+ j− 2

j

)
�

Set �j = ker��Q−n−jmj Id��� �. Let us first suppose that all values n−jmj, j =
0� � � � � n, are distinct. Then the �j are eigenspaces corresponding to different
eigenvalues of Q and thus, since dim�j ≥ dim kergj,

(
m+ n− 1

n

)
= dim � ≥

n∑
j=0

dim�j ≥
n∑

j=0

(
m+ j− 2

j

)
=

(
m+ n− 1

n

)
�

It follows that dim�j = (
m+j−2

j

)
, j = 0� � � � � n, and that these dimensions add

up to dim � . The theorem is proved, provided that all n−jmj are distinct.
It thus remains to consider the case that some n−jmj are equal. We have

seen in Lemma 2 that this can only happen if either all λj are 1 or some of
them are 0.

If λj = 1 for j = 0� � � � � n, then ζ ≡ n, mj = �n�j and

1 = m0 = n−1m1 > n−2m2 > · · · > n−nmn�

It can easily be checked that in this case

Qv�eν� = v�eν�� ν = 1� � � � �m�

Since B1 = v�eν� � ν = 1� � � � �m� is a basis of �1, Q��1 is the identity mapping
and 1 = m0 = n−1m1 is an eigenvalue of Q having multiplicity m = (

m+0−2
0

)+(
m+1−2

1

)
, as claimed.
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Finally, assume that some λi are equal to 0. Let ˜� = i ∈ 1� � � � � n� � λi 	=
0�, k = card ˜� . Then mk 	= 0 = mj for j > k.

We have β�z� z′′� = 0 for ��z′′�� > k. To see this, consider the sum on the
right-hand side of (4.7) and assume ��z′′�� > k. For a summand corresponding
to z′ not to be zero, one must have card� = ��z′�� (for otherwise π��� z′� = 0)
and n − ��z′�� ≥ ��z′′�� (for otherwise �n − ��z′�����z′′ �� = 0). If ��z′′�� > k, it follows
from these relations that

card� = n− card� = n− ��z′�� ≥ ��z′′�� > k�
but obviously � ⊂ ˜� , so that card� ≤ k. Hence β�z� z′′� = 0 for ��z′′�� > k.

By (4.6), ∑
y∈�

q�x�y��y�z =
∑

��z′ ��≤k
β�z� z′′�xz′′ �

Thus Q�� � ⊂ �k. One can now argue as before, replacing the chain �0 ⊂ · · · ⊂
�n = � of vector spaces by �0 ⊂ · · · ⊂ �k ⊂ � . The theorem is proved. ✷

5. The limiting distribution. As usual, diagonalization is a useful tool
for computing the t-step transition probabilities, that is, the elements of Qt,
because the representation Q = ADA−1 derived above implies that

Qt = ADtA−1� t ∈ N�

Next note that, except in the case that all λi are equal to 1, Q has 1 as an
eigenvalue of multiplicity 1 so that the Markov chain is ergodic. Its stationary
distribution can be calculated by carrying out some simple matrix multiplica-
tions (without any matrix inversions).

Proposition 2. Let λi < 1 for some i ∈ 1� � � � � n�. Then the matrix

n∏
j=1

��Q− µj Id�/�1 − µj��

has identical rows which are all equal to the uniquely determined stationary
distribution π = �πx�x∈� associated with Q.

Proof. From Q = ADA−1 we conclude that

Q− µj Id = A�D− µj Id�A−1� j = 0� � � � � n�(5.1)

Define R = ∏n
j=1�Q− µj Id�. Multiplying equations (5.1), we obtain

R�Q− Id� =
n∏

j=0

�Q− µj Id�

= A

( n∏
j=0

�D− µj Id�
)
A−1

= 0�

(5.2)
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where 0 denotes the zero matrix. (Note that
∏n

j=0�D − µj Id� is a product of
diagonal matrices in which for every diagonal entry at least one of the matrices
contributes the factor zero, so that the product is the zero matrix). By (5.2), if
ρ = �ρx�x∈� is an arbitrary row of R, then

ρ�Q− Id� = 0�

No row of R is zero. Indeed, the definition of R yields

R = Qn −Qn−1
n∑

j=1

µj +Qn−2 ∑
j1<j2

µj1
µj2

− · · · + �−1�nµ1 · · ·µn Id(5.3)

and by (5.3) each row of R has the sum

1 −
n∑

j=1

µj +
∑

j1<j2

µj1
µj2

− · · · + �−1�nµ1 · · ·µn =
n∏

j=1

�1 − µj� 	= 0�

here we of course use that Q is a stochastic matrix. Hence, for any row ρ of
R the row vector ρ̃ = �∏n

j=1�1 − µj��−1ρ satisfies ρ̃Q = ρ̃ and ��ρ̃�� = 1. These
equations uniquely determine the stationary distribution belonging to Q.

Next we compute the expected number ϕν of individuals in group ν under
a stationary regime. Clearly, ϕν is given by

ϕν =
∑
x∈�

xνπx� ν = 1� � � � �m

and is also the limit of this expected number under any initial distribution on
� . We will now show that ϕν/n is equal to the ratio of the expected number of
nonconformists in group ν and the expected total number of nonconformists. ✷

Proposition 3. If at least one λi is smaller than 1, then

ϕν = n
n∑
i=1

�1 − λi�piν

/(
n−

n∑
i=1

λi

)
�(5.4)

Proof. Using stationarity and the relations (4.6) and (4.8) we find that

ϕν =
∑
x∈�

xν
∑
y∈�

πyq�y�x�

= ∑
x∈�

�x�eT
ν

∑
y∈�

πyq�y�x�

= ∑
y∈�

πy

∑
x∈�

�x�eT
ν
q�y�x�

= ∑
y∈�

πy

∑
z∈Z

m
+

z≤eT
ν

β�eT
ν � z�yz
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= ∑
y∈�

πy�β�eT
ν �0�y0 + β�eT

ν � e
T
ν �yeT

ν �

= ∑
y∈�

πy�β�eT
ν �0� + β�eT

ν � e
T
ν �yν�

= n−1m1ϕν + β�eT
ν �0��

where 0 denotes the zero vector in � . Thus, ϕν�1 − n−1m1� = β�eT
ν �0� or

ϕν =
n

n−∑n
i=1 λi

β�eT
ν �0��(5.5)

It remains to determine β�eT
ν �0�. By (4.7), we can write

β�eT
ν �0� = ∑

� +�=1�����n�
z∈Z

m
+

�z�eT
ν
P� π��� z�

= ∑
� +�=1�����n�

P�

( ∑
z∈Z

m
+

zνπ��� z�
)
�

The inner sum on the right-hand side is the conditional expected number
of nonconformists going to group ν, given that � is the set of conformists
at that stage. Therefore, β�eT

ν �0� is the (unconditional) expected number of
nonconformists going to group ν at an arbitrarily chosen stage. Hence, β�eT

ν �0�
is also equal to the sum over �1 − λi�piν� i = 1� � � � � n, since �1 − λi�piν is the
probability that individual i becomes a nonconformist and joins group ν. It
follows that

β�eT
ν �0� =

n∑
i=1

�1 − λi�piν�(5.6)

Equation (5.4) follows from (5.5) and (5.6). ✷

6. Absorption in the finite memory model. Let us now consider the
second model, which is characterized by the equation

P�ξ�i�t+1 = eν � �t� =
n∑

j=1

βi�j

c∑
l=1

γlξt−l+1�j� ν��

i = 1� � � � � n� ν = 1� � � � �m� t = 0�1�2� � � � �

(6.1)

According to (6.1), the decision of individual i at time t + 1 depends on the
previous c decisions of all members of the population. The weight of individual
j is given by βi�j, where βi�j > 0 and

∑n
j=1 βi�j = 1, and the influence of the

last time units is represented by the γl, where γl ≥ 0, γc > 0,
∑c

l=1 γl = 1.
Since all βi�j are positive, it is clear that all individuals will eventually belong
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to the same group. For fixed initial allocations ξ0� � � � � ξc−1 let πν�ξ0� � � � � ξc−1�
be the probability that ξ�i�t = eν for i = 1� � � � � n and all sufficiently large t. The
aim of this section is to derive a simple formula for this absorption probability.

Theorem 2. Let 2l =
∑c

h=l γh. If �σi�i=1�����n denotes the stationary distri-
bution of the stochastic matrix �βi�j�i� j=1�����n, then

πν�ξ0� � � � � ξc−1� =
c∑

l=1

(
2l

/ c∑
h′=1

2h′

) ∑
i�ξ�i�c−l=eν

σi�(6.2)

Thus, to compute πν�ξ0� � � � � ξc−1� we have to determine, for any l ∈
1� � � � � c�, those individuals i who belong to group ν at time c − l and then
add the stationary probabilities σi corresponding to these individuals; the
absorption probability for group ν is then a special weighted average of these
c values.

Proof of Theorem 2. We fix the values ξ0� � � � � ξc−1 and ν. As in the
proposition proved in the Introduction, it is easily concluded from (6.1) that
the sequence

Zt = Z
�ν�
t =

n∑
i=1

σi1ξ�i�t =eν�� t ∈ Z+(6.3)

satisfies

E�Zt+1 � �t� =
c∑

l=1

γlZt−l+1�(6.4)

Since eventual absorption is almost certain, Z = limt→∞Zt almost surely
exists and takes values in 0�1�. Obviously,

πν�ξ0� � � � � ξc−1� = E�Z��(6.5)

Define

Yt =
c∑

l=1

2lZt−l+1� t ≥ c− 1�(6.6)

Then for every t ≥ c− 1, (6.4) implies that

E�Yt+1 � Yc−1� � � � �Yt� = E�E�Yt+1 � �t� � Yc−1� � � � �Yt�

= E

(
E�21Zt+1 � �t� +

c∑
l=2

2lZt−l+2 � Yc−1� � � � �Yt

)

= E

( c∑
l=1

γlZt−l+1 +
c∑

l=2

2lZt−l+2 � Yc−1� � � � �Yt

)

= E

( c∑
l=1

2lZt−l+1 � Yc−1� � � � �Yt

)

= Yt�

(6.7)
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By (6.7), Yt is a martingale. As 0 ≤ Yt ≤ c, the sequence Yt is uniformly
integrable; in particular, its limit Y = limt→∞Yt [which exists almost surely
by the martingale convergence theorem or simply by definition (6.6), since
Zt is a.s. convergent] satisfies E�Y� = E�Yc−1�. If we set 2 = ∑c

l=1 2l, then
passing to the limit in (6.6) shows that

Y = 2Z�

so that

E�Z� = 2−1E�Y� = 2−1E�Yc−1� = 2−1
c∑

l=1

2lZc−l�(6.8)

Inserting (6.8) in (6.5) and using the definition (6.3) of Zc−l yields (6.2).

7. Examples.

Example 1. To illustrate Proposition 1, consider an ordered population
1� � � � � n in which every individual i, in order to make his next move, takes into
account only his own current group and the current decisions of his immediate
neighbors. Thus, the coefficients βi�j in (1.1) form a stochastic Jacobi matrix:

�βi�j�i�j=1�����n =




q1 r1 0 · · · 0

p2 q2 r2 0 0

0
���

��� 0

0 � � � pn−1 qn−1 rn−1

0 � � � 0 pn qn



�

Assume that all ri are positive. Then the stationary distribution corresponding
to �βi�j� is given by

σi =
n−1∏
l=i

�pl+1/rl�
/(

1 +
n−1∑
k=1

n−1∏
h=k

�ph+1/rh�
)
� i = 1� � � � � n

(with the empty product defined to be 1). The probability of eventual absorp-
tion of the entire population in group ν is the sum of those σi for which indi-
vidual i is initially in group ν.

Example 2. Next, let the group affiliations be governed by (1.2) and as-
sume that the population entirely consists of (pure) nonconformists and con-
formists; that is, there is a k ∈ 0� � � � � n� such that λi = 0 for i ≤ k and λi = 1
for i > k. The eigenvalues are then given by µ0 = 1 and µj = n−j�n−k�j� j =
1� � � � � n.
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Case 1 (k ≥ 1). Then there is at least one nonconformist. The profile pro-
cess is asymptotically stationary, since the matrix Q has 1 as a simple eigen-
value and all its other eigenvalues are in the interval �0�1�. The component πx

of the stationary distribution π gives the long-run relative frequency of visits
of the profile x. Let G be the set of groups that are occasionally chosen by non-
conformists, that is, G=ν � piν > 0 for some i≤k�, and set � =x∈� � xν =0
for all ν /∈ G�. Once a profile x ∈ � is reached, the set � is never left again, as
nonconformists will never go to any ν /∈ G and conformists will not do so when
starting from a profile in � . By Proposition 3, the limiting (or stationary)
expected fraction of individuals in group ν is given by

n−1ϕν = k−1
k∑

i=1

piν� ν ∈ 1� � � � �m��

Note that
∑k

i=1 piν is the expected number of nonconformists going to group ν
at an arbitrary fixed time instant.

As a very special case, suppose that k = 1 so that individual 1 is the only
nonconformist. Then the set of groups ν with p1ν > 0 is absorbing. In partic-
ular, if p1ν = 1 for some group ν1, all individuals will eventually end up in ν1;
the one nonconformist will have his way.

Case 2 (k = 0). Then all individuals are conformists. We saw in the proof
of Theorem 1 that B1 = v�eν� � ν = 1� � � � �m� is a basis of the eigenspace
of Q corresponding to the eigenvalue 1. Recalling (2.3) we note that v�eν� =
�v�eν�x �x∈� = �xν�x∈� .

In this case � contains m absorbing “unanimous” profiles x�1� = �n�0�
� � � �0�T� � � � � x�m� = �0� � � � �0� n�T [x�ν� denotes the profile in which all individ-
uals have chosen group ν], while the other

(
n+m−1
m−1

)−m profiles are transient.
The limiting distribution on x�1�� � � � � x�m�� depends of course on the initial
profile, say x�0� = �x�0�

1 � � � � � x
�0�
m �T ∈ � . By Proposition 1 (in the special case

βi�j = 1/n), the probability of ultimate absorption in group ν, that is, in x�ν�, is
given by x

�0�
ν /n. This rather intuitive result can also be proved algebraically as

follows. First order � such that the m “unanimous” profiles x�1�� � � � � x�m� come
first. Then extend the set w�1� = n−1v�e1�� � � � �w�m� = n−1v�em�, which is a basis
of the eigenspace for the eigenvalue 1, to a basis w�1�� � � � �w�s� of eigenvectors
of Q (here s = card� �. Let A be the matrix �w�1�� � � � �w�s��. Then Q = ADA−1,
where D is the diagonal matrix of eigenvalues (suitably ordered). Note that
A is of the form

A = �Ax�y�x�y∈� =
(

Idm A′

A′′ A′′′

)

with Idm denoting the �m × m�-identity matrix. By the definition of the
w�ν�, the submatrix A′′ has the entries Ax�x�ν� = xν/n� x = �x1� � � � � xm�T ∈
� \x1�� � � � � x�m��; that is, Ax�x�ν� is the fraction of individuals in group ν

for the profile x. Clearly, limt→∞Qt = ( Idm 0
A′′ 0

)
. Thus, if the process starts
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from the profile x�0�, the probability of ending unanimously in group ν equals
x
�0�
ν /n.

Example 3. Let us finally consider a numerical example. Take n = 10
individuals and m = 3 groups and assume that there are four conformists
and six nonconformists of whom one always stays in group 1, two stay in
group 2 and three in group 3. There are 15 possible profiles:

(5,2,3), (4,3,3), (3,4,3), (2,5,3), (1,6,3), (4,2,4), (3,3,4), (2,4,4), (1,5,4), (1,2,5),
(2,3,5), (1,4,5), (2,2,6), (1,3,6), (1,2,7).

The remaining
( 10+3−1

3−1

)− 15 = 51 profiles in � cannot be attained because
of the individuals who do not change groups.

The exact stationary probabilities of the attainable profiles (in the above
order) are easily computed using Mathematica for the matrix multiplications
in Proposition 2:

31167
13387792 �

48139
5020422 �

136343
6693896 �

277661
10040844 �

49985
2510211 �

48139
3346948 �

181383
3346948 �

261
2684 �

277661
3346948 �

147603
3346948 �

469551
3346948 �

1059963
6693896 �

2275
27434 �

2275
13717 �

17525
219472 �

Note that the three profiles (1,3,6), (1,4,5) and (2,3,5) are by far the most
likely, having probabilities 0.1659, 0.1583 and 0.1403, respectively. Every other
profile has a stationary probability of less than 0.0973.
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